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ESTIMATION OF FUZZY STRUCTURE PARAMETERS
FOR CONTINUOUS JUNCTIONS

Christian Soize and Karina Bjaoui

Structural Dynamics and Coupled Systems Department, ONBRA’2, 92322 Chatillon

Cedex, France
ABSTRACT

The fuzzy structure theory introduced fifteen years ago ssgihed to predict the frequency
response functions of structures and structural acousttess with structural complexity, in
the low- and medium-frequency ranges. This paper conssitalffirst validation of the fuzzy
structure theory for continuous junctions between the emastucture and the fuzzy substruc-
tures. In addition, we present a method to estimate the fsizmgture parameters introduced
in the fuzzy structure theory and we validate it for the caseomtinuous junctions. This

validation obtained by numerical simulations opens the félexperimental identifications.
PACS numbers: 43.40

INTRODUCTION

The fuzzy structure theory was introduced by Sbireorder to model structural complexity
in the medium frequency range. This structural complexlaye a fundamendal role in
the response of a master structure coupled with complextrsiaigres in the context of
structural-acoustic systems. In 1993, a second fuzzy impesllaw was proposédo model
the case of fuzzy substructures attached to the mastetsteubrough a continuous junction.
Since 1993, much research has been published concernipgaiblem of a master structure
coupled with a large number of simple linear oscillators and a few concerning continuous
case$’~22, Two main problems had to be solved to be able to apply theyfsazicture
theory (described in detail in Re23) to the case of continuous junctions. The first problem
was related to the construction of a procedure for idemtgithe fuzzy structure parameters
in order to solve complex problems and to allow experimeadaitifications to be performed.

The second one, which requires solving the first, is relaie@lidation of the fuzzy structure
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theory for continuous junctions. A general procedure hanloevelopetf to solve the first
problem. Inthis paper, we present a first validation of tlzzyustructure theory for continuous
junctions between the master structure and the fuzzy sudistes. We introduce a new cost
function replacing the cost function previously introddte It allows an efficient estimation
of the fuzzy structure parameters using a procedure basttemtatistical energy approach.
In Section I, we introduce the reference complex structiteemodel and the numerical
simulation of its response. All the validations are perfedwvith respect to this reference.
Section Il deals with modeling of the reference complexdte using the fuzzy structure
theory. In Section lll, we present the procedure for estingathe fuzzy structure mean
parameters. Finally, the last section is devoted to vabdaby comparison with reference

results.

|. REFERENCE COMPLEX STRUCTURE MODEL AND NUMERICAL SIMULA-
TION OF ITS RESPONSE

The complex structure consists of a master structure cdwpld four complex substructures
(see Figure 1). The master structure is constituted of tetangular homogeneous isotropic
thin plates denoted &$) and(2), in bending mode and simply supported. Platgis coupled

to plate (2) along their common edge; the rotation around this edge isreavus. The
complex substructures are denoted@s (b), (¢) and(d) and are constituted of a rectangular
homogeneous isotropic thin plate on which many simple liosaillators are attached. The
plate of each complex substructure is in bending mode, sisygported and coupled to a plate
of the master structure along their common edge; the ratatiound this edge is continuous.
Consequently, there is a continuous junction between eaoiplex substructure and the
master structure. Two plates belonging to different compglébstructures are not coupled
along their common edge (there is coupling only between easiplex substructure and the
master structure). The method used to construct the modet séference complex structure
consists in constructing the generalized impedance mafrixn isolated plate belonging
to the master structure and an isolated complex substriciithren the isolated subsystems
constituting the reference complex structure are coupata Lagrange multiplier technique

in order to express the continuity of the rotation on the fioms.
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A. Generalized impedance matrix of an isolated plate belongg to the master structure

Each rectangular thin plafe) (with » equal tol or 2) of the master structure is referenced
to an(z,y) local coordinate system and is located in pl&hey. This plate has a constant
thickness, a length,.;, a width L,.o, surface-mass density. (mass per unit area), a constant
damping rate&,. and a constant flexural rigidit§,.. The domain of this plate (middle surface)
is defined by2,. =]0, L,1[x]0, L,2[. We consider linear vibrations of this plate formulated in
the frequency domaig. The transverse displacement of platein a point(z, y) is denoted
asu,(w, z,y). The external forces applied to the plate are representeddoynplex-valued
function f,.(w, z,y). The bending moment around the edges of plajés denoted as\1,,_

in which n,. is the outward unit normal to the bounda?{2,. of domain(2,.. The boundary

value problem is written as

—w?pyuy — 2iwE, {prDT}U2 Viu, + D, Viu,=f, in Q. |,
u. =0 on 09, (1)
M, =0 on 09,

The boundary value problem defined by Eqg. (1) is solved usiegRitz-Galerkin method
for which the complete family of independent functions ie #dmissible function space is
constituted of the normal modes related to the simply supdglate. We then introduce the

normal mode¥®

2 . (PN . (Pamy
polen) = s () (7)) @)
and the corresponding eigenfrequencies
Dy [ BimN\2Z | Pem\?
WTB N Pr {(Lrl ) + <L7‘2> } ’ (3)

in which@ = (1, #2) where; and g, are positive integers. The finite dimension approxi-
mation of fieldu,. is written asi, (w, z,y) = > 3¢ 5- @8 (w) wra(, y) in which B is the set
of all the pairs of integer§gs;, 32) such that, (w, z, y) approaches,. (w, z,y). Letq,(w)

andf, (w) be the vectors of generalized coordinates and generalizedd such that

9-(w) = A{apW)tpes,  fr(w) ={frs(w)ipen, (4)
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in which fg(w) = fOL“ fOL”“2 fr(w,z,y) prp(z,y) dedy. Consequently, for all reab,
vectorg, (w) is the solution of the complex matrix equatian [Z, (w)] g, (w) = f.(w) in

which[Z,.(w)] is the generalized impedance complex diagonal matrix et t
iw [Z(w)]ppr = pr{~w® + 2w & wip +wip} dppr (5)

with dggr = 1if 3 = B’ and= 0 otherwise.

B. Generalized impedance matrix of an isolated complex subsicture

Each complex substructufe) (with s equal toa, b, c or d) is constituted of a rectangular
thin plate(s) on which K simple linear oscillators are attached. Pléatgis referenced to
an (z,y) local coordinate system and is located in planey. This plate has a constant
thickness, a lengtlh,;, a width L., a surface-mass density (kg/m?), a constant damping
rate {; and a constant flexural rigidity,. The domain of this plate (middle surface) is
defined by2; =]0, Ls1[x]0, Lso[. We consider linear vibrations of this complex substruetur
formulated in the frequency domain The transverse displacement of the platein a point
(z,y) is denoted as(w, z,y). The external forces applied to the plate are represented by
a complex-valued functiorfs (w, ,y). The bending moment around the edges of plaje
is denoted as\,_ in which ng is the outward unit normal to the boundad§?; of domain
Q. The mass, damping rate and stiffness ofitkté simple linear oscillator{ = 1, . . ., Ky)
attached to platé¢s) are constant and denotedag, £& andm? (w?r)? respectively ¢~ is
the eigenfrequency of the undamped oscillator with a fixgzpett). Oscillatorx is located

in point (z*,y*). The area of the plate of the complex substructure is divideml /K
subelements (rectangular subelement) @idd, oscillators are uniformly distributed in space
inside each subelement and in frequency inside the frequsard of analysis. The boundary

value problem is written as
K
_WQPS g — 21w & (P5D5>1/2 VQUS + D V4us = fs — Zg: in Q,
k=1
Us = 0 on aQs ) (6)

Mnp =0 on 09,

s

Forceg” (w) induced by oscillator is such that

gs (W) = wzi (W) us(w, 2%, y") (7)
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in which 2 is such that

i 25(0) =~ (mz (whfo) (w3 =1 + 4@:)2))
S (wr/w)? =1)" + d(wp/w)2(Ex)?

(8)

i ( 2mf w ek (W fw) )
(wr/w)? = 1)" + 4(ws/w)2(Er)?

The boundary value problem defined by Eq. (6) is solved siigita Eg. (1), introducing

the normal modes,

Pop(, ) = \/LQT sin (ﬁlff) sin (ﬁ;jf) , (9)

and the corresponding eigenfrequencies,

oo {E G o

in which3 = (81, 82) where; andj3, are positive integers. The finite dimension approx-

imation of fieldu is written asus(w, z,y) = > gcp- ¢s8(w) psp(x, y) in which B* is the
set of all the pairs of integers3;, §2) such thatus(w, x,y) approaches,; (w, z,y). Asin

Section I.A, we introduce vectorg (w) andfs(w) such that

9s(w) = {gsp(W)}pes. » fs(w) = {fp(W)}lpen. (11)

in which fss(w) = fOL“ fOLS2 [s(w,z,y) psp(z, y) dx dy and for all realw, vectorgs(w) is
the solution of the complex matrix equatian [Z;(w)] gs(w) = fs(w) in which [Z,(w)] is

the generalized impedance complex dense matrix such that

iw [Zs(w)]pgr = ps{—w® + 2iw & wep + w2z } dpar

+ 25 (W) sp(2”,Y") pepr (2™ y") . (12)

C. Generalized impedance matrix of the reference complex gicture

The coupling between two plates of the master structure tordsn the master structure and
a complex substructure is obtained by writing the continaftrotations along the junctions

(it should be noted that the continuity of the displacemeitlfis satisfied). These resulting
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linear constraint equations are then taken into accoungusagrange multipliers. Using the

generalized impedance matrices introduced in Sectionarichl.B yields

2'W[Zmasl(u))] 0 [BmasﬂT [Bmast—sub]T Qmast(w) fmast(w)
0 iw[Zsub(w)] 0 [Bsub—masﬂT Osub(w) 0
= (13)
[Bmast 0 0 0 Pmas(w) 0
[Bmast—sub] [Bsub—masﬂ 0 0 psub<w) 0

in which gmas(w) = (q1(w), G2(w)) and gsup(w) = (da(w), Qo(w), Ye(w), da(w)) are the
vectors of the generalized coordinates of the master sireieind the complex substructures
respectively, an@mas{w) andpsup(w) = (P1a(w), P1s(w), P2c(w), P24(w)) are the vectors of
the generalized coordinates of the Lagrange multiplideged to the coupling between the
plates of the master structure and between the plates ofdlstenstructure and the complex
substructures respectively. Finalfyas{w) = (f1 (w), f2(w)) is the vector of the generalized

forces applied to the master structure. Impedance matfiégs(w)] and [Zsun(w)] are

written as
Zasde) = | 25 0] (1)
in which [Z; (w)] and[Z; (w)] are defined by Eq. (5) and
[Za(w)] 0 0 0
Zall = | o A L0 0 | (15)
0 0 0 [Za(w)]

in which [Z,(w)], [Zp(w)], [Zc(w)] and[Z4(w)] are defined by Eq. (12). Finally, matri-
ceS[Bmas{, [Bmast-sut and [Bsub_mas{ are deduced from the linear constraint equations

introduced by the Lagrange multipliers. Equation (13) camdritten as

el .

In general, and in particular for the reference complexcstme under consideration, the
matrix of Eg. (16) is not invertible due to redundant lineanstraint equations induced by
multiple connectivities. In order to circumvent this difflty, we use a metha based on
the use of the singular value decomposition of mdtik This method allows the redundant
equations to be automatically eliminated and Eq. (16) toddees. Its solutionq(w) is

written as
qw) = [T(w)] f(w) (17)

JASA - C. Soize and K. Bjaoui 6 Revised version - 03 Dec 99



D. Dynamical response of the reference complex structure

The response of the reference complex structure is obtaméte frequency band of analysis
[0,1000] Hz. The plates of the master structure are identical. Eaate i homogeneous
and isotropic with lengthl,;, = 1 m, width L., = 0.5 m, constant thicknes8.003 m,
surface-mass densify. = 23.46 kg/m?, Young’s modulus= 2.1 x 10'* N/m?, Poisson’s
ratio 0.3, and constant damping rage = 0.003. Each plate of the complex substructures is
homogeneous and isotropic with constant thickie®s2 m, surface-mass densjty = 15.64
kg/m?, Young’s modulus= 2.1 x 10! N/m?, Poisson’s ratid®.3 and constant damping rate
& = 0.003. The length and width of the plates of complex substructisgsand (c) are
equal toL,; = 1 m andLs,, = 0.5 m respectively. The plates of complex substructures
(b) and (d) are square and their length is equal0té m. In each complex substructure,
there are2401 oscillators having a total mass ofkg. The damping rate of each oscillator
is equal t00.003. The eigenfrequencies of the oscillators are uniformlyriisted over
frequency band0 , 1000] Hz. The excitation force is applied to plate) at point located in

Xo = (0.707,0.316), with a constant modulus equal toN over the frequency band. The
responses are calculated at poipt= (0.33,0.166) in plate(1) and pointxe = (0.48, 0.23)

in plate (2). Figures 2 to 4 show the modulus (in dB) of frequency respduasetion for

the acceleration at pointg), x; andx, of the master structure; the thin solid lines and the
thick solid lines represent the response of the mastertateiancoupled with the complex
substructures and coupled with the complex substructesgsectively. It should be noted
that frequency banfd , 300] Hz corresponds to the low-frequency range for which complex
substructures do not significantly affect the responsebefiaster structure. In medium-
frequency band300,1000] Hz, the complex substructures play an important role in the
response of the master structure, inducing an apparengsti@mping in the master structure

due to the power flow from the master structure to the strattiomplexity.

. MODELING THE REFERENCE COMPLEX STRUCTURE USING THE
FUZZY STRUCTURE THEORY

The fuzzy structure theoty is used to model the reference complex structure. The jomsti
between platél) of the master structure and its two attached fuzzy substresta) and(b)

are denoted aB; g, andT'} ¢, respectively. The junctions between plé#g of the master
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structure and its two attached fuzzy substructdegsind(d) are denoted aBj 4, andT'3 ¢,

respectively (see Fig. 5).

A. Generalized impedance matrix of a master-structure plaé coupled with its fuzzy

substructures

Using the same notation as in Section I.A and denoting randisplacement.,. asU,., the
boundary value problem related to pléte of the master structure coupled with its attached

fuzzy substructures is written as

~w?p, Uy = 2iw&, (. Dy)/* VAU, + D, VU, = f, in Q, ,
U.-=0 on 09,
Mn, =M,  On Trg, (18)
Mp, =M2y, on TZg,

Mp, =0 on aQ?“\{F71~,fuzL-JF72~,fuz} )

r

inwhich M ¢, andM? ¢, are the moments induced by the two attached fuzzy substasctu
on plate(r) of the master structure. The fuzzy structure theory givesettpression of these

momentsM¢ . _for/ =1or2,

r,fuz
U, (w; s
Mﬁ fuz(w; S) = / inf fuz(w; S, 3/) stl ) (19)
’ T4 ’ 8nr
rfuz
in which random variableZ!  ,(w; s, s') is written as
inf fuz(Ws 8, Sl) = {_WQSf fuz(w) + iWDﬁ fuz(W)} 5F5f (S/ -s) (20)
’ ’ ’ rfuz

wheredr. is the Dirac function and whet#! ;,(w) = —w? S o, (w) + iwDf ¢, (w) is the

homogeneous fuzzy impedance law of fuzzy substructgrech that

4
Sf,fuz(w) = Sﬁ,mearﬁw) + ZXf,j Sf,j,rand(w) ) (21)
j=1
4
Dﬁ,fuz(w) - Df,mear(”) + ZXf,j Df,j,rand(w) . (22>
j=1
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In Egs. (21) and (22§ X} ,, X} ,, X/ 3, X/ ,} are mutually independent second-order nor-

r, 1

malized random variables (centered and with a variance ofith) a uniform probability
distribution overl—/3, /3] and

Sy meadw) = w pt nf p(wiNL) (23)
4 JA )\fizl R V4
Sr,l,rand(w) =w Hr n, % P (w’ >‘T) ’ (24)
V3
Sf,Q,rand(w) =w Ef, ﬂf SN Qﬁ 15(‘*"; )‘ﬁ) ) (25)
7,2
V3
Sf,S,rand( )= wﬂﬁ ﬂf SR O‘ J4(W;)‘£) ) (26)
r,3
X4
Sy arandw) = w pt nf \/§ ol (ko(w) + J3(w; L) (27)

inwhichX\l = (AL, AL, A5 AL ,) and

T
Df‘,mear(w) = By w? Hf Eﬁ IOI(W; )\ﬁ) ) (28)
0 T 92 ¢ )‘?1 I )

D andw) = 5 @™ 1, 1, 73" (WiXe) (29)

2

™ V3 Ao
D} 5 randw) = 5 w? pt nf, PR K1 (w) (1—-al) + af Jyw;X\)] ,  (30)

r,2
s V3
D} 3 randw) = 5 w” ot 3, ob Jy(wiNE) (31)
T V

D} 4 randw) = o uonp = \f al (Jo(w; X)) — k(W) (32)

In Egs. (23) to (32), functiong®, p!, ko, k1, Jo, Ly, Jo, J3 J4 and J. are explicitly
defined in Appendix (Ref.23, pages 368 to 370). The functions defined by Egs. (23) to
(32) depend on mean coefficients (or mean parameters) whiecthe mean coefficients of
the participating inertial momerﬂ_tfi(w), the mean rate of internal dampig’g(w), the mean
modal densityn’(w) and the mean equivalent coupling factgr(w) and their associated
deviation coefficients\’ | (w), AL ,(w), AL 5(w) and AL ,(w) respectively. Mean coefficient
Eﬁ(w) is described by the dimensionless mean coeffiaié(t) which is such that

Tt

i) = (33
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in which Z¢ is an arbitrary reference inertial moment ajﬂid tz] 1S the measure oFT fuz
(equal toL,, or L,5). Itis assumed that a direct estimation of mean coefflc@f[(izs ) and
n’(w) can be obtained. Since the junction between glatef the master structure and fuzzy
substructuré is continuous, the fuzzy structure theory yietefs< 1. In order to construct
the generalized impedance matrix of plét¢ of the master structure coupled with its fuzzy
substructures, we use the Ritz-Galerkin method introduceSection I.A. The boundary
value problem defined by Eq. (18) is then solved by introdgiciormal modes defined by
Eq. (2) and their corresponding eigenfrequencies defindddoy(3). The finite dimension

approximation of field/,. is again denoted &3, and is written as

w x y Z QTB SOTB x y) . (34>

geBr

As in section I.A, we introduce the vect@, (w) such that

Qr(w) = {Qrp(w)}pes, (35)

and for all realv, vectorQ,.(w) is the solution of the complex matrix equation([Z,.(w)] +
[Zr fuz(w)]) Qr(w) = f,(w) in which [Z,(w)] is given by Eq. (5) andZ, s.(w)] is the
generalized impedance complex dense matrix such that

[Zrtuz(w)]ppr = [Zr meadw)]ap’ + [Zrrandw)]apr (36)
in which
2
iw [Zr,mear{w)]ﬁﬁ’ = Z{ WQSE mean(w) + Z"‘)Dr meard@) }
/=1
8907"[3’ 6‘:97“6
X/FZ 2 (s) S0 (s) ds (37)
r,fU
and
iw [Zy,rand(w) s’ = Z Z X 255] randw) + ZWDT] rand(w) }
(=1 j=1
(9(,07{-}/ &pTB
X /Fe on, (s) on, (s) ds . (38)

r,fuz
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B. Method for constructing the random response of the fuzzy tsucture

The coupling between the two plates of the master strucsweitten using Lagrange mul-

tipliers as in Section I.C. The generalized impedance mafrithe fuzzy structure is then

written as
iw([Zmas{w)] + [Zmeadw)] + [Zrandw)])  [Bmasi” Qmas(w) fmas(w)
[Bmasﬂ 0 Pmasl(w) N 0 ,
(39)
in which [Zmas(w)] is defined by Eq. (14), vect@mas{w) is such that
Qmas{w) = (Q1(w), Q2(w)) (40)

inwhichQ,.(w) is defined by Eq. (35Fmas{w) is the vector of the generalized coordinates of

the Lagrange multipliers related to the coupling betweertwo plates of the master structure

and where
[Zmearlw)] = {[Zngar(W)] [ZQ,mSar{w)J , <41)
[Zrand(w)] _ { [Zl,ra(r]ld<w)] [ZQJa(;d(w)] } , (42)

inwhich|[Z, meadw)] and[Z, rand(w)] are defined by Egs. (37) and (38) respectively. Equation

(39) can be rewritten as

[iW[Zdet(w)] + iW[Zrand(W>] [BmasaT :| [Qmasl(w) :| [fmasl(w) :|
= ;o (43)

[B masﬂ 0 Pmast(w ) 0

inwhich[Zge(w)] = [Zmas(w)]+[Zmeadw)] is @ deterministicimpedance matrix. The method
used to solve Eg. (43) is based on the use of the Neumann sgpasasion. Consequently,

we rewrite Eq. (43) as

o, [Zdet(w)] [Bmasa T

[Bmasﬂ 0 Pmast(w) 0

[Qmasl(w) ] [fmasl(w) - iw[Zrand(WﬂQmasl(w) ]
- ’ (44>

and the inverse matrix of the matrix appearing on the leftehside of Eq. (44) is denoted
as [Tye((w)] (if this matrix is not invertible due to redundant equatiamduced by multiple

connectivities in the master structure, then the methoskprted in Section I.C should be used
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to construc{Tyew)]; for the present reference complex structure, since théemsisucture

has only two plates, the matrix is invertible). We obtain sb&itionQnas{w) such that
Qmas{w) = [Toe(w)] (fmas{w) — iw[Zrand(w)]Qmas{w)) - (45)

Equation (45) is rewritten ag[/s] + iw[Tue(w)][Zrandw)])Qmas(w) = [Toet(w)]fmas(w)
in which [I4] is the identity matrix. An approximation of the inverse of tda ([/4] +
iw[Tged(w)][Zrandw)]) is calculated using Neumann'’s series expansion limitedderd® and
yields ([I4] + iw|[Tgedw)][Zrandw)]) ™ =~ [14] —I—Zi:l (—iw[Tdet(w)][Zrand(w)])k. Solution

Qmas{w) can be written as

Qmasl(w) = Qdet(w) + Qrand(w) ; (46)
in which
Qdet(w) = [Tdet(w)]fmasl(w) s (47)
Qrand(w) = r(alr)md(w) + Qgr)ld(w) ) (48)
with
Qland@) = —iw[Tuet@)][Zrand )] Quetw) (49)
Qi) = —iw[Tel )] [Zrand )] Qandw) - (50)

From Egs. (34), (35), (40), (46) to (50), we deduce that iniatpe, y) of plate(r) of the

master structure, the random response can be written as

Ur(w7x7y> - Ur,det(wvxuy) + Ur,rand(wv‘,ruy) ) (51>
16 16 16
1 2
Ur,rand(wv €z, y) = Z Uﬁ,é{rand(wv T, y) Xe+ Z Z UySé)E’,rand(w? €z, y) XeXo (52>
=1 (=10=1
in which X/ is the/-th coordinate of vectofX| ;,..., X] 4, ..., X3,). The mean value and

the variance ot/,.(w, z, y) are denoted a8{U, (w, z,y) } andVy, (w, x, y) respectively and

are defined by

E{Ur(wvxhy)} = Ur,det(waxuy) + E{Ur,rand(wvx7y>} 9 (53>
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and
Vo, (W, z,y) = E{|Up(w,2,y) — E{Ur(w,z,9)}[*} . (54)

In order to get more information about the random responsd i83,.(w, z,y) = 20log;,
(|Ur(w, z,y)|) of plate(r) expressed in dB, we construct the envelope of this randoponse

in dB introducing the mean response level in dB
dB; (w,z,y) = 20logyo (| E{Ur(w, 2, y)}]) (55)
The upper envelopéB;! (w, x, y) is then defined by
P(dB; (w,2,y) < dBy(w,z,y) < dB] (w,2,y)) = P. (56)
in which the lower envelope is such that
dB; (w,z,y) = 2dB.(w,z,y) —dBf (v, z,y) . (57)

In Fig. 6, the gray region represents the confidence regi@inaeteby the upper and lower
envelopes of the frequency-response-function modulugsponding to a given probability

level P.. We construct the upper envelope using Chebychev’s inggudiich can be written

as
VU ("‘J?x,y)
_ > < _Zr\TV I
P(|Ur(w,x,y) E{UT(W,IE,y)H = ar(w,x,y)) — ar(w7x,y>2 ) (58>
in which Vi (w, z, y) is given by Eq. (54). Inequality (58) yields
P(dB; (w,2,y) < dB(w,z,y) < dB} (w,z,y)) > Pe (59)
in whichdB, (w, x, y) is defined by Eq. (57) and
dBj—("‘)? z, y) =20 1Og10(‘E{UT(w7 T, y)}‘ + aT<w7 z, y)) ’ (60)
in which a,.(w, x, y) is such that
Pc —1_ VUT ("‘J?x,y) (61)
a"f’(w7 aj? y)2

The confidence region calculated using the envelope defn&db(59) is overestimated by
comparison with a calculation made using Eq. (56), but theutation is faster due to the

use of an explicit numerical calculation 6{{ U, (w, z,y)} andVy, (w, z,y).
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lII. ESTIMATION OF FUZZY STRUCTURE MEAN PARAMETERS

The fuzzy impedance law mean parametersandy’ of the fuzzy substructures introduced
in Section II.A have to be estimated. Concerning mean pae&mé, we know thai!, < 1
due to the continuous junctions. A sensitivity analysishwispect to this mean parameter

was performe#f and showed that the frequency-independent values
a1 =ai =a; =a3 =0.005 , (62)

were a good approximation. Concerning mean parametewe use the statistical energy

approach introduced in Ref. 24 but using the following casictior?®

)= (< Tgedtini0) > — <S50 > ) (63)
r=1

in whichy = (v1,v2,vd,13); < 1L, q4iss(t; »;0) > is the mean power dissipation in plate
(r) of the master structure of the fuzzy structure, calculag#dgithe fuzzy structure model;
< IM354(t) > isthe mean power dissipation in plaig of the master structure of the reference
complex structure, estimated using statistical energlyaisaapplied to the reference complex
structure. These mean power dissipations are calculateal [fmited band time-stationary
stochastic excitation force applied to the master streétuiConsequently, the estimatior
of v is given by solving the following optimization probléfn

J7) =min () (64)

inwhichy > 0means/{ > 0,v2 > 0,v5 > 0andv3 > 0. The optimization problem defined
by Eqg. (64) is not easy to solve because cost funcfiesmnot convex and each evaluation of
J(¥) needs an evaluation ef II,. giss(Z; ¥; 0) >. Consequently, we develop&dan algorithm
with two main steps. In the first step, a neighborh@bdontaining solution* is constructed
using a random search algorithm. Dom@&its described by the polar coordinates) such

that

0
Yy=p ) 65
ol (95)
and is defined by
D = {p €]pmin; Pmax[; 0 € [0, 1]4} . (66)
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The random search method is performed using a logarithraie $or variablep. In Fig. 7,
the gray region illustrates thP region dimension 2. In the second step, the optimization

problem defined by Eq. (64) is rewritten as

J(v") = min J(v) (67)

and is solved using Sequential Quadratic Programfi(§QP).

IV. VALIDATION
A. Description of the fuzzy structure modeling the referene complex structure

The frequency band of analysis is=B[0, 1000] Hz. Band B is written as the union of
10 frequency sub-bands with a bandwidth df0 Hz. Since the plate damping rate and
the oscillator damping rates of each complex substructwequal ta).003, the mean rate
of internal damping of each fuzzy substructure is taken etpa.003 over band B. The
mean modal densities of the fuzzy substructures are equbktmean modal densities of
the systems constituted of the plates coupled with theach#d oscillators. They are taken
as constant over each frequency sub-band and are suchithatnl = 0.393 s/rad and
n? = n3 = 0.388 s/rad. The mean equivalent coupling factors of the fuzzyssubtures
are such thatl = o = ol = a3 = 0.005 and are constant over band B. The arbitrary
reference inertial moments of the fuzzy substructuresach thatZ; = 7 = 8.85 kgxm?
andZ? = 72 = 4.925 kgxm?. Each mean coefficient of the participating inertial moment
of a fuzzy substructure is taken as constant over each fnegusub-band. These mean
coefficients are estimated using the method presented tro8éld. The values obtained for
vl >0,v2 >0,v > 0andy3 > 0, expressed ifog, , are presented in Fig. 8 as a function

of the frequency.

B. Mean response

We consider the mean response of the fuzzy structure withdaasiation coefficients. Figures
9 to 11 show the modulus (in dB) of the frequency responsetiuméor the acceleration at
pointsxg, X; andxs of the master structure; the thin solid lines represent &spanse of
the reference complex structure and the thick solid linpsagent the mean response of the
fuzzy structure. It can be seen that the fuzzy structure’amiesponse with zero deviation

coefficients gives a good representation of the referencglEx structure response.
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C. Envelopes

We consider the envelopes of the fuzzy structure resportheanzero deviation coefficients.
The deviation coefficients associated with the particigatnertial moments and the modal
densities are nonzero and are takel\ps = A7 | = X5 = A5, = Aj3 = A3 = Ay 3 =
X33 = 0.3 whereas those associated with internal damping rates amdaéent coupling
factors are taken equal to zekQ, = A\f, = Ay, = A5, = Aj, = Af , = A5 4 = A3, = 0.
Figures 12 to 14 show the modulus (in dB) of the frequency aese function for the
acceleration at pointsy, x; andx, of the master structure; the thick solid lines represent
the response of the reference complex structure and theegan represents the confidence
region defined by the upper and lower envelopes predictetéfuizzy structure theory and
corresponding to a probability level equal to 0.95. It carsben that the responses of the
reference complex structure belong to to this confidendeme@onsequently, the prediction
is satisfactory and this example validates the fuzzy stiredtheory for continuous junctions

(line-couplings).

V. CONCLUSION

This paper constitutes a first validation of the fuzzy suuetheory for continuous junctions
(line-couplings) between the master structure and theyfgzibstructures. In particular,
the capability of this theory to model fuzzy substructuresstituted of local modes and
equipment should be noted. The mean response functionlai@dwy the fuzzy structure
theory with zero deviation coefficients gives a good repreg®n of the reference complex
structure response and calculation of the envelopes witkero deviation coefficients based
on the use of a second-order Neumann series expansion abhgdbleg’s inequality is very
efficient. In addition, we have introduced a new cost funcétbiowing estimation of the fuzzy
structure parameters and we have proved that the staltistieagy approach proposed in this
procedure is very efficient. This procedure for estimatimg fuzzy structure parameters,

validated by numerical simulation, opens the field to experital identifications.

APPENDIX: DEFINTIONS FOR THE FUNCTIONS IN EQS. (23) TO (32)
Functionp®(w; \!) is defined by
pr(wiND) = (af — 1) ko(wi ) +ap J5(wiX)
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ro(w; NY) is given by
ro(wiNy) = [waf] ™+ [120° {nf )P (1 - A1)
functionp? (w; \%) is defined by
pl(wiND) = (1= ap) w1 (Wi X)) +ap Jo(wiXy)

k1 (w; ) is given by
K1 (w;NE) = 4§ﬁ [T wnf]™?

Forx € {0,1,2,3,4,5}, functions.J . (w; X\?) are defined by

(wiN) = / dy2/ dys Jx (H‘)\Zzyz), )\f,s ys)
with
Jo(ws,y) = (1 +y)[mV/1 — 2" Harctan Yy (w; 2, y) — arctan Y_(w; 2, y)]
Jl(wwxuy) = yJO(WwT,y) ;
Jo(wia,y) = (£) H(w - &) Jo(wiz,y)
Jg(bd,.’]?,y): [wﬂf’]_l o (1+y) [4 1—.’132]_1 ln[N(w,x,y)/D(w,x,y)] )
J4(W;x;y) = yJ3<w7$,y) )
J5(w,x,y) = (§ﬁ)_1('x _éf,) Jg(bd,.’]?,y)
FunctionY. (w; z, y) is defined by
Yi(w;z,y) = 0+ (w;y) + 22) [xv/1 — 22]71 |
in which
Or(wiy) =1 £7(wiy)* —1]/2

with
T(wiy) = 2wnl (1 +y)] ™

FunctionsN (w; z, y) andD(w; x, y) are defined by
N(w;z,y) = [Up(w;y) + Wi(w; 2, 9)|[U-(w;y) = W_(w;2,9)]
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D(w;z,y) = [Up(w;y) = Wi (ws 2, Y)[U—(ws y) + W_(w; z,y)]

in which
Us(w;y) =20+ (wsy) +1)

Wi(w;z,y) =2v1—22[1+7(w;y)]
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LEGENDS ACCOMPANYING EACH FIGURE

FIG. 1. Reference complex structure.

FIG. 2. Modulus (in dB) of the frequency response functiartiie acceleration at poimnt, of
the master structure: master structure not coupled witledh@plex substructures (thin solid
line); master structure coupled with the complex substmast (thick solid line).

FIG. 3. Modulus (in dB) of the frequency response functiartiie acceleration at poinj of
the master structure: master structure not coupled witkedhgplex substructures (thin solid
line); master structure coupled with the complex substmest (thick solid line).

FIG. 4. Modulus (in dB) of the frequency response functiartifie acceleration at point of
the master structure: master structure not coupled witledh@plex substructures (thin solid

line); master structure coupled with the complex substmast (thick solid line).
FIG. 5. Model of the reference complex structure by fuzzyctire theory.

FIG. 6. Confidence region defined by the upper and lower epesl@f the frequency-

response-function modulus corresponding to a given piibtydevel.

FIG. 7. Geometrical shape of the domain in which the solubibiine optimization problem
belongs.

FIG. 8. Dimensionless mean coefficiemtsn log;,: mean coefficient{ (thin solid line);
mean coefficient? (thin dashed line); mean coefficien (thick solid line); mean coefficient
v2 (thick dashed line).

FIG. 9. Modulus (in dB) of the frequency response functionthe acceleration at poirx,
of the master structure: response of the reference compigstsre (thin solid line); mean
response of the fuzzy structure (thick solid line).

FIG. 10. Modulus (in dB) of the frequency response functiantiie acceleration at poing
of the master structure: response of the reference compigstsre (thin solid line); mean
response of the fuzzy structure (thick solid line).

FIG. 11. Modulus (in dB) of the frequency response functianthie acceleration at poirg
of the master structure: response of the reference compigstsre (thin solid line); mean
response of the fuzzy structure (thick solid line).

FIG. 12. Modulus (in dB) of the frequency response functionthe acceleration at point

Xo of the master structure: response of the reference compiestsre (thick solid line);
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confidence region defined by the upper and lower envelopescped by the fuzzy structure

theory and corresponding to a probability level equal t&0.9

FIG. 13. Modulus (in dB) of the frequency response functionthe acceleration at point
X1 of the master structure: response of the reference compigstsre (thick solid line);
confidence region defined by the upper and lower envelopescped by the fuzzy structure

theory and corresponding to a probability level equal t&0.9

FIG. 14. Modulus (in dB) of the frequency response functionthe acceleration at point
Xy of the master structure: response of the reference complestsre (thick solid line);
confidence region defined by the upper and lower envelopescped by the fuzzy structure

theory and corresponding to a probability level equal t&0.9
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