
HAL Id: hal-00765557
https://hal.science/hal-00765557

Submitted on 14 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation of the fuzzy structure parameters for
continuous junctions
Christian Soize, K. Bjaoui

To cite this version:
Christian Soize, K. Bjaoui. Estimation of the fuzzy structure parameters for continuous junctions.
Journal of the Acoustical Society of America, 2000, 107 (4), pp.2011-2020. �10.1121/1.428485�. �hal-
00765557�

https://hal.science/hal-00765557
https://hal.archives-ouvertes.fr


ESTIMATION OF FUZZY STRUCTURE PARAMETERS

FOR CONTINUOUS JUNCTIONS

Christian Soize and Karina Bjaoui

Structural Dynamics and Coupled Systems Department, ONERA, BP 72, 92322 Chatillon

Cedex, France

ABSTRACT

The fuzzy structure theory introduced fifteen years ago is designed to predict the frequency

response functions of structures and structural acoustic systems with structural complexity, in

the low- and medium-frequency ranges. This paper constitutes a first validation of the fuzzy

structure theory for continuous junctions between the master structure and the fuzzy substruc-

tures. In addition, we present a method to estimate the fuzzystructure parameters introduced

in the fuzzy structure theory and we validate it for the case of continuous junctions. This

validation obtained by numerical simulations opens the field of experimental identifications.

PACS numbers: 43.40

INTRODUCTION

The fuzzy structure theory was introduced by Soize1 in order to model structural complexity

in the medium frequency range. This structural complexity plays a fundamendal role in

the response of a master structure coupled with complex substructures in the context of

structural-acoustic systems. In 1993, a second fuzzy impedance law was proposed2 to model

the case of fuzzy substructures attached to the master structure through a continuous junction.

Since 1993, much research has been published concerning theproblem of a master structure

coupled with a large number of simple linear oscillators3−18 and a few concerning continuous

cases19−22. Two main problems had to be solved to be able to apply the fuzzy structure

theory (described in detail in Ref.23) to the case of continuous junctions. The first problem

was related to the construction of a procedure for identifying the fuzzy structure parameters

in order to solve complex problems and to allow experimentalidentifications to be performed.

The second one, which requires solving the first, is related to validation of the fuzzy structure
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theory for continuous junctions. A general procedure has been developed24 to solve the first

problem. In this paper, we present a first validation of the fuzzy structure theory for continuous

junctions between the master structure and the fuzzy substructures. We introduce a new cost

function replacing the cost function previously introduced24. It allows an efficient estimation

of the fuzzy structure parameters using a procedure based onthe statistical energy approach.

In Section I, we introduce the reference complex structure,its model and the numerical

simulation of its response. All the validations are performed with respect to this reference.

Section II deals with modeling of the reference complex structure using the fuzzy structure

theory. In Section III, we present the procedure for estimating the fuzzy structure mean

parameters. Finally, the last section is devoted to validation by comparison with reference

results.

I. REFERENCE COMPLEX STRUCTURE MODEL AND NUMERICAL SIMULA-

TION OF ITS RESPONSE

The complex structure consists of a master structure coupled with four complex substructures

(see Figure 1). The master structure is constituted of two rectangular homogeneous isotropic

thin plates denoted as(1) and(2), in bending mode and simply supported. Plate(1) is coupled

to plate(2) along their common edge; the rotation around this edge is continuous. The

complex substructures are denoted as(a), (b), (c) and(d) and are constituted of a rectangular

homogeneous isotropic thin plate on which many simple linear oscillators are attached. The

plate of each complex substructure is in bending mode, simply supported and coupled to a plate

of the master structure along their common edge; the rotation around this edge is continuous.

Consequently, there is a continuous junction between each complex substructure and the

master structure. Two plates belonging to different complex substructures are not coupled

along their common edge (there is coupling only between eachcomplex substructure and the

master structure). The method used to construct the model ofthe reference complex structure

consists in constructing the generalized impedance matrixof an isolated plate belonging

to the master structure and an isolated complex substructure. Then the isolated subsystems

constituting the reference complex structure are coupled using a Lagrange multiplier technique

in order to express the continuity of the rotation on the junctions.
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A. Generalized impedance matrix of an isolated plate belonging to the master structure

Each rectangular thin plate(r) (with r equal to1 or 2) of the master structure is referenced

to an(x, y) local coordinate system and is located in planeOxy. This plate has a constant

thickness, a lengthLr1, a widthLr2, surface-mass densityρr (mass per unit area), a constant

damping rateξr and a constant flexural rigidityDr. The domain of this plate (middle surface)

is defined byΩr =]0 , Lr1[×]0 , Lr2[. We consider linear vibrations of this plate formulated in

the frequency domainω. The transverse displacement of plate(r) in a point(x, y) is denoted

asur(ω, x, y). The external forces applied to the plate are represented bya complex-valued

functionfr(ω, x, y). The bending moment around the edges of plate(r) is denoted asMnr

in which nr is the outward unit normal to the boundary∂Ωr of domainΩr. The boundary

value problem is written as

−ω2ρr ur − 2iω ξr {ρrDr}1/2
∇

2ur + Dr ∇
4ur = fr in Ωr ,

ur = 0 on ∂Ωr , (1)

Mnr
= 0 on ∂Ωr .

The boundary value problem defined by Eq. (1) is solved using the Ritz-Galerkin method

for which the complete family of independent functions in the admissible function space is

constituted of the normal modes related to the simply supported plate. We then introduce the

normal modes25

ϕrb(x, y) =
2√

Lr1Lr2

sin
(β1πx

Lr1

)
sin
(β2πy

Lr2

)
, (2)

and the corresponding eigenfrequencies

ωrb =

√
Dr

ρr

{(β1π

Lr1

)2

+
(β2π

Lr2

)2
}

, (3)

in whichb = (β1, β2) whereβ1 andβ2 are positive integers. The finite dimension approxi-

mation of fieldur is written as̃ur(ω, x, y) =
∑b∈Br qrb(ω) ϕrb(x, y) in whichBr is the set

of all the pairs of integers(β1, β2) such that̃ur(ω, x, y) approachesur(ω, x, y). Let qr(ω)

andfr(ω) be the vectors of generalized coordinates and generalized forces such that

qr(ω) = {qrb(ω)}b∈Br
, fr(ω) = {frb(ω)}b∈Br

, (4)
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in which frb(ω) =
∫ Lr1

0

∫ Lr2

0
fr(ω, x, y) ϕrb(x, y) dx dy. Consequently, for all realω,

vectorqr(ω) is the solution of the complex matrix equationiω [Zr(ω)] qr(ω) = fr(ω) in

which [Zr(ω)] is the generalized impedance complex diagonal matrix such that

iω [Zr(ω)]bb′ = ρr{−ω2 + 2iω ξr ωrb + ω2
rb} δbb′ , (5)

with δbb′ = 1 if b = b′ and= 0 otherwise.

B. Generalized impedance matrix of an isolated complex substructure

Each complex substructure(s) (with s equal toa, b, c or d) is constituted of a rectangular

thin plate(s) on whichKs simple linear oscillators are attached. Plate(s) is referenced to

an (x, y) local coordinate system and is located in planeOxy. This plate has a constant

thickness, a lengthLs1, a widthLs2, a surface-mass densityρs (kg/m2), a constant damping

rate ξs and a constant flexural rigidityDs. The domain of this plate (middle surface) is

defined byΩs =]0 , Ls1[×]0 , Ls2[. We consider linear vibrations of this complex substructure

formulated in the frequency domainω. The transverse displacement of the plate(s) in a point

(x, y) is denoted asus(ω, x, y). The external forces applied to the plate are represented by

a complex-valued functionfs(ω, x, y). The bending moment around the edges of plate(s)

is denoted asMns
in which ns is the outward unit normal to the boundary∂Ωs of domain

Ωs. The mass, damping rate and stiffness of theκ-th simple linear oscillator (κ = 1, . . . , Ks)

attached to plate(s) are constant and denoted asmκ
s , ξκ

s andmκ
s (ωκ

s )2 respectively (ωκ
s is

the eigenfrequency of the undamped oscillator with a fixed support). Oscillatorκ is located

in point (xκ, yκ). The area of the plate of the complex substructure is dividedinto
√

Ks

subelements (rectangular subelement) and
√

Ks oscillators are uniformly distributed in space

inside each subelement and in frequency inside the frequency band of analysis. The boundary

value problem is written as

−ω2ρs us − 2iω ξs (ρsDs)
1/2

∇
2us + Ds ∇

4us = fs −
Ks∑

κ=1

gκ
s in Ωs ,

us = 0 on ∂Ωs , (6)

Mns
= 0 on ∂Ωs .

Forcegκ
s (ω) induced by oscillatorκ is such that

gκ
s (ω) = iω zκ

s (ω) us(ω, xκ, yκ) , (7)
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in which zκ
s is such that

iω zκ
s (ω) = − ω2

(
mκ

s (ωκ
s /ω)2

(
(ωκ

s /ω)2 − 1 + 4(ξκ
s )2
)

(
(ωκ

s /ω)2 − 1
)2

+ 4(ωκ
s /ω)2(ξκ

s )2

)

+ iω

(
2 mκ

s ω ξκ
s (ωκ

s /ω)
(
(ωκ

s /ω)2 − 1
)2

+ 4(ωκ
s /ω)2(ξκ

s )2

)
. (8)

The boundary value problem defined by Eq. (6) is solved similarly to Eq. (1), introducing

the normal modes,

ϕsb(x, y) =
2√

Ls1Ls2

sin
(β1πx

Ls1

)
sin
(β2πy

Ls2

)
, (9)

and the corresponding eigenfrequencies,

ωsb =

√
Ds

ρs

{(β1π

Ls1

)2

+
(β2π

Ls2

)2
}

, (10)

in whichb = (β1, β2) whereβ1 andβ2 are positive integers. The finite dimension approx-

imation of fieldus is written asũs(ω, x, y) =
∑b∈Bs qsb(ω) ϕsb(x, y) in which Bs is the

set of all the pairs of integers(β1, β2) such that̃us(ω, x, y) approachesus(ω, x, y). As in

Section I.A, we introduce vectorsqs(ω) andfs(ω) such that

qs(ω) = {qsb(ω)}b∈Bs
, fs(ω) = {fsb(ω)}b∈Bs

, (11)

in which fsb(ω) =
∫ Ls1

0

∫ Ls2

0
fs(ω, x, y) ϕsb(x, y) dx dy and for all realω, vectorqs(ω) is

the solution of the complex matrix equationiω [Zs(ω)] qs(ω) = fs(ω) in which [Zs(ω)] is

the generalized impedance complex dense matrix such that

iω [Zs(ω)]bb′ = ρs{−ω2 + 2iω ξs ωsb + ω2
sb} δbb′

+ zκ
s (ω) ϕsb(xκ, yκ) ϕsb′(xκ, yκ) . (12)

C. Generalized impedance matrix of the reference complex structure

The coupling between two plates of the master structure or between the master structure and

a complex substructure is obtained by writing the continuity of rotations along the junctions

(it should be noted that the continuity of the displacement field is satisfied). These resulting
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linear constraint equations are then taken into account using Lagrange multipliers. Using the

generalized impedance matrices introduced in Sections I.Aand I.B yields



iω[Zmast(ω)] 0
0 iω[Zsub(ω)]

[Bmast] 0
[Bmast−sub] [Bsub−mast]

[Bmast]
T [Bmast−sub]

T

0 [Bsub−mast]
T

0 0
0 0







qmast(ω)
qsub(ω)

pmast(ω)
psub(ω)


=




fmast(ω)
0

0
0


(13)

in which qmast(ω) = (q1(ω), q2(ω)) and qsub(ω) = (qa(ω), qb(ω), qc(ω), qd(ω)) are the

vectors of the generalized coordinates of the master structure and the complex substructures

respectively, andpmast(ω) andpsub(ω) = (p1a(ω), p1b(ω), p2c(ω), p2d(ω)) are the vectors of

the generalized coordinates of the Lagrange multipliers related to the coupling between the

plates of the master structure and between the plates of the master structure and the complex

substructures respectively. Finally,fmast(ω) = (f1(ω), f2(ω)) is the vector of the generalized

forces applied to the master structure. Impedance matrices[Zmast(ω)] and [Zsub(ω)] are

written as

[Zmast(ω)] =

[
[Z1(ω)] 0

0 [Z2(ω)]

]
, (14)

in which [Z1(ω)] and[Z1(ω)] are defined by Eq. (5) and

[Zsub(ω)] =




[Za(ω)] 0 0 0
0 [Zb(ω)] 0 0
0 0 [Zc(ω)] 0
0 0 0 [Zd(ω)]


 , (15)

in which [Za(ω)], [Zb(ω)], [Zc(ω)] and [Zd(ω)] are defined by Eq. (12). Finally, matri-

ces [Bmast], [Bmast−sub] and [Bsub−mast] are deduced26 from the linear constraint equations

introduced by the Lagrange multipliers. Equation (13) can be rewritten as
[

iω[Z(ω)] [B]T

[B] 0

] [
q(ω)
p(ω)

]
=

[
f(ω)
0

]
. (16)

In general, and in particular for the reference complex structure under consideration, the

matrix of Eq. (16) is not invertible due to redundant linear constraint equations induced by

multiple connectivities. In order to circumvent this difficulty, we use a method26 based on

the use of the singular value decomposition of matrix[B]. This method allows the redundant

equations to be automatically eliminated and Eq. (16) to be solved. Its solutionq(ω) is

written as

q(ω) = [T (ω)] f(ω) , (17)
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D. Dynamical response of the reference complex structure

The response of the reference complex structure is obtainedon the frequency band of analysis

[0 , 1000] Hz. The plates of the master structure are identical. Each plate is homogeneous

and isotropic with lengthLr1 = 1 m, width Lr2 = 0.5 m, constant thickness0.003 m,

surface-mass densityρr = 23.46 kg/m2, Young’s modulus= 2.1 × 1011 N/m2, Poisson’s

ratio 0.3, and constant damping rateξr = 0.003. Each plate of the complex substructures is

homogeneous and isotropic with constant thickness0.002 m,surface-mass densityρr = 15.64

kg/m2, Young’s modulus= 2.1 × 1011 N/m2, Poisson’s ratio0.3 and constant damping rate

ξr = 0.003. The length and width of the plates of complex substructures(a) and (c) are

equal toLs1 = 1 m andLs2 = 0.5 m respectively. The plates of complex substructures

(b) and (d) are square and their length is equal to0.5 m. In each complex substructure,

there are2401 oscillators having a total mass of1 kg. The damping rate of each oscillator

is equal to0.003. The eigenfrequencies of the oscillators are uniformly distributed over

frequency band[0 , 1000] Hz. The excitation force is applied to plate(1) at point located in

x0 = (0.707, 0.316), with a constant modulus equal to1 N over the frequency band. The

responses are calculated at pointx1 = (0.33, 0.166) in plate(1) and pointx2 = (0.48, 0.23)

in plate(2). Figures 2 to 4 show the modulus (in dB) of frequency responsefunction for

the acceleration at pointsx0, x1 andx2 of the master structure; the thin solid lines and the

thick solid lines represent the response of the master structure uncoupled with the complex

substructures and coupled with the complex substructures respectively. It should be noted

that frequency band[0 , 300] Hz corresponds to the low-frequency range for which complex

substructures do not significantly affect the responses of the master structure. In medium-

frequency band[300 , 1000] Hz, the complex substructures play an important role in the

response of the master structure, inducing an apparent strong damping in the master structure

due to the power flow from the master structure to the structural complexity.

II. MODELING THE REFERENCE COMPLEX STRUCTURE USING THE

FUZZY STRUCTURE THEORY

The fuzzy structure theory23 is used to model the reference complex structure. The junctions

between plate(1) of the master structure and its two attached fuzzy substructures(a) and(b)

are denoted asΓ1
1,fuz andΓ2

1,fuz respectively. The junctions between plate(2) of the master
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structure and its two attached fuzzy substructures(c) and(d) are denoted asΓ1
2,fuz andΓ2

2,fuz

respectively (see Fig. 5).

A. Generalized impedance matrix of a master-structure plate coupled with its fuzzy

substructures

Using the same notation as in Section I.A and denoting randomdisplacementur asUr, the

boundary value problem related to plate(r) of the master structure coupled with its attached

fuzzy substructures is written as

−ω2ρr Ur − 2iω ξr (ρrDr)
1/2

∇
2 Ur + Dr ∇

4Ur = fr in Ωr ,

Ur = 0 on ∂Ωr ,

Mnr
= M1

r,fuz on Γ1
r,fuz , (18)

Mnr
= M2

r,fuz on Γ2
r,fuz ,

Mnr
= 0 on ∂Ωr\{Γ1

r,fuz ∪ Γ2
r,fuz} ,

in whichM1
r,fuz andM2

r,fuz are the moments induced by the two attached fuzzy substructures

on plate(r) of the master structure. The fuzzy structure theory gives the expression of these

momentsMℓ
r,fuz for ℓ = 1 or 2,

Mℓ
r,fuz(ω; s) =

∫

Γℓ

r,fuz

iωZℓ
r,fuz(ω; s, s′)

∂Ur(ω; s′)

∂nr
ds′ , (19)

in which random variableZℓ
r,fuz(ω; s, s′) is written as

iωZℓ
r,fuz(ω; s, s′) = {−ω2Sℓ

r,fuz(ω) + iωDℓ
r,fuz(ω)} δΓℓ

r,fuz
(s′ − s) , (20)

whereδΓℓ

r,fuz
is the Dirac function and whereZℓ

r,fuz(ω) = −ω2Sℓ
r,fuz(ω) + iωDℓ

r,fuz(ω) is the

homogeneous fuzzy impedance law of fuzzy substructureℓ such that

Sℓ
r,fuz(ω) = Sℓ

r,mean(ω) +
4∑

j=1

Xℓ
r,j Sℓ

r,j,rand(ω) , (21)

Dℓ
r,fuz(ω) = Dℓ

r,mean(ω) +
4∑

j=1

Xℓ
r,j Dℓ

r,j,rand(ω) . (22)
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In Eqs. (21) and (22),{Xℓ
r,1, X

ℓ
r,2, X

ℓ
r,3, X

ℓ
r,4} are mutually independent second-order nor-

malized random variables (centered and with a variance of 1)with a uniform probability

distribution over[−
√

3 ,
√

3] and

Sℓ
r,mean(ω) = ω µℓ

r
nℓ

r ρR(ω;lℓ
r) , (23)

Sℓ
r,1,rand(ω) = ω µℓ

r
nℓ

r

λℓ
r,1√
3

ρR(ω;lℓ
r) , (24)

Sℓ
r,2,rand(ω) = ω µℓ

r
nℓ

r

√
3

λℓ
r,2

αℓ
r J5(ω;lℓ

r) , (25)

Sℓ
r,3,rand(ω) = ω µℓ

r
nℓ

r

√
3

λℓ
r,3

αℓ
r J4(ω;lℓ

r) , (26)

Sℓ
r,4,rand(ω) = ω µℓ

r
nℓ

r

λℓ
r,4√
3

αℓ
r (κ0(ω) + J3(ω;lℓ

r)) , (27)

in whichlℓ
r = (λℓ

r,1, λ
ℓ
r,2, λ

ℓ
r,3, λ

ℓ
r,4) and

Dℓ
r,mean(ω) =

π

2
ω2 µℓ

r
nℓ

r ρI(ω;lℓ
r) , (28)

Dℓ
r,1,rand(ω) =

π

2
ω2 µℓ

r
nℓ

r

λℓ
r,1√
3

ρI(ω;lℓ
r) , (29)

Dℓ
r,2,rand(ω) =

π

2
ω2 µℓ

r
nℓ

r

√
3

λℓ
r,2

[κ1(ω)
λℓ

r,2
2

3
(1 − αℓ

r) + αℓ
r J2(ω;lℓ

r)] , (30)

Dℓ
r,3,rand(ω) =

π

2
ω2 µℓ

r
nℓ

r

√
3

λℓ
r,3

αℓ
r J1(ω;lℓ

r) , (31)

Dℓ
r,4,rand(ω) =

π

2
ω2 µℓ

r
nℓ

r

λℓ
r,4√
3

αℓ
r (J0(ω;lℓ

r) − κ1(ω)) . (32)

In Eqs. (23) to (32), functionsρR, ρI , κ0, κ1, J0, J1, J2, J3 J4 andJ5 are explicitly

defined in Appendix (Ref.23, pages 368 to 370). The functions defined by Eqs. (23) to

(32) depend on mean coefficients (or mean parameters) which are the mean coefficients of

the participating inertial momentµℓ
r
(ω), the mean rate of internal dampingξℓ

r
(ω), the mean

modal densitynℓ
r(ω) and the mean equivalent coupling factorαℓ

r(ω) and their associated

deviation coefficientsλℓ
r,1(ω), λℓ

r,2(ω), λℓ
r,3(ω) andλℓ

r,4(ω) respectively. Mean coefficient

µℓ
r
(ω) is described by the dimensionless mean coefficientνℓ

r(ω) which is such that

µℓ
r
(ω) = νℓ

r(ω)
Iℓ

r

|Γℓ
r,fuz|

, (33)
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in which Iℓ
r is an arbitrary reference inertial moment and|Γℓ

r,fuz| is the measure ofΓℓ
r,fuz

(equal toLr1 or Lr2). It is assumed that a direct estimation of mean coefficientsξℓ

r
(ω) and

nℓ
r(ω) can be obtained. Since the junction between plate(r) of the master structure and fuzzy

substructureℓ is continuous, the fuzzy structure theory yieldsαℓ
r ≪ 1. In order to construct

the generalized impedance matrix of plate(r) of the master structure coupled with its fuzzy

substructures, we use the Ritz-Galerkin method introducedin Section I.A. The boundary

value problem defined by Eq. (18) is then solved by introducing normal modes defined by

Eq. (2) and their corresponding eigenfrequencies defined byEq. (3). The finite dimension

approximation of fieldUr is again denoted asUr and is written as

Ur(ω, x, y) =
∑b∈Br

Qrb(ω) ϕrb(x, y) . (34)

As in section I.A, we introduce the vectorQr(ω) such that

Qr(ω) = {Qrb(ω)}b∈Br
, (35)

and for all realω, vectorQr(ω) is the solution of the complex matrix equationiω ([Zr(ω)] +

[Zr,fuz(ω)]) Qr(ω) = fr(ω) in which [Zr(ω)] is given by Eq. (5) and[Zr,fuz(ω)] is the

generalized impedance complex dense matrix such that

[Zr,fuz(ω)]bb′ = [Zr,mean(ω)]bb′ + [Zr,rand(ω)]bb′ , (36)

in which

iω [Zr,mean(ω)]bb′ =

2∑

ℓ=1

{−ω2Sℓ
r,mean(ω) + iωDℓ

r,mean(ω)}

×
∫

Γℓ

r,fuz

∂ϕrb′

∂nr
(s)

∂ϕrb
∂nr

(s) ds , (37)

and

iω [Zr,rand(ω)]bb′ =
2∑

ℓ=1

4∑

j=1

Xℓ
r,j{−ω2Sℓ

r,j,rand(ω) + iωDℓ
r,j,rand(ω)}

×
∫

Γℓ

r,fuz

∂ϕrb′

∂nr
(s)

∂ϕrb
∂nr

(s) ds . (38)
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B. Method for constructing the random response of the fuzzy structure

The coupling between the two plates of the master structure is written using Lagrange mul-

tipliers as in Section I.C. The generalized impedance matrix of the fuzzy structure is then

written as




iω([Zmast(ω)] + [Zmean(ω)] + [Zrand(ω)]) [Bmast]
T

[Bmast] 0






Qmast(ω)

Pmast(ω)


 =




fmast(ω)

0


 ,

(39)

in which [Zmast(ω)] is defined by Eq. (14), vectorQmast(ω) is such that

Qmast(ω) = (Q1(ω), Q2(ω)) , (40)

in whichQr(ω) is defined by Eq. (35),Pmast(ω) is the vector of the generalized coordinates of

the Lagrange multipliers related to the coupling between the two plates of the master structure

and where

[Zmean(ω)] =

[
[Z1,mean(ω)] 0

0 [Z2,mean(ω)]

]
, (41)

[Zrand(ω)] =

[
[Z1,rand(ω)] 0

0 [Z2,rand(ω)]

]
, (42)

in which[Zr,mean(ω)] and[Zr,rand(ω)] are defined by Eqs. (37) and (38) respectively. Equation

(39) can be rewritten as




iω[Zdet(ω)] + iω[Zrand(ω)] [Bmast]
T

[Bmast] 0






Qmast(ω)

Pmast(ω)


 =




fmast(ω)

0


 , (43)

in which[Zdet(ω)] = [Zmast(ω)]+[Zmean(ω)] is a deterministic impedance matrix. The method

used to solve Eq. (43) is based on the use of the Neumann seriesexpansion. Consequently,

we rewrite Eq. (43) as




iω[Zdet(ω)] [Bmast]

T

[Bmast] 0








Qmast(ω)

Pmast(ω)



 =




fmast(ω) − iω[Zrand(ω)]Qmast(ω)

0



 , (44)

and the inverse matrix of the matrix appearing on the left-hand side of Eq. (44) is denoted

as [Tdet(ω)] (if this matrix is not invertible due to redundant equationsinduced by multiple

connectivities in the master structure, then the method presented in Section I.C should be used
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to construct[Tdet(ω)]; for the present reference complex structure, since the master structure

has only two plates, the matrix is invertible). We obtain thesolutionQmast(ω) such that

Qmast(ω) = [Tdet(ω)](fmast(ω) − iω[Zrand(ω)]Qmast(ω)) . (45)

Equation (45) is rewritten as([Id] + iω[Tdet(ω)][Zrand(ω)])Qmast(ω) = [Tdet(ω)]fmast(ω)

in which [Id] is the identity matrix. An approximation of the inverse of matrix ([Id] +

iω[Tdet(ω)][Zrand(ω)]) is calculated using Neumann’s series expansion limited to order 2 and

yields([Id]+ iω[Tdet(ω)][Zrand(ω)])−1 ≃ [Id]+
∑2

k=1

(
− iω[Tdet(ω)][Zrand(ω)]

)k
. Solution

Qmast(ω) can be written as

Qmast(ω) = Qdet(ω) + Qrand(ω) , (46)

in which

Qdet(ω) = [Tdet(ω)]fmast(ω) , (47)

Qrand(ω) = Q(1)
rand(ω) + Q(2)

rand(ω) , (48)

with

Q(1)
rand(ω) = −iω[Tdet(ω)][Zrand(ω)] Qdet(ω) , (49)

Q(2)
rand(ω) = −iω[Tdet(ω)][Zrand(ω)] Q(1)

rand(ω) . (50)

From Eqs. (34), (35), (40), (46) to (50), we deduce that in a point (x, y) of plate(r) of the

master structure, the random response can be written as

Ur(ω, x, y) = Ur,det(ω, x, y) + Ur,rand(ω, x, y) , (51)

Ur,rand(ω, x, y) =
16∑

ℓ=1

U
(1)
r,ℓ,rand(ω, x, y) Xℓ +

16∑

ℓ=1

16∑

ℓ′=1

U
(2)
r,ℓℓ′,rand(ω, x, y) XℓXℓ′ , (52)

in whichXℓ is theℓ-th coordinate of vector(X1
1,1, . . . , X

1
1,4, . . . , X

2
2,4). The mean value and

the variance ofUr(ω, x, y) are denoted asE{Ur(ω, x, y)} andVUr
(ω, x, y) respectively and

are defined by

E{Ur(ω, x, y)} = Ur,det(ω, x, y) + E{Ur,rand(ω, x, y)} , (53)
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and

VUr
(ω, x, y) = E{|Ur(ω, x, y)− E{Ur(ω, x, y)}|2} . (54)

In order to get more information about the random response level dBr(ω, x, y) = 20 log10

(|Ur(ω, x, y)|)of plate(r) expressed in dB, we construct the envelope of this random response

in dB introducing the mean response level in dB

dB0
r (ω, x, y) = 20 log10(|E{Ur(ω, x, y)}|) . (55)

The upper envelopedB+
r (ω, x, y) is then defined by

P
(
dB−

r (ω, x, y) < dBr(ω, x, y) ≤ dB+
r (ω, x, y)

)
= Pc , (56)

in which the lower envelope is such that

dB−
r (ω, x, y) = 2 dB0

r (ω, x, y) − dB+
r (ω, x, y) . (57)

In Fig. 6, the gray region represents the confidence region defined by the upper and lower

envelopes of the frequency-response-function modulus corresponding to a given probability

levelPc. We construct the upper envelope using Chebychev’s inequality which can be written

as

P
(
|Ur(ω, x, y)− E{Ur(ω, x, y)}| ≥ ar(ω, x, y)

)
≤ VUr

(ω, x, y)

ar(ω, x, y)2
, (58)

in whichVUr
(ω, x, y) is given by Eq. (54). Inequality (58) yields

P
(
dB−

r (ω, x, y) < dBr(ω, x, y) < dB+
r (ω, x, y)

)
≥ Pc , (59)

in whichdB−
r (ω, x, y) is defined by Eq. (57) and

dB+
r (ω, x, y) = 20 log10(|E{Ur(ω, x, y)}|+ ar(ω, x, y)) , (60)

in whichar(ω, x, y) is such that

Pc = 1 − VUr
(ω, x, y)

ar(ω, x, y)2
. (61)

The confidence region calculated using the envelope defined by Eq. (59) is overestimated by

comparison with a calculation made using Eq. (56), but the calculation is faster due to the

use of an explicit numerical calculation ofE{Ur(ω, x, y)} andVUr
(ω, x, y).
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III. ESTIMATION OF FUZZY STRUCTURE MEAN PARAMETERS

The fuzzy impedance law mean parametersαℓ
r andνℓ

r of the fuzzy substructures introduced

in Section II.A have to be estimated. Concerning mean parameterαℓ
r, we know thatαℓ

r ≪ 1

due to the continuous junctions. A sensitivity analysis with respect to this mean parameter

was performed27 and showed that the frequency-independent values

α1
1 = α2

1 = α1
2 = α2

2 = 0.005 , (62)

were a good approximation. Concerning mean parameterνℓ
r, we use the statistical energy

approach introduced in Ref. 24 but using the following cost function26

J(n) =
2∑

r=1

(
< Πr,diss(t; n; 0) > − < ΠMSE

r,diss(t) >
)2

, (63)

in which n = (ν1
1, ν

2
1, ν

1
2, ν

2
2); < Πr,diss(t; n; 0) > is the mean power dissipation in plate

(r) of the master structure of the fuzzy structure, calculated using the fuzzy structure model;

< ΠMSE
r,diss(t) > is the mean power dissipation in plate(r) of the master structure of the reference

complex structure, estimated using statistical energy analysis applied to the reference complex

structure. These mean power dissipations are calculated for a limited band time-stationary

stochastic excitation force applied to the master structure23. Consequently, the estimationn∗
of n is given by solving the following optimization problem26

J(n∗) = minn≥0
J(n) , (64)

in whichn ≥ 0 meansν1
1 ≥ 0, ν2

1 ≥ 0, ν1
2 ≥ 0 andν2

2 ≥ 0. The optimization problem defined

by Eq. (64) is not easy to solve because cost functionJ is not convex and each evaluation of

J(n) needs an evaluation of< Πr,diss(t; n; 0) >. Consequently, we developed26 an algorithm

with two main steps. In the first step, a neighborhoodD containing solutionn∗ is constructed

using a random search algorithm. DomainD is described by the polar coordinates(ρ, �) such

that n = ρ
�

‖�‖2
, (65)

and is defined by

D = {ρ ∈]ρmin, ρmax[, � ∈ [0, 1]4} . (66)
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The random search method is performed using a logarithmic scale for variableρ. In Fig. 7,

the gray region illustrates theD region dimension 2. In the second step, the optimization

problem defined by Eq. (64) is rewritten as

J(n∗) = minn∈D
J(n) , (67)

and is solved using Sequential Quadratic Programming28 (SQP).

IV. VALIDATION

A. Description of the fuzzy structure modeling the reference complex structure

The frequency band of analysis is B= [0 , 1000] Hz. Band B is written as the union of

10 frequency sub-bands with a bandwidth of100 Hz. Since the plate damping rate and

the oscillator damping rates of each complex substructure are equal to0.003, the mean rate

of internal damping of each fuzzy substructure is taken equal to 0.003 over band B. The

mean modal densities of the fuzzy substructures are equal tothe mean modal densities of

the systems constituted of the plates coupled with their attached oscillators. They are taken

as constant over each frequency sub-band and are such thatn1
1 = n1

2 = 0.393 s/rad and

n2
1 = n2

2 = 0.388 s/rad. The mean equivalent coupling factors of the fuzzy substructures

are such thatα1
1 = α2

1 = α1
2 = α2

2 = 0.005 and are constant over band B. The arbitrary

reference inertial moments of the fuzzy substructures are such thatI1
1 = I1

2 = 8.85 kg×m2

andI2
1 = I2

2 = 4.925 kg×m2. Each mean coefficient of the participating inertial moment

of a fuzzy substructure is taken as constant over each frequency sub-band. These mean

coefficients are estimated using the method presented in Section III. The values obtained for

ν1
1 ≥ 0, ν2

1 ≥ 0, ν1
2 ≥ 0 andν2

2 ≥ 0, expressed inlog10, are presented in Fig. 8 as a function

of the frequency.

B. Mean response

We consider the mean response of the fuzzy structure with zero deviation coefficients. Figures

9 to 11 show the modulus (in dB) of the frequency response function for the acceleration at

pointsx0, x1 andx2 of the master structure; the thin solid lines represent the response of

the reference complex structure and the thick solid lines represent the mean response of the

fuzzy structure. It can be seen that the fuzzy structure’s mean response with zero deviation

coefficients gives a good representation of the reference complex structure response.
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C. Envelopes

We consider the envelopes of the fuzzy structure response with nonzero deviation coefficients.

The deviation coefficients associated with the participating inertial moments and the modal

densities are nonzero and are taken asλ1
1,1 = λ2

1,1 = λ1
2,1 = λ2

2,1 = λ1
1,3 = λ2

1,3 = λ1
2,3 =

λ2
2,3 = 0.3 whereas those associated with internal damping rates and equivalent coupling

factors are taken equal to zeroλ1
1,2 = λ2

1,2 = λ1
2,2 = λ2

2,2 = λ1
1,4 = λ2

1,4 = λ1
2,4 = λ2

2,4 = 0.

Figures 12 to 14 show the modulus (in dB) of the frequency response function for the

acceleration at pointsx0, x1 andx2 of the master structure; the thick solid lines represent

the response of the reference complex structure and the grayregion represents the confidence

region defined by the upper and lower envelopes predicted by the fuzzy structure theory and

corresponding to a probability level equal to 0.95. It can beseen that the responses of the

reference complex structure belong to to this confidence region. Consequently, the prediction

is satisfactory and this example validates the fuzzy structure theory for continuous junctions

(line-couplings).

V. CONCLUSION

This paper constitutes a first validation of the fuzzy structure theory for continuous junctions

(line-couplings) between the master structure and the fuzzy substructures. In particular,

the capability of this theory to model fuzzy substructures constituted of local modes and

equipment should be noted. The mean response function calculated by the fuzzy structure

theory with zero deviation coefficients gives a good representation of the reference complex

structure response and calculation of the envelopes with nonzero deviation coefficients based

on the use of a second-order Neumann series expansion and Chebychev’s inequality is very

efficient. In addition, we have introduced a new cost function allowing estimation of the fuzzy

structure parameters and we have proved that the statistical energy approach proposed in this

procedure is very efficient. This procedure for estimating the fuzzy structure parameters,

validated by numerical simulation, opens the field to experimental identifications.

APPENDIX: DEFINTIONS FOR THE FUNCTIONS IN EQS. (23) TO (32)

FunctionρR(ω;lℓ
r) is defined by

ρR(ω;lℓ
r) = (αℓ

r − 1) κ0(ω;lℓ
r) + αℓ

r J3(ω;lℓ
r) ,
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κ0(ω;lℓ
r) is given by

κ0(ω;lℓ
r) = [ω nℓ

r]
−1 + [12 ω3 {nℓ

r}3 (1 − {λℓ
r,3}2)]−1 ,

functionρI(ω;lℓ
r) is defined by

ρI(ω;lℓ
r) = (1 − αℓ

r) κ1(ω;lℓ
r) + αℓ

r J0(ω;lℓ
r) ,

κ1(ω;lℓ
r) is given by

κ1(ω;lℓ
r) = 4 ξℓ

r
[π ω nℓ

r]
−1 .

Forκ ∈ {0, 1, 2, 3, 4, 5}, functionsJκ(ω;lℓ
r) are defined by

Jκ(ω;lℓ
r) =

1

4

∫ 1

−1

dy2

∫ 1

−1

dy3 Jκ(ω ; ξℓ

r
(1+λℓ

r,2 y2) , λℓ
r,3 y3) ,

with

J0(ω; x, y) = (1 + y)[π
√

1 − x2]−1[arctanY+(ω; x, y)− arctanY−(ω; x, y)] ,

J1(ω; x, y) = y J0(ω; x, y) ,

J2(ω; x, y) = (ξℓ

r
)−1(x − ξℓ

r
) J0(ω; x, y) ,

J3(ω; x, y) = [ω nℓ
r]

−1 − (1 + y) [4
√

1 − x2]−1 ln[N(ω; x, y)/D(ω; x, y)] ,

J4(ω; x, y) = y J3(ω; x, y) ,

J5(ω; x, y) = (ξℓ

r
)−1(x − ξℓ

r
) J3(ω; x, y) .

FunctionY±(ω; x, y) is defined by

Y±(ω; x, y) = (θ±(ω; y) + x2) [x
√

1 − x2]−1 ,

in which

θ±(ω; y) = [(1 ± τ(ω; y))2 − 1]/2 ,

with

τ(ω; y) = [2 ω nℓ
r (1 + y)]−1 .

FunctionsN(ω; x, y) andD(ω; x, y) are defined by

N(ω; x, y) = [U+(ω; y) + W+(ω; x, y)][U−(ω; y)− W−(ω; x, y)] ,
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D(ω; x, y) = [U+(ω; y)− W+(ω; x, y)][U−(ω; y) + W−(ω; x, y)] ,

in which

U±(ω; y) = 2 (θ±(ω; y) + 1) ,

W±(ω; x, y) = 2
√

1 − x2 [1 ± τ(ω; y)] .
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LEGENDS ACCOMPANYING EACH FIGURE

FIG. 1. Reference complex structure.

FIG. 2. Modulus (in dB) of the frequency response function for the acceleration at pointx0 of

the master structure: master structure not coupled with thecomplex substructures (thin solid

line); master structure coupled with the complex substructures (thick solid line).

FIG. 3. Modulus (in dB) of the frequency response function for the acceleration at pointx1 of

the master structure: master structure not coupled with thecomplex substructures (thin solid

line); master structure coupled with the complex substructures (thick solid line).

FIG. 4. Modulus (in dB) of the frequency response function for the acceleration at pointx2 of

the master structure: master structure not coupled with thecomplex substructures (thin solid

line); master structure coupled with the complex substructures (thick solid line).

FIG. 5. Model of the reference complex structure by fuzzy structure theory.

FIG. 6. Confidence region defined by the upper and lower envelopes of the frequency-

response-function modulus corresponding to a given probability level.

FIG. 7. Geometrical shape of the domain in which the solutionof the optimization problem

belongs.

FIG. 8. Dimensionless mean coefficientsn in log10: mean coefficientν1
1 (thin solid line);

mean coefficientν2
1 (thin dashed line); mean coefficientν1

2 (thick solid line); mean coefficient

ν2
2 (thick dashed line).

FIG. 9. Modulus (in dB) of the frequency response function for the acceleration at pointx0

of the master structure: response of the reference complex structure (thin solid line); mean

response of the fuzzy structure (thick solid line).

FIG. 10. Modulus (in dB) of the frequency response function for the acceleration at pointx1

of the master structure: response of the reference complex structure (thin solid line); mean

response of the fuzzy structure (thick solid line).

FIG. 11. Modulus (in dB) of the frequency response function for the acceleration at pointx2

of the master structure: response of the reference complex structure (thin solid line); mean

response of the fuzzy structure (thick solid line).

FIG. 12. Modulus (in dB) of the frequency response function for the acceleration at point

x0 of the master structure: response of the reference complex structure (thick solid line);
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confidence region defined by the upper and lower envelopes predicted by the fuzzy structure

theory and corresponding to a probability level equal to 0.95.

FIG. 13. Modulus (in dB) of the frequency response function for the acceleration at point

x1 of the master structure: response of the reference complex structure (thick solid line);

confidence region defined by the upper and lower envelopes predicted by the fuzzy structure

theory and corresponding to a probability level equal to 0.95.

FIG. 14. Modulus (in dB) of the frequency response function for the acceleration at point

x2 of the master structure: response of the reference complex structure (thick solid line);

confidence region defined by the upper and lower envelopes predicted by the fuzzy structure

theory and corresponding to a probability level equal to 0.95.
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Fig. 8, C. Soize and K. Bjaoui, J. Acoust. Soc. Am.
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Fig. 9, C. Soize and K. Bjaoui, J. Acoust. Soc. Am.
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Fig. 10, C. Soize and K. Bjaoui, J. Acoust. Soc. Am.
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Fig. 11, C. Soize and K. Bjaoui, J. Acoust. Soc. Am.
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Fig. 12, C. Soize and K. Bjaoui, J. Acoust. Soc. Am.
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Fig. 13, C. Soize and K. Bjaoui, J. Acoust. Soc. Am.
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Fig. 14, C. Soize and K. Bjaoui, J. Acoust. Soc. Am.
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