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Abstract A structural shape optimization problem, with respect to the structural aspect ratio is developed in the
context of an axisymmetric structural-acoustic system, consisting of an elastic dome coupled with an internal
acoustic cavity, is analyzed in the low- and medium-frequency ranges. The dome is a thin shell considered
as a three-dimensional continuum with a dissipative constitutive equation. The internal f uid is a dissipative
acoustic fl id. The dome is submitted to an external wall pressure fi ld modeled by a stochastic fi ld. The
cost function is related to the pressure fi ld over an internal axisymmetric observation surface inside the
acoustic cavity. We are interested in minimizing the internal noise over the observation surface with respect
to the structural aspect ratio def ning the geometric shape of the dome. This paper develops an analysis of
the structural-acoustic shape optimization problem to determine wheter or not there exist values of the dome
aspect ratio for which the internal noise is a minimum. The frequency response functions of the structural-
acoustic system are calculated to construct the cost function. In this context, the Fourier series expansions
of the structural displacement f eld and the internal f uid velocity potential are carried out with respect to
the polar angle variable. For each f xed circumferential wave number, a reduced matrix model is constructed
using the structural modes of the structure in vacuo and the acoustic modes of the internal acoustic cavity
with rigid wall. The structural modes and the acoustic modes are computed by the f nite element method. The
optimization parameter is the aspect ratio of the structure. The analysis presented shows that the structural
shape optimization problem of the dome with respect to its aspect ratio parameter has a clear solution which
minimizes internal noise in the low- and medium-frequency ranges.
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1. Introduction

This paper deals with a structural shape parametric op-
timization in the structural-acoustic area. The structure
is an elastic dome constituted by an axisymmetric thin
shell structure considered as a three-dimensional contin-
uum with a dissipative constitutive equation. The shape
of the dome is define by its aspect ratio which is a scalar
parameter. We are interested in the optimization problem
with respect to this scalar parameter and not in the gen-
eral shape optimization [5]. The dome is coupled with an
axisymmetric internal dissipative acoustic fl id. The
dome is excited by an external randomwall pressure f eld
which is stationary in time, such as a wall pressure in-
duced by a turbulent boundary layer due to an external
fl w. The objective of this paper is only devoted to ana-
lyzing the inf uence of the dome curvature on the cou-
pling mechanism between the structure and the inter-
nal acoustic cavity (see below). Consequently, the cou-
pling effects of the structure with the unbounded external
acoustic f uid is neglected in order to simplify the para-
metric analysis. It should be noted that the effects of the
external f uid on the structure have two effects [7,12]. The
f rst one is an additional damping for the structure, in-
duced by the acoustic radiation at inf nity in the external
f uid. This additional damping, which depends on the fre-
quency is smaller than the structural damping and, con-
sequently, does not modify the coupling mechanism be-
tween the structure and the internal acoustic cavity. The
second effect, which is induced by the external acoustic
f uid, is an added mass for the structure. This addedmass,
which depends on the frequency, generally produces a de-
creasing of the eigenfrequencies of the structure in a vac-
uumwhen the external acoustic f uid is a liquid. This shift
effect is significa t for the f rst structural eigenmodes in
the LF range. When the modal density of the structure is
high enough [10,17], which is the case for the superior
part of the LF range and for the MF range of the struc-
ture under consideration, the modal density of the struc-
ture is not signif cantly modif ed, and def nitely not suf-
ficie tly modifie to distort the performed analysis of the
coupling mechanism between the structure and the inter-
nal acoustic cavity. The observationmade on this axisym-
metric structural-acoustic system is the internal pressure
f eld over an internal axisymmetric observation surface
inside the acoustic cavity. We are interested in minimiz-
ing the internal noise over the observation surface with

respect to the geometric shape of the dome defi ed by its
aspect ratio and consequently, the optimization parameter
is the aspect ratio of the dome (axisymmetric structure).
The fundamental mechanism induced by the curvature

of the dome on the coupling between the structure
and the internal acoustic cavity, is the following. The
structural membrane waves and the structural f exural
waves in the dome are coupled by the curvature of the
dome. Structural f exural waves excited by the external
wall pressure are converted into structural membrane
waves. These structural membrane waves induce a piston
movement of the dome nose. This type of structural
displacement is associated with a variation in volume of
the internal acoustic cavity which induces a high level of
internal noise (presently, the observation surface inside
the acoustic cavity is not located in the near fiel of the
wall but is located in the far fiel ). This paper develops
an analysis of the structural-acoustic shape optimization
problem to determine whether or not there exist values
of the dome aspect ratio for which the internal noise is
a minimum (without, however, developing an automatic
optimization algorithm).
Because we are interested in the low- and medium-

frequency ranges and taking into account the fact that
the dome geometry is not a ‘simple shape geometry’,
the above parametric optimization problem is diff cult to
solve by analytical methods [3,7,9,13]. This is why the
numerical approach proposed in reference [12] is used to
solve this internal structural-acoustic optimization prob-
lem. According to this reference, in the general case,
the modal approach, which is perfectly adapted to the
low-frequency range, cannot be extended to the medium-
frequency range [12]. However, because the structural-
acoustic system considered is axisymmetric, a Fourier se-
ries expansion of the response can be made and therefore,
the modal approach can still be used for the medium-
frequency range which is considered in the application
presented in this paper. It should be noted that this
method could not be used for a general three-dimensional
structural-acoustic system. In addition, in reference [12],
the formulation proposed for internal structural-acoustic
systems in the low-frequency range differs from the for-
mulation adapted to the medium-frequency range. Since
we are not interested in calculation of the structural-
acoustic modes and since we wish to use a single formu-
lation for the optimization problem related to the low- and
medium-frequency ranges, we chose to use the medium-



frequency model presented in [12]. A reduced matrix
model for each fi ed circumferential wave number is con-
structed by a Ritz–Galerkin projection based on the use
of the structural modes of the structure in vacuo and the
acoustic modes of the internal acoustic cavity with rigid
wall. The structural modes and the acoustic modes are
computed by the f nite element method.
Section 2 is devoted to (1) the geometric description of

the three-dimensional axisymmetric structural-acoustic
system, (2) its mechanical modeling and the associated
three-dimensional boundary value problem, and (3) the
Fourier series expansion and the two-dimensional bound-
ary value problems associated with each fi ed circumfer-
ential wave number. In section 3, we give the variational
formulation of the two-dimensional boundary value prob-
lem associated with a f xed circumferential wave num-
ber. Section 4 is devoted to the construction of the re-
duced matrix model using the Ritz–Galerkin method. In
section 5, we defin a normalized power spectral den-
sity function of the observation, which is directly used to
construct the cost function of the optimization problem.
In section 6, we defi e the optimization problem and we
present the method for constructing its solution. Finally,
in section 7 we describe a complete numerical applica-
tion.

2. Three-dimensional axisymmetric
structural-acoustic system boundary value
problem

2.1. Structural-acoustic system geometry

The geometry of the structural-acoustic system is de-
fi ed in figu e 1. The internal acoustic fl id occupies
a bounded domain DF of three-dimensional physical
space R3 with boundaryΣF =Σ− ∪Σ−F ∪Σ0

F in which
Σ−F and Σ0

F are rigid walls. The structure occupies a
bounded domain DS of R3 with boundary ΣS = Σ− ∪
Σ+ ∪Σ0

S in which Σ
0
S is a rigid wall whereas boundary

Σ− is the coupling interface between the elastic structure
and the internal acoustic f uid. The unit normal to ΣS ex-
ternal toDS and the unit normal toΣF external toDF are
denoted as n and n′ respectively. Therefore, n=−n′ on
Σ−. Space R3 is referenced to a cartesian reference sys-
tem (0, x1, x2, x3) also written (0, x, y, z). The generic
point of R3 is denoted as x = (x1, x2, x3). We introduce
the cylindrical coordinates (θ, r, z) ∈ [0,2π[×R+ × R
such that x1 = −r sin θ, x2 = r cos θ et x3 = z. The as-
sociated local cylindrical orthonormal basis is (eθ , er , ez)
as shown in figu e 2. The coupled system is axisymmetric
around axis (0z) as is the internal observation surface Σ .
The generating plane is defi ed by {x | x = 0, y > 0}.
Parts Σ+ and Σ− are denoted as Σi for i in {+,−}.
The generatrix of Σi is denoted as Γ i and is define by
the function z 7→ Ri(z). The generatrix Γ of internal ob-
servation surface Σ is def ned by the function z 7→R(z).

Figure 1. Geometry of the structural-acoustic system.

Figure 2. Associated local cylindrical orthonormal basis.

The generating planes of the structure and the internal
acoustic flui are denoted as PS and PF respectively.
Boundaries ΣF and Σo

S are generated by curves ΓF and
Γ 0
S respectively. Let si be the curvilinear abscissa of gen-

eratrix Γ i pointing positively in the direction of increas-
ing z. We introduce the curvilinear measure dsi related
to Γ i and measures dΓ i and dΣi such that

dsi(z)= (1+ (dRi(z)/dz)2)1/2dz, (1)

dΓ i =Ri(z) dsi(z), dΣi =Ri(z) dθ dsi(z). (2)
For all i in {+,−} and all x in Σi , we defin a local
physical reference system (bi1 = eθ |

Σi
,bi2 = ni ,bi3 =

eθ |
Σi
∧ ni ) attached to point x where n+ = n on Σ+

and n− = −n on Σ−. The orthogonal 3 × 3 matrix
transforming the local physical reference system into the
local cylindrical reference system depends only on z and
is written as

[
Θi(z)

]=
1 0 0
0 αi(z) βi(z)

0 −βi(z) αi(z)

 , (3)

αi(z)= (1+ (dRi(z)/dz)2)−1/2,
βi(z)= αi(z)dR

i(z)

dz
. (4)



2.2. Modeling and boundary value problem of the
three-dimensional axisymmetric
structural-acoustic system

We consider linear vibrations of the structural-acoustic
system around a static equilibrium position without pre-
stresses and taken as reference conf guration. The for-
mulation is written in the frequency domain ω (angu-
lar frequency in rad/s) for which the Fourier transform
convention used is such that, if t 7→ f (t) is a function
from R into C, then its Fourier transform is written as
f (ω)= ∫R e−iωt f (t) dt .
2.2.1. External excitation
The external mechanical excitation applied to the

structure is the vector f eld x 7→ f(x,ω)=−p+(x,ω)n(x)
def ned on Σ+ with values in C3.

2.2.2. Internal acoustic flu d
We assume that there is no acoustic source inside

acoustic f uid domain DF . The internal fl id is a dissi-
pative acoustic fl id. Let ρ0 be the mass density and c0
the speed of sound in the equilibrium state. The pressure
fiel p(x,ω) and the velocity potential ψ(x,ω) are such
that [11,12]

p(x,ω)=−iωρ0ψ(x,ω)− κπ2(u), (5)

κ = ρ0c
2
0

|DF | , π2(u)=
∫
Σ−

〈
u(x,ω),n′(x)

〉
dΣ−, (6)

in which i denotes the pure imaginary complex number,
〈u,v〉 = u1v1 + u2v2 + u3v3, |DF | =

∫
DF
dx is the vol-

ume of the internal acoustic cavity and where ψ must sat-
isfy the following constraint equation

∫
DF
ψ(x,ω) dx =

0. It should be noted that in this model, ψ is not exactly
a velocity potential because the velocity vector is written
as v(x,ω)= (1+ iωτ)∇ψ(x,ω). The three-dimensional
equations for the internal acoustic fl id are written as
in [12]

−ω2ρ0
c20
ψ − iωλ0ρ0∇2ψ − ρ0∇2ψ

= − iωκ
c20
π2(u) in DF , (7)

ρ0(1+ iωλ0)∂ψ
∂n
= iωρ0〈u,n〉 on Σ−, (8)

∂ψ

∂n
= 0 on Σo

F ∪Σ−F , (9)∫
DF

ψ dx= 0, (10)

in which λ0 is a damping coeff cient which may depend
on ω. Constraint equation (10) shows that ψ cannot be a
constant f eld.

2.2.3. Structure

The structure is an axisymmetric three-dimensional
solid continuum with a linear viscoelastic constitutive
equation without memory. Its mass density and its dis-
placement f eld with values in C3 are denoted as ρS(x) >
0 and u(x,ω) respectively. The constitutive equation is
written as in [12], σjk(x,ω) = σejk(x,ω) + iωσdjk(x,ω)
in which σjk is the stress tensor, σejk(x,ω)= ajkh`(x)×
εh`(u) is the elastic part of the stress tensor, σdjk(x,ω)=
bjkh`(x)εhl(u) is the damping part of the stress tensor
and εjk = 1

2 (∂kuj + ∂j uk) is the linearized strain ten-
sor in which ∂k denotes the partial derivative with re-
spect to xk . Elastic coefficie ts ajkh`(x) and damping co-
efficient bjkh`(x) are real and are assumed to be inde-
pendent of ω (linear viscoelasticity without memory) in
the context of the present shape optimization problem in
order to simplify the formulation. These coeff cients de-
pend on x and satisfy the usual symmetry and positivity
properties. It is assumed that no external body force f eld
is applied to the structure. In the cartesian reference sys-
tem and for j and k in {1,2,3}, the elastodynamic equa-
tion is written as

−ω2ρSuj − ∂kσjk(u)= 0 in DS, (11)

uj = 0 onΣ0
S , (12)

σjk(u)nk =−pΣ−nk on Σ−, (13)

σjk(u)nk = fj on Σ+. (14)

2.3. Fourier series expansion and two-dimensional
boundary value problem associated with each
fi ed circumferential wave number

Since the three-dimensional boundary value problem
defi ed in section 2.2 is axisymmetric, a Fourier series
expansion of the solution can be made with respect to
polar angle θ . This yields a sequence of two-dimensional
problems indexed by the circumferential wave number
denoted as n. For all n and n′ in N, the orthogonality
properties are written as

2π∫
0

sinnθ cosn′θ dθ = 0, (15)

2π∫
0

sinnθ sinn′θ dθ = δnn′(1− δ0n)π, (16)

2π∫
0

cosnθ cosn′θ dθ = δnn′ (1+ δ0n)π, (17)

in which δnn′ = 0 if n 6= n′ and δnn′ = 1 if n= n′.



2.3.1. Structural displacement f eld
Since the coupled system is axisymmetric, for any

fixe r, z and ω, function θ 7→ u(θ, r, z,ω) is periodic
with period 2π and has the following Fourier series
expansion

uθ (x,ω)=
+∞∑
n=0

(
U
(n,s)
θ (r, z,ω) sinnθ

+U(n,as)θ (r, z,ω) cosnθ
)
, (18)

ur(x,ω)=
+∞∑
n=0

(
U(n,s)r (r, z,ω) cosnθ

−U(n,as)r (r, z,ω) sinnθ
)
, (19)

uz(x,ω)=
+∞∑
n=0

(
U(n,s)z (r, z,ω) cosnθ

−U(n,as)z (r, z,ω) sinnθ
)
, (20)

in which uθ , ur and uz are the components of f eld u
in the cylindrical basis and where for j in {θ, r, z}, n in
N and I in {s, as}, U(n,I )j (r, z,ω) is the complex-valued
fiel defi ed on PS × R. Functions U(0,s)θ , U

(0,as)
r and

U
(0,as)
z are equal to zero. Introducing the vector f eld

U(n,I ) = (U(n,I )θ ,U
(n,I )
r ,U

(n,I )
z ), equations (18)–(20) can

be rewritten as

u(x,ω)=
+∞∑
n=0

∑
I∈{s,as}

[
F (n,I )(θ)

]
U(n,I )(r, z,ω), (21)

in which, for all θ in [0,2π], matrices [F (n,s)(θ)] and
[F (n,as)(θ)] are def ned by equations (18)–(20). Since we
have [Θi(z)]T [F (n,I )(θ)][Θi(z)] = [F (n,I )(θ)], for any
f xed point on surfaceΣ+ orΣ−, structural displacement
fiel u is also given by equation (21) if it is expressed in
the local physical reference system.

2.3.2. Velocity potential of the internal acoustic flu d
The Fourier series expansion of periodic function θ 7→

ψ(θ, r, z,ω) with period 2π is written as

ψ(θ, r, z,ω)=
+∞∑
n=0

(
Ψ (n,s)(r, z,ω) cosnθ

−Ψ (n,as)(r, z,ω) sinnθ
)
, (22)

where for n ∈ N and I ∈ {s, as}, the C-valued two-
dimensional f eld (r, z) 7→ Ψ (n,I )(r, z,ω) is def ned on
PF × R. Functions Ψ (0,as) are equal to zero. Equa-
tion (22) can be rewritten as

ψ(x,ω)=
+∞∑
n=0

∑
I∈{s,as}

F (n,I )(θ)Ψ (n,I )(r, z,ω), (23)

with F (n,s)(θ) = cosnθ and F (n,as)(θ) = − sinnθ . Let
Ψ (n,s) and Ψ (n,as) be the vector-valued f elds def ned by
Ψ (n,s) = (−n

r
Ψ (n,s), ∂rΨ

(n,s), ∂zΨ
(n,s)) and Ψ (n,as) =

( n
r
Ψ (n,as), −∂rΨ (n,as), −∂zΨ (n,as)), depending on vari-

ables (r, z,ω). Substituting equations (21) and (23) into
equation (5) and using equations (15)–(17) yields

p(x,ω)= p(0)(r, z,ω)+
+∞∑
n=1

(
p(n,s)(r, z,ω) cosnθ

−p(n,as)(r, z,ω) sinnθ), (24)

p(0)(r, z,ω)=−iωρ0Ψ (0,s)(r, z,ω)

−κπ2
(
U(0,s)+U(0,as)) if n= 0, (25)

p(n,I )(r, z,ω)=−iωρ0Ψ (n,I )(r, z,ω) if n > 0. (25′)
Substituting equations (21) and (23) into equations (7)–
(14) and using equations (15)–(17) yields a sequence of
two-dimensional problems indexed by n whose varia-
tional formulation is derived below.

3. Variational formulation of the two-dimensional
boundary value problem associated with a f xed
circumferential wave number

The admissible function space of displacement f eld
U(n,I ) is the complex vector space WU of ‘suff ciently
differentiable’ function U def ned on PS with values in
C3 such thatU= 0 on Γ 0

S . The admissible function space
of velocity potential Ψ (n,I ) is the complex vector space
WΨ of ‘suff ciently differentiable’ function Ψ def ned on
PF with values in C such that ∂Ψ/∂n = 0 on ΓF and∫
PF
Ψ (r, z)r dr dz = 0. For a f xed circumferential wave

number n and ω fixe in R, given f (n,a) and f (n,as), the
variational formulation of the two-dimensional problem
indexed by n consists in f nding U(n,I ) denoted as U in
WU and Ψ (n,I ) denoted as Ψ inWΨ such that, for all δU
inWU and for all δΨ inWΨ , we have

−ω2m(n)S (U, δU)+ iωc(n)S (U, δU)

+ iωa(n)F (Ψ, δU)+ k(n)S (U, δU)

+κj (n)(U, δU)= f (n,I )(ω; δU), (26)

−ω2m(n)F (Ψ, δΨ )+ iωc(n)F (ω;Ψ,δΨ )
− iωa(n)F (δΨ,U)+ k(n)F (Ψ, δΨ )= 0, (27)

in which the mass, dissipation and stiffness structural
bilinear forms are defi ed by

m
(n)
S (U, δU)= (1+ δ0n)π

×
∫
PS

ρS〈U, δU〉r dr dz, (28)



c
(n)
S (U, δU)= (1+ δ0n)π

∫
PS

σ
(n,I ),d
jk (U)

× ε(n,I )jk (δU)r dr dz, (29)

k
(n)
S (U, δU)= (1+ δ0n)π

∫
DS

σ
(n,I ),e
jk (U)

× ε(n,I )jk (δU)r dr dz, (30)

and where ε(n,I ), σ (n,I ),d and σ (n,I ),e denote the restric-
tion of the strain tensor, the dissipative part and the elastic
part of the stress tensor to WU . Concerning the internal
acoustic fl id, we have

m
(n)
F (Ψ, δΨ )= (1+ δ0n)π ρ0

c20

∫
PF

Ψ δΨ r dr dz, (31)

c
(n)
F (ω;Ψ,δΨ )= λ0(ω)k(n)F (Ψ, δΨ ), (32)

k
(n)
F (Ψ, δΨ )= (1+ δ0n)πρ0

∫
PF

〈Ψ , δΨ 〉r dr dz, (33)

in which vectors Ψ and δΨ are the vectors associated
with Ψ and δΨ as define section 2.3.2. The fluid
structure coupling bilinear form a

(n)
F and the bilinear

form j (n) are define by

a
(n)
F (Ψ, δU)=−(1+ δ0n)πρ0

∫
Γ −

Ψ 〈δU,n〉dΓ −, (34)

j (n)(U, δU)= δ0n4π2π(n)2 (U)π(n)2 (δU), (35)
with

π
(n)
2 (U)=−

∫
Γ −

〈U,n〉dΓ −, (36)

where 〈U,n〉 denotes the component of vector U along
normal n on generatrix Γ +. The linear form related to
the excitation is defi ed by

f (n,I )(ω; δU)=−
∫
Γ +

2π∫
0

p+(θ, z,ω)F (n,I )(θ) dθ

×〈δU,n〉(z) dΓ +(z). (37)

4. Symmetric reduced matrix model

As explained in section 1, for each fi ed circum-
ferential wave number n, a symmetric reduced matrix
model of equations (26) and (27) is constructed using the
Ritz–Galerkin projection on a fi ite dimension subspace
spanned by a set of structural modes of the structure in
vacuo and a set of acoustic modes of the internal acoustic
cavity with rigid wall. We then have a sequence of re-
duced matrix models indexed by n.

4.1. Structural modes of the structure in vacuo

For each fi ed n, the structural modes of the structure
in vacuo are constructed by f nding the eigenvalues λ =
ω2 and the associated eigenfunctions U ∈WU such that,
for all δU inWU ,

k
(n)
S (U, δU)= λm(n)S (U, δU). (38)

The spectrum of the eigenvalue problem def ned by equa-
tion (38) is the countable set λ(n)S,α = (ω(n)S,α)2 with α =
1,2, . . . such that 0 < ω

(n)
S,1 6 ω

(n)
S,2 6 · · · and the asso-

ciated real-valued eigenfunctions U(n)α constitute a com-
plete orthogonal set in WU . The normalization of the
eigenfunctions are chosen such that m(n)S (U(n)α ,U(n)

α′ ) =
µSδαα′ in which µS =

∫
DS
ρS dx is the total structural

mass. We keep only eigenvectors U(n)α whose associ-
ated eigenfrequencies ω(n)S,α lie in the frequency band
of analysis denoted as B0 and which are such that∫
Γ −〈U(n)α ,n〉2 dΓ − 6= 0. Since there is no internal acous-
tic excitation but only an external structural excitation,
it should be noted that if

∫
Γ −〈U(n)α ,n〉2dΓ − = 0, then

eigenfunction U(n)α has a contribution to the reponse of
the structural displacement but no contribution to the
pressure response of the internal acoustic cavity (we re-
call that the cost function of the optimization problem is
formulated only in terms of the internal pressure f eld).
For each fi ed n, we denote the index set of such eigen-
functions as J (n)S = {1, . . . ,N(n)S }. Consequently, vector
fiel U as a solution of equations (26) and (27) is written
as

U(n)(r, z)'
N
(n)
S∑

α=1
X
(n)
S,αU

(n)
α (r, z). (39)

4.2. Acoustic modes of the internal acoustic cavity
with rigid wall

For each fi ed n, the acoustic modes of the internal
acoustic cavity with rigid wall are constructed by f nding
the eigenvalues λ= ω2 and the associated eigenfunctions
Ψ ∈WΨ such that, for all δΨ inWΨ ,

k
(n)
F (Ψ, δΨ )= λm(n)F (Ψ, δΨ ). (40)

The spectrum of the eigenvalue problem def ned by equa-
tion (40) is the countable set λ(n)F,β = (ω(n)F,β )2 with β =
1,2, . . . , such that 0 < ω(n)F,1 6 ω

(n)
F,2 6 · · · and the asso-

ciated real-valued eigenfunctions Ψ (n)
β constitute a com-

plete orthogonal set in WΨ . The normalization of the
eigenfunctions is chosen such that m(n)F (Ψ

(n)
β ,Ψ

(n)

β ′ ) =



(µF /c
2
0)δββ ′ in which µF =

∫
DF
ρ0 dx = ρ0|DF | is the

total mass of the acoustic fl id. We keep only eigen-
vectors Ψ (n)

β whose associated eigenfrequencies ω(n)F,β lie
in frequency band B0 and such that there is an index
α in J (n)S such that a(n)F (Ψ

(n)
β ,U(n)α ) 6= 0. If there is no

such index α, eigenfunction Ψ (n)
β has no contribution to

the internal acoustic pressure (see section 4.1). For each
fixe n, we denote the index set of such eigenfunctions
as J (n)F = {1, . . . ,N(n)F }. Consequently, f eld Ψ of equa-
tions (26) and (27) is written as

Ψ (n)(r, z)'
N
(n)
F∑

β=1
X
(n)
F,βΨ

(n)
β (r, z). (41)

4.3. Reduced matrix model for each circumferential
wave number

For each fi ed n, the restriction of equations (26)
and (27) to the subspaces ofWU andWΨ spanned by the
fi ite families {U(n)1 , . . . ,U(n)

N
(n)
S

} and {Ψ (n)
1 , . . . ,Ψ

(n)

N
(n)
F

} re-
spectively yields the reduced matrix model for circumfer-
ential wave number n:(

−ω2
[ [M(n)

S ] [OSF ]
[OFS] −[M(n)

F ]

]

+ iω
[ [C(n)S ] [A(n)F ]
[A(n)F ]T −[C(n)F ]

]

+
[ [K(n)

S ] [OSF ]
[OFS] −[K(n)

F ]

]

+κ
[ [J (n)] [OSF ]
[OFS] [OFF ]

])[X(n,I )S (ω)

X(n,I )F (ω)

]

=
[
Y(n,I )S (ω)

0

]
, (42)

in which X(n,I )S = (X
(n)
S,1, . . . ,X

(n)

S,N
(n)
S

) and X(n,I )F =
(X

(n)
F,1, . . . ,X

(n)

F,N
(n)
F

) and with[
M
(n)
S

]
αα′ =m(n)S

(
U(n)α ,U(n)

α′
)= µSδαα′, (43)[

C
(n)
S

]
αα′ = 2µSξ(n)S,αω

(n)
S,αδαα′, (44)[

K
(n)
S

]
αα′ = k(n)S

(
U(n)α U(n)

α′
)= µS(ω(n)S,α)2δαα′, (45)[

M
(n)
F

]
ββ ′ =m(n)F

(
Ψ
(n)
β ,Ψ

(n)

β ′
)= (µF /c20)δββ ′, (46)[

C
(n)
F (ω)

]
ββ ′ = c(n)F

(
Ψ
(n)
β ,Ψ

(n)

β ′
)

= 2
(
µF /c

2
0
)
ξ
(n)
F,βω

(n)
F,βδββ ′, (47)

[
K
(n)
F

]
ββ ′ = k(n)F

(
Ψ
(n)
β ,Ψ

(n)

β ′
)

= (µF/c20)(ω(n)F,β)2δββ ′, (48)[
A
(n)
F

]
α′β = a(n)F

(
Ψ
(n)
β ,U(n)

α′
)
,

(49)[
J (n)

]
αα′ = j (n)

(
U(n)α ,U(n)

α′
)
.

From equation (35), we deduce that [J (n)] = [0] for all
n > 1. In the context of the present shape optimization
problem and in order to simplify the formulation, we
assume that the dissipation structural bilinear form is
diagonalized by the eigenfunctions U(n)α . According to
the eigenfunction properties introduced in sections 4.1
and 4.2, the coupling matrix is such that, for all XF ∈
CN

(n)
F , [A(n)F ]XF = 0⇒ X = 0. Finally, the generalized

external structural forces Y(n,I )S = (Y (n,I )S,1 , . . . , Y
(n,I )

S,N
(n)
S

)

are such that

Y
(n,I )
S,α = f (n,I )

(
ω;U(n)α

)
. (50)

We introduce the generalized dynamic stiffness matrices
related to the structure and the internal acoustic f uid:[

A(n)S (ω)
]=−ω2[M(n)

S

]+ iω[C(n)S ]+ [K(n)
S

]
, (51)[

A(n)F (ω)
]=−ω2[M(n)

F

]+ iω[C(n)F ]+ [K(n)
F

]
. (52)

5. Normalized power spectral density function of the
internal noise observation

In this section, we calculate the normalized power
spectral density function of the internal noise obser-
vation corresponding to the time-stationary random re-
sponse of the structural-acoustic system excited by a
time-stationary random wall pressure f eld such as a tur-
bulent boundary layer induced by an external f ow. This
normalized power spectral density function is related to
the spatial average of the quadratic mean of the random
internal fl id pressure over observation surface Σ .

5.1. Random wall pressure f eld excitation

Let E be the mathematical expectation. Random wall
pressure fi ld p+ applied to external structural sur-
face Σ+ is a second-order real-valued stochastic f eld
(x, t) 7→ p+(x, t) indexed by Σ+ ×R which is centered
and mean-square stationary with respect to t . In addi-
tion, it is assumed that stochastic fiel p+ is statisti-
cally axisymmetric with respect to surface Σ+ and we
reuse the model introduced in [17]. Let R̃p+(x,x′, τ ) =
E{p+(x, t + τ )p+(x′, t)} be its real-valued cross-cor-
relation function which is written as R̃p+(x,x′, τ ) =∫
R e

iωτ S̃p+(x,x′,ω) dω where S̃p+(x,x′,ω) is the



complex-valued cross-spectral density function [8]. For
all x and x′ in Σ+, we introduce the notation Sp+(θ −
θ ′, z, z′,ω) = S̃p+(x,x′,ω) and the power spectral den-
sity function of the mean-square stationary stochastic
process {p+(x, t), t ∈ R} is a positive-valued function
def ned by Φ̃(x,ω) = S̃p+(x,x,ω) which is indepen-
dent of θ . Consequently, for all x fixe in Σ+, we have
Φ̃(x,ω) = Φ(z,ω) = Sp+(0, z, z,ω). The cross-spectral
density function of p+ is written as [17]

Sp+(θ − θ ′, z, z′,ω)
= √Φ(z,ω)Φ(z′,ω)G(ξ(z, z′), η(θ − θ ′, z, z′),ω),

(53)

in which ξ(z, z′)= s+(z)− s+(z′) with s+(z) the curvi-
linear abscissa of generatrix Γ + introduced in sec-
tion 2.1, η(γ, z, z′) = 0.5(R+(z) + R+(z′))g(γ ) with
g(γ )= γ if−π 6 γ 6 π , g(γ )= γ −2π if π < γ 6 2π
and g(γ ) = γ + 2π if −2π 6 γ < −π . The complex-
valued coherence functionG(ξ,η,ω) is given by the Cor-
cos model [2] which is written as

G(ξ,η,ω)= exp
{
i
ξω

Uc
− |ξ |
L1(ω)

− |η|
L2(ω)

}
, (54)

in which Uc = 0.65UE is the average convection velocity
with UE the average external f ow velocity. The longi-
tudinal and lateral correlation scales L1(ω) and L2(ω)
are written as L1(ω) = Uc/(0.115|ω|) and L2(ω) =
Uc/(0.7|ω|). For the application presented in section 7,
the model used for the power spectral density function
Φ(z,ω) is written as

Φ(z,ω)= 1
4000

ρ20U
4
Eδ(z)

3

×ω2(U2
E + 25ω2δ(z)2

)−3/2
, (55)

in which δ(z) is the thickness displacement of the
boundary layer.

5.2. Reference power spectral density function

Let sp+ref(ω) be the reference power spectral density
function related to surface Σ+. Let ΠΣ+ be the spatial
average over surfaceΣ+ of the mean power of stochastic
process {p+(x, t), t ∈ R} for x in Σ+. We then have
ΠΣ+ =

∫
R sp+ref

(ω) dω in which sp+ref(ω) is the reference
power spectral density function def ned by

sp+ref
(ω)= 1

|Σ+|
∫
Σ+

Φ̃(x,ω) dΣ+(x). (56)

5.3. Normalized power spectral density function
calculation

From equations (37) and (50), we deduce that

Y
(n,I )
S,α (t)=−

∫
Γ +

2π∫
0

p+(θ, z, t)

×F (n,I )(θ) dθ 〈U(n)α ,n
〉
(z) dΓ +(z), (57)

in the time domain. Therefore, Y(n,I )S (t) = (Y (n,I )S,1 (t),

. . . , Y
(n,I )

S,N
(n)
S

(t)) is a second-order, centered, mean-square

stationary andmean-square continuous stochastic process
indexed by R with values in RN

(n)
S . The cross-correlation

function of stochastic processes Y (n,I )S,α (t) and Y (n
′,I ′)

S,α′ (t)

is def ned by

R
(n,n′,I,I ′)
YS,αYS,α′ (τ )=E

{
Y
(n,I )
S,α (t + τ )Y (n′,I ′)

S,α′ (t)
}
, (58)

and can be written as

R
(n,n′,I,I ′)
YS,αYS,α′ (τ )=

∫
R

eiωτ S(n,n
′,I,I ′)

YS,αYS,α′ (ω) dω, (59)

where S(n,n
′,I,I ′)

YS,αYS,α′ (ω) is the cross-spectral density function
which can be written as

S
(n,n′,I,I ′)
YS,αYS,α′ (ω)

= 2πδnn′δII ′(1+ δ0n)
(60)

×
∫
Γ +

∫
Γ +

π∫
0

Sp+(γ, z, z
′,ω) cosnγ dγ

× 〈U(n)α ,n
〉
(z)
〈
U(n

′)
α′ ,n

〉
(z′) dΓ +(z) dΓ +(z′).

The matrix-valued spectral density function [S(n)YS (ω)]
of vector-valued process Y(n,I )S (t) is then defi ed by
[S(n)YS (ω)]αα′ = S

(n,n,I,I )
YS,αYS,α′ (ω).

Let ΠΣ be the spatial average over surface Σ of the
mean power of stochastic process {p(x, t), t ∈ R} for
x in Σ . From this def nition, we deduce that ΠΣ =
E{ 1
|Σ |
∫
Σ p(x, t)

2 dΣ} which can be rewritten as

ΠΣ =
∫
R

spΣ (ω) dω, (61)

where spΣ (ω) is the power spectral density function of
the internal noise observation. It is proved [10,17,18] that

spΣ (ω)= s0(ω)+
+∞∑
n=0

s(n)pΣ (ω). (62)



The term s0(ω) is an additional function induced by the
presence of −κπ2 in equation (5), whose contribution
exists only for n= 0 and which is written as

s0(ω)= 8π2κ
|Σ| tr

{
πκ
[
S
(n)
XS (ω)

][
U(n)n

]
−ωρ0=m

([
S
(n)
XSF (ω)

][
Υ (n)n

])}
, (63)

in which =m is the imaginary part, tr is the trace operator
and [Υ (n)n ] is the matrix defi ed by

[
Υ (n)n

]
βα
=
∫
Γ

Ψ
(n)
β

∫
Γ −

〈
U(n)α ,n

〉
dΓ −dΓ. (64)

The main contributions are the terms s(n)pΣ (ω) which are
written as

s(n)pΣ (ω)= 2π
ω2ρ20
|Σ| tr

{[
S
(n)
XF (ω)

][
Ψ (n)

]}
. (65)

In equations (63) and (65), we have[
S
(n)
XF (ω)

]= [H(n)
FS (ω)

][
S
(n)
YS (ω)

][
H
(n)
FS (ω)

]∗
, (66)[

S
(n)
XS (ω)

]= [H(n)
S (ω)

][
S
(n)
YS (ω)

][
H
(n)
S (ω)

]∗
, (67)[

S
(n)
XSF (ω)

]= [H(n)
S (ω)

][
S
(n)
YS (ω)

][
H
(n)
FS (ω)

]∗
, (68)[

H
(n)
S (ω)

]= ([A(n)S (ω)
]+ κ[J (n)]−ω2[A(n)F ]

× [A(n)F (ω)
]−1[

A
(n)
F

]T )−1
, (69)[

H
(n)
FS (ω)

]= iω[A(n)F (ω)
]−1[

A
(n)
F

]T [
H
(n)
S (ω)

]
,
(70)[

H
(n)
SF (ω)

]∗ = −[H(n)
FS (ω)

]
,[

Ψ (n)
]
ββ ′ =

∫
Γ

Ψ
(n)
β Ψ

(n)

β ′ dΓ, (71)

[
U(n)n

]
αα′ =

∫
Γ

∫
Γ −

〈
U(n)α ,n

〉
dΓ −

×
∫
Γ −

〈
U(n)
α′ ,n

〉
dΓ −dΓ. (72)

Finally, the normalized power spectral density function
of the internal noise observation is def ned by

spΣ,norm(ω)=
spΣ (ω)

sp+ref
(ω)

. (73)

It should be noted that [A(n)F (ω)] is a diagonal matrix
and consequently, the inverse matrix which appears in
equations (69) and (70) is explicitly known.

6. Shape optimization with respect to the aspect ratio
of the dome

6.1. Class of geometry

The objective is to optimize the dome shape in order
to minimize the noise related to observation surface Σ
located inside the internal acoustic cavity. Since we are
looking for the inf uence of the dome curvature, all the
other main parameters of the structural acoustic system
(volume of the internal acoustic cavity, external structural
surface area, dome thickness and constitutive material)
have to remain constant when the shape of the dome is
modif ed in the dome-shape optimization process. The
external power injected in the structural-acoustic system
is proportional to the external structural surface area on
which the external random wall pressure f eld excitation
is applied. Since we are only interested in analyzing the
inf uence of the dome curvature on the internal noise,
this surface area has to remain a constant in order to
not introduce a strong variation of the external power
input when the dome shape is modif ed. The volume
of the internal acoustic cavity is a constant for that the
modal density of the internal acoustic cavity be nearly a
constant when the dome shape is modif ed. In addition,
since the dome thickness is very small compared to the
other structural-acoustic system dimensions, the area of
internal structural surface Σ− is almost equal to the area
of external structural surfaceΣ+. The internal generatrix
Γ − ∪ Γ −F is chosen as an arc of an ellipse, possibly
extended by a line segment of a line parallel to axis (0z)
and belonging to the generative plane. This ellipse is
centered in the reference system origin and characterized
by its semiminor axis which has a f xed value aref
and its semimajor axis b (see figu es 3 and 4). The
characteristic ratio of the ellipse is defi ed by q = b/aref.
Each value of characteristic ratio q define a geometric
conf guration of the structural-acoustic system and q is
called the structural aspect ratio. Figures 3 and 4 def ne
the z-axes, denoted as za, zb, zc, zd = b and ze, of all

Figure 3. Geometry of the generative plane: case of an arc of
the ellipse.



Figure 4. Geometry of the generative plane: case of a quarter of
the ellipse extended by a line segment.

the particular points which allow the geometry of the
structure and the internal acoustic cavity to be def ned.
Figures 3 and 4 correspond to za > 0 (an arc of the
ellipse) and za < 0 (a quarter of the ellipse extended
by a line segment) respectively. The internal acoustic
cavity is located between za and zd = b. The length
of the internal acoustic cavity is denoted as ` and is
such that ` = zd − za = b − za . The constraint |Σ−|
remains a constant def ned by the value of zb. A reference
conf guration is def ned by a given value qref > 1 of
structural aspect ratio q . For all values of q , the structure
thickness is a constant eref corresponding to the reference
conf guration. We have ze = zd + eref.

6.2. Optimization problem with respect to the aspect
ratio of the dome

6.2.1. Optimization parameter
Structural aspect ratio q > 0 takes its values in an

interval denoted as Q and define by

Q=]0,2qref [. (74)

The values of q such that 0 < q < 1, q = 1 and 1 <
q < 2qref correspond to a dome which is not slender,
one which is part of a sphere, and one which is a slender
structure respectively.

6.2.2. Cost function
The analysis is made over the frequency bands B1 =
[1,1500] Hz and B2 = [1,500] Hz. Given index i = 1,2,
the cost function q 7→ J

(i)
Σ (q) from Q into ]0,+∞[ is

define for each frequency band Bi by

J
(i)
Σ (q)= 1

|Bi |
∫
Bi

spΣ ,norm(ω) dω, (75)

in which spΣ ,norm(ω) is the normalized power spectral
density function related to the observation surface Σ

and which is def ned by equation (73) as a function of
structural aspect ratio q .

6.2.3. Optimization problem
Given the frequency band Bi , the optimization prob-

lem associated with cost function q 7→ J
(i)
Σ (q) consists

in f nding q(i) in Q such that

J
(i)
Σ (q(i))=min

q∈Q
J
(i)
Σ (q). (76)

6.2.4. Solution method and structural shape parametric
optimization

Each value of q inQ def nes a geometric conf guration
which has to be modeled by the f nite element method.
Consequently, for each given structural aspect ratio q , a
finit element mesh of the dome and a f nite element mesh
of the internal acoustic cavity have to be constructed,
then the structural modes and the acoustic modes have
to be calculated before starting to compute the cost
function for the value of q considered. It should be
noted that the cost function is strongly nonlinear with
respect to parameter q and a sensitivity analysis [6]
is not adapted to the problem under consideration. For
a given value of q , an examination of the numerical
cost induced by computation of the cost function (and
possibly of its derivative with respect to q) shows that the
use of an automatic optimization algorithm [4,14–16,19]
would lead to a very high numerical cost, probably with
some serious numerical diff culties. In addition, we are
interested not only in the optimum value of the structural
aspect ratio but also in performing the structural shape
parametric optimization; that is to say, in knowing the
variation of the cost function as a function of q in order
to identify the domain of q for which the internal noise
could be high. Consequently, we have chosen a very
simple method (which is perfectly adapted to the problem
and very eff cient in this case), consisting in constructing
the graph of the cost function q by q and then identifying
the minimun value of the cost function by looking at its
graph. Taking into account the high numerical cost for
computing one value of the cost function, interval Q is
discretized by a ‘reasonable’ number of discrete values
of q .

7. Numerical results

7.1. Numerical data

7.1.1. Structure
The structure is made of a composite material mod-

eled as a linear isotropic homogeneousmaterial with den-
sity ρS = 1750 kg/m3, Young’s modulus ES = 1.615 ·
1010 N/m2, Poisson’s ratio νS = 0.137 and dissipation
coefficien ξS = 0.02.



The reference geometric configuratio is define by
aref = 3.13 m, qref = 3.6 (therefore, bref = 11.26 m),
lref = 4.29 m, structure thickness eref = 0.027 m and
|Σ+|ref = 50.6 m2. For each value of q , a finit element
mesh of the structure (generative plane) is constructed us-
ing parabolic f nite elements with 8 nodes. The thickness
(smallest dome dimension) is discretized into two f nite-
element layers. The f nite-element type and the number
of layers were determined from studing the result of con-
vergence of all the eigenfunctions and eigenvalues cor-
responding to the extreme conf guration q = 7.0 which
leads to the greatest number of modes within frequency
band B0 = [1,2000] Hz. For the extreme geometric con-
f gurations corresponding to q = 0.3 and q = 7.0, the
number of f nite elements and the number of nodes are
616−2469 and 892−3573 respectively.
7.1.2. Internal acoustic flu d
The internal acoustic fl id is water with density ρ0 =

1000 kg/m3, speed of sound c0 = 1500 m/s and dissi-
pation coeff cient ξ(n)F,β = 0.01 for every acoustic mode.
The acoustic cavity volume |DF |ref of the reference geo-
metric conf guration is assigned the value 64 m3. For
each value of q , a finit element mesh (compatible with
the structure) of the internal acoustic cavity (generative
plane) is constructed using linear triangular f nite ele-
ments. For the extreme geometric conf gurations corre-
sponding to q = 0.3 and q = 7.0, the number of f nite
elements and the number of nodes are 8694–4499 and
13663−7073 respectively. The uniform distance between
boundary Σ− ∪Σ−F and observation surface Σ is equal
to 0.6aref.

7.1.3. Data for the excitation corresponding to a
random wall pressure fie d

The parameter values of the model define by equa-
tions (53)–(55) are UE = 7.5 m/s and δ(z) = δmax(ze −
z)/(ze − zc) with δmax = 5.1 · 10−3 m.

7.2. Structural shape parametric optimization
results

In order to decrease the numerical cost due to the op-
timization procedure, the non usual additional terms in-
duced by the presence of −κπ2 in equation (5), whose
contribution exists only for n= 0, are not taken into ac-
count in the numerical calculation. It should be noted that
the coupling terms (see equations (26) and (27)) between
the structure and the internal acoustic cavity, represented
by bilinear form a(n)F (Ψ,U) def ned by equation (34), are
always kept in the numerical calculation.

7.2.1. Eigenmode extraction and convergence
computation

The f nite element meshes used for the structure and
the internal acoustic cavity allow us to compute the eigen-

modes whose associated eigenfrequencies are in the fre-
quency band [1,2000] Hz. The structural modes and
acoustic modes are computed by the subspace iteration
method [1] checking Sturm’s sequence, using an accel-
erated scheme for convergence and a Lanczos method
for initialization. For each circumferential wave number
n, the reduced matrix model uses the structural modes
and acoustic modes whose eigenfrequencies are in fre-
quency band B0 = [1,2000] Hz; this ensures that power
spectral density functions ω 7→ s

(n)
pΣ (ω) def ned by equa-

tion (65) are uniformly converged over frequency band
B1 = [1,1500] Hz. An analysis was carried out [10] to
study the convergence of normalized power spectral den-
sity function spΣ ,norm def ned by equation (73) with re-
spect to circumferential wave number n. This analysis
shows that uniform convergence over frequency band
B1 = [1,1500] Hz is achieved when contributions n =
0,1,2,3,4,5 are taken into account. For instance, fig
ure 5 shows the variation of 7→ J

(1)
Σ (1) as a function of n.

7.2.2. Optimization results
Let us introduce the frequency moving average of

normalized power spectral density function spΣ ,norm,
def ned by

〈spΣ ,norm〉1f (ω)=
1
1ω

ω+1ω/2∫
ω−1ω/2

spΣ,norm(ω
′) dω′,

in which 1ω = 2π1f . The following numerical results
were obtained [10] for 1f = 100 Hz: figu es 6 to 9 show
the graphs of functions ω 7→ 〈spΣ ,norm〉1f (ω) expressed
in Hz for several values of structural aspect ratio q ;
figu es 10 and 11 show the graphs of cost functions q 7→
J
(1)
Σ (q) and q 7→ J

(2)
Σ (q) for frequency bands B1 and B2

respectively. It can be seen that for the two frequency

Figure 5. Convergence: variation of 10 × log10(J
(1)
Σ (1)/

10−18) as a function of n.



Figure 6.Graphs of functions ω 7→ 10× log10(〈spΣ ,norm〉100(ω)
/10−18) for structural aspect ratio q = 0.3 (thin solid line),
0.5 (medium solid line), 0.73 (thick solid line).

Figure 7.Graphs of functions ω 7→ 10× log10(〈spΣ ,norm〉100(ω)
/10−18) for structural aspect ratio q = 1.0 (thin solid line),
1.25 (medium solid line), 1.5 (thick solid line).

Figure 8.Graphs of functions ω 7→ 10× log10(〈spΣ ,norm〉100(ω)
/10−18) for structural aspect ratio q = 2.0 (thin solid line),
2.5 (medium solid line), 3.0 (thick solid line).

Figure 9.Graphs of functions ω 7→ 10 × log10(〈spΣ,norm〉100(ω)
/10−18) for structural aspect ratio q = 3.602 (thin solid line),
4.25 (medium solid line), 5.0 (thick solid line).

Figure 10. Graph of cost function q 7→ 10 × log10(J
1)
Σ (q)/

10−18) for frequency band B1 = [1,1500] Hz.

Figure 11. Graph of cost function q 7→ 10 × log10(J
2)
Σ (q)/

10−18) for frequency band B2 = [1,500] Hz.



bands, the lowest energy level occurs when q = 0.73.
Nevertheless, it should be noted that the minimum value
obtained for q = 0.73 differs by only about 1 dB from
the energy level obtained for q = 1.0. The highest energy
levels are obtained for q belonging to the range [1.5,3.5].

8. Conclusions

The analysis presented in this paper shows that the
structural shape optimization of a domewith respect to its
aspect ratio, excited by an external random wall pressure
fiel , has a clear solution which minimizes internal
noise in the low- and medium-frequency ranges. This
solution corresponds to structural aspect ratios belonging
to subinterval [0.7,1.0]. In addition, this analysis shows
that internal noise is high in the low- and medium-
frequency ranges when the structural aspect ratio belongs
to subinterval [1.5,3.5] which should be avoided.
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