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Abstract

We introduce an algorithm generating uniformly distributed random

alternating permutations of length n in time n log n.

1 The main result

An alternating permutation σ of {1, 2, . . . N} is a permutation such that

σ(1) > σ(2) < σ(3) > σ(4) . . .

Alternating permutations are a very classical topic in combinatorics. See for
instance the survey [ST] for numerous references. The basic result, which dates
back from the 19th century [A], states that if pN is the probability that a
permutation of {1, 2, . . . N} chosen uniformly at random is alternating, then

∑

N≥0

pNxN = sec x + tanx

The integers N !pN are called Euler numbers. The goal of this paper is to intro-
duce an algorithm generating random alternating permutations of {1, 2, . . . N}
in time N log N .

An alternative way to generate random alternating permutations is to use
Boltzmann sampling [DFLS]. In a general framework, this method constructs
random combinatorial objects of approximate size in linear time. However, to
get the exact size, one must use a rejection procedure and the complexity of the
algorithm increases. In the context of permutations, the average time to run
the algorithm is quadratic in the length of the permutation.
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Before describing our algorithm, we begin by a simple remark. Let Y =
(Y1, . . . YN ) be a sequence of distinct reals in [0, 1]. We can construct from Y
a permutation as follows. Let k1 ∈ {1, 2, . . . N} be the integer such that Yk1

is
minimal in {Y1, . . . YN} and put σ(k1) = 1. Then, let k2 ∈ {1, 2, . . . N} − {k1}
be the integer such that Yk2

is minimal in {Y1, . . . YN} − {Yk1
}, put σ(k2) = 2

and so on. To recover σ from Y , one can use a sorting algorithm.
If the sequence is alternating, that is, if

Y1 > Y2 < Y3 > Y4 . . .

then σ is alternating. Besides, if Y is chosen according to the Lebesgue mea-
sure on [0, 1]N+1, then σ is uniformly distributed over all permutations of
{1, 2, . . . N}. As a consequence, if Y is a random, uniform alternating sequence,
that is, if its density with respect to the Lebesgue measure on [0, 1]N+1 is

(1/pN )1{Y1>Y2<Y3>Y4...} (1)

then σ is uniformly distributed over all alternating permutations. Therefore, we
want to find an algorithm constructing a random, uniform alternating sequence.
Remark that with probability 1, all the reals in the sequence will be distinct.

Algorithm

Fix an integer N and let U1, U2, . . . UN be iid random variables, uniformly
distributed on [0, 1]. First, define a random sequence (X1, . . . , XN ) as follows:

• X1 = U1

• for n ∈ [1, N − 1],

Xn+1 = 1 −
2

π
arcsin

(

Un+1 sin(
π

2
Xn)

)

Next, put

αN =
sin(π

2
XN )

sin(π
2
X1)

(2)

and define the sequence Y as follows

• With probability 1/(αN + α−1

N ), put

Y = (X1, 1 − X2, X3, 1 − X4 . . .)

• With probability 1/(αN + α−1

N ), put

Y = (XN , 1 − XN−1, XN−2, 1 − XN−3 . . .)

• With probability 1 − 2/(αN + α−1

N ), start over.

Finally, recover a permutation from Y by randomized quicksort.
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Theorem 1 The algorithm described above yields a random alternating permu-

tation of {1, 2, . . . N}, uniformly distributed over all alternating permutations.

The rejection probability is bounded above, uniformly on N , by

E[1 − 2/(αN + α−1

N )] ≤
7

8

As a consequence, the average complexity is Θ(N log N).

The upper bound on the rejection probability is certainly not optimal, how-
ever, it is sufficient for our purpose. We now proceed to the proof of the theorem.

2 Proof of the result

First, let us observe that the random sequence X is a Markov chain. Let us
compute its transition probabilities. Let x ∈ [0, 1] and n ≥ 1. With probability
x, Un ≤ 1 − x and therefore, conditionally on Xn, with probability x,

Xn+1 ≥ 1 −
2

π
arcsin

(

(1 − x) sin(
π

2
Xn)

)

In other words, the right-hand side of the inequality above is the inverse of
Fn+1, where Fn+1 stands for the cumulative distribution function of Xn+1,
conditionally on Xn. Therefore Fn+1(x) = 0 for x ≤ 1−Xn and for x ≥ 1−Xn,

Fn+1(x) = 1 −
sin(π

2
(1 − x))

sin(π
2
Xn)

= 1 −
cos(π

2
x)

sin(π
2
Xn)

Differentiating, we find that the conditional density of Xn+1 given Xn is fXn
,

with

fx(y) = 1{y≥1−x}

(π

2

) sin(π
2
y)

sin(π
2
x)

To sum up, the transition probabilities of X are given by

Px(X2 ∈ dy) = fx(y)dy

where, as usual, Px denotes the probability for the Markov chain started at x.
As a consequence, the density of X with respect to the Lebesgue measure on
[0, 1]N+1 is

1{X2≥1−X1,X3≥1−X2,...}

(π

2

)N−1 sin(π
2
XN )

sin(π
2
X1)

= 1{X2≥1−X1,X3≥1−X2,...}

(π

2

)N−1

αN

with αN defined in (2). Likewise, the density of (XN , XN−1, XN−2, XN−3 . . .)
with respect to the Lebesgue measure on [0, 1]N+1 is

1{X2≥1−X1,X3≥1−X2,...}

(π

2

)N−1

α−1

N
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Now define a random sequence Z as follows. With probability 1/(αN + α−1

N ),
put

Z = (X1, X2, X3 . . .)

With probability 1/(αN + α−1

N ), put

Z = (XN , XN−1, XN−2, . . .)

Since Z is obtained either by keeping X or by taking its time reversal, its
density is a convex combination of the density of X and of the density of the
time-reversal of X. More precisely, the density of Z with respect to the Lebesgue
measure on [0, 1]N+1 is given by

1{Z2≥1−Z1,Z3≥1−Z2,...}

(π

2

)N−1
[

αN

αN + α−1

N

+
α−1

N

αN + α−1

N

]

= 1{Z2≥1−Z1,Z3≥1−Z2,...}

(π

2

)N−1

The total mass of the density is less than 1 since there is a positive probability
that Z is not defined. On the event that Z is not defined, start over until the
the process yields a sequence Z. Then almost surely, the procedure terminates
and yields a random sequence Z with density

1

QN

(π

2

)N−1

1{Z2≥1−Z1,Z3≥1−Z2,...}

where QN is the non-rejection probability

QN = E[2/(αN + α−1

N )]

Finally, the sequence Y in the algorithm is given by

Y = (Z1, 1 − Z2, Z3, 1 − Z4 . . .)

and the density of Y is

1

QN

(π

2

)N−1

1{Y1≥Y2≤Y3≥Y4...} (3)

which is exactly what we were aiming at. Therefore, producing a random per-
mutation from Y yields a random, uniform alternating permutation.

Let us prove the bound on the rejection probability. First, the invariant
probability measure of the Markov chain X is

µ(dy) = 2 sin2(
π

2
y)dy

Indeed,

∫ 1

0

µ(dx)fx(y) = 2

∫ 1

1−y

dx
π

2
sin(

π

2
x) sin(

π

2
y) = 2 sin2(

π

2
y) = µ(dy)
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The non-rejection probability can be expressed as

QN = E[2/(αN + α−1

N )] = 2E
sin(π

2
XN ) sin(π

2
X1)

sin2(π
2
XN ) + sin2(π

2
X1)

≥ E sin(
π

2
XN ) sin(

π

2
X1)

Write

E sin(
π

2
XN ) sin(

π

2
X1) =

∫ 1

0

dx

∫ 1

0

Px(XN ∈ dy) sin(
π

2
x) sin(

π

2
y)

≥

∫ 1

0

dx

∫ 1

0

Px(XN ∈ dy) sin2(
π

2
x) sin(

π

2
x) sin(

π

2
y)

=
1

2

∫ 1

0

µ(dx)

∫ 1

0

Px(XN ∈ dy) sin(
π

2
x) sin(

π

2
y)

=
1

2
Eµ sin(

π

2
X0) sin(

π

2
XN )

where Eµ stands for the expectation for the Markov chain started with initial
distribution µ. Since µ is the invariant measure, under Pµ, both X1 and XN

are distributed according to µ. In particular, if δ ∈ [0, 1] is the real such that
µ([0, δ]) = 1/3, then

Pµ(X1 ≥ δ, XN ≥ δ) ≥
1

3

On the event {X1 ≥ δ, XN ≥ δ}, we have sin(π
2
X1) ≥ sin(π

2
δ) and sin(π

2
XN ) ≥

sin(π
2
δ). Hence

Eµ sin(
π

2
X1) sin(

π

2
XN ) ≥

1

3
sin2(

π

2
δ)

Using the fact that, for x ∈ [0, 1], sin(π
2
x) ≥ x, we have δ ≥ δ′, where δ′ is the

real such that

2

∫ δ′

0

x2dx =
1

3

This gives δ ≥ 2−1/3 and a fortiori δ ≥ 2/3, which leads to the bound 7/8 in
the theorem.

Finally, notice that using randomized quicksort, we get the same complexity
on average as if we were using quicksort with a random, uniform permutation
(whereas we are dealing here with a random, uniform alternating permutation).
See [K].

3 Concluding remarks

Although this does not appear explicitely in the proof, the method used here is
based on the theory of quasistationary distributions for Markov chains. Indeed,
a random sequence on [0, 1] can be viewed as a Markov chain, and a random
alternating sequence is a submarkovian chain obtained from the initial Markov
chain by forbidding some transitions. Transforming this submarkovian chain
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into a Markov chain leads to the definition of X. For an introduction to qua-
sistationary distributions in the case when the state space is discrete, see for
instance [S].

The sequence (X1, 1 − X2, X3, 1 − X4 . . .) is, loosely speaking, a sequence
conditioned to be alternating forever. If we want to obtain a finite-length alter-
nating sequence, we get the bias αN . To eliminate this bias, we need to use a
rejection procedure.

When N → ∞, the law of XN converges to the invariant measure and
XN is asymptotically independent of X1. Therefore, the rejection probability
converges to

1 − 4

∫ 1

0

dx

∫ 1

0

dy
sin(π

2
x) sin3(π

2
y)

sin2(π
2
x) + sin2(π

2
y)

Alternatively, comparing (1) with (3), we see that (2/π)NQN = pN . Moreover,
it is known that for large N ,

pN ∼
4

π

(

2

π

)N+1

(see Example IV.35 in [FS]) whence QN → 8/π2 as N → ∞.

This method inpired by quasistationary distributions may be adapted to
generate more general types of permutations.
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