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bFaculté de Mathématiques, laboratoire AMNEDP, U.S.T.H.B, Algiers

(Received 00 Month 200x; in final form 00 Month 200x)

This article is devoted to prove a stability result for an absorption coefficient for a free
transport equation in a smooth domain Ω. The result is obtained using a global Carleman
estimate with only one observation on a part of the boundary.
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1. Introduction

In this paper, we deal with the question of the identification of an absorption
coefficient for a free transport equation in a bounded domain using Carleman
estimates.
Some systems arising in Mathematical Biology, such as taxis-diffusion-reaction
model, involve the radiative transport equation without scattering term (see [15]
and the references therein). This equation describes the evolution of the density of
the organism (cells, predators, parasitoids) in general. This paper is the first step
in the study of inverse problems linked to angiogenesis process and this is why we
do not consider the transport equation with an integral term.

Let Ω be a bounded open connected set in RN whose boundary ∂Ω = Γ is assumed
to be of class C2. We denote ΩT := Ω × (0, T ). Let u(x, t) ∈ R be the density of
particles flow at time t > 0 and position x ∈ RN with velocity A = A(x). Let ν(x)
be the outward normal unit vector to ∂Ω at x ∈ ∂Ω. We define Γ± as

Γ+ = {x ∈ ∂Ω ; ν(x) ·A > 0} and Γ− = {x ∈ ∂Ω ; ν(x) ·A ≤ 0}.

Note that Γ− represents the inflow part and Γ+ the outflow part.

We consider the following problem∂tu(x, t) +A(x) · ∇u(x, t) + p(x)u(x, t) = 0, in Ω× (0, T ),
u(x, t) = h(x, t), on Γ− × (0, T ),
u(x, 0) = u0(x), in Ω.

(1.1)

∗Corresponding author. Email: patricia.gaitan@univ-amu.fr

ISSN: 0003-6811 print/ISSN 1563-504X online
c© 2013 Taylor & Francis
DOI: 10.1080/0003681YYxxxxxxxx
http://www.informaworld.com



May 13, 2013 17:16 Applicable Analysis AA-Transport-V2

2

In the above problem, we suppose p, which is an absorption coefficient, to be in
L∞(Ω), A ∈ (W 1,∞(Ω))N and (h, u0) corresponds to the the boundary and the
initial data lying in L2(Γ− × (0, T ))× L2(Ω).
We also define the space W as follows:

W =
{
u ∈ L2(Ω× (0, T ));

∂u

∂t
+A · ∇u ∈ L2(Ω× (0, T ))

}
.

It is well-known that, under the previous assumptions, (1.1) admits an unique so-
lution which belongs to the space W and we have u ∈ C([0, T ];L2(Ω)) (see for
example [12]).
Moreover, if u0 ∈ C1(Ω), h ∈ C1([0, T ];L2(Γ−)) and satisfies the following com-
patibility conditions

u0 = h|t=0, ∂th|t=0 +A · ∇u0 + V u0 = 0 on Γ−,

then

u ∈ C1([0, T ];L2(Ω)), A · ∇u ∈ C([0, T ];L2(Ω)).

Note that, from the maximum principle, if u0 ≥ 0 then u ≥ 0 (see [12]).

Throughout this paper, we will denote by C a generic positive constant.

Our problem can be stated as follows:
Is it possible, under the previous assumptions, to determine the absorption
coefficient p(x) from the measurement of (∂tu)|Γ+×(0,T ) ?

The method based on Carleman estimates (see [14], [30])uses stronger geometrical
assumptions, and in particular the following one:

Geometric condition:

∃ x0 /∈ Ω, such that Γ+ ⊃ {x ∈ ∂Ω, (x− x0) · ν(x) ≥ 0}, (1.2)

Below, we define the weight function we shall consider for the Carleman estimates.

Weight functions: Assume that Γ+ satisfies (1.2) for some x0 /∈ Ω. Let
β ∈ (0, 1) and define for (x, t) ∈ Ω× (0, T )

ψ(x, t) = |x− x0|2 − βt2 +M, and for λ > 0, ϕ(x, t) = eλψ(x,t) (1.3)

where M is choosen such that ψ > 0 in Ω× (0, T ) and β satisfies

T >
1√
β

sup
x∈Ω
|x− x0|. (1.4)

Our main result is the following inequality:

There exists a constant C > 0 such that

||(p− p̃)(x)||L2(Ω) ≤ C||(∂tu− ∂tũ)(x, t)||L2(Γ+×(0,T )).



May 13, 2013 17:16 Applicable Analysis AA-Transport-V2

3

where u (resp. ũ) is a solution of (1.1) associated to (p, h, u0) (resp. (p̃, h, u0)).

More precisely, see Theorem 3.1, Section 3.

The method of Carleman estimates has been introduced in the field of inverse prob-
lems by Bukhgeim and Klibanov, (see [7, 8, 17, 18]). Carleman estimate techniques
are presented by Klibanov and Timonov in [21] for standard coefficients inverse
problems both linear and nonlinear partial differential equations. These methods
give a local Lipschitz stability around a single known solution. We can also cite
some recent reviews on inverse problems and Carleman estimates by Choulli [11],
Klibanov [16] and Yamamoto [29].
The transport equation plays an important role in physics. It includes areas such
neutron transport, medical imaging and optical tomography see for example [2],
[13], [9], [24]. Mathematical studies on the direct problem of (1.1) have been de-
velopped several times, for example, see [12], [23].
To our knowledge, there are some results in the study of inverse problems for the
transport equation with an integral term. In [10], Choulli and Stefanov determine
an absorption coefficient from the knowledge of the Albedo operator which gives
a relationship between the two quantities u|Γ+ and u|Γ− . Their approach is based
on the study of the singularities of the kernel of that operator.
The uniqueness and existence for coefficient inverse problems for the non stationary
transport equation have been obtained by Prilepko and Ivankov [26] in a special
form of coefficient using the overdetermination at a point. Some results on the
overdetermined inverse problem for the transport equation can be found in the
works of Tamasan [28] and Stefanov [27].
Stability of determining some coefficients is proved by Bal and Jolivet by the an-
gularly average Albedo operator in [3] and by the full Albedo operator in [4]. In
these papers, the authors have to make infinitely many measurements, the input-
output can be limited to the boundary and the initial value can be zero. Bal in [1]
and Stefanov in [27] have given a review of recent results on the inverse problem of
the linear transport equation. Differents reconstructions are considered; uniqueness
and stability results are proved in stationnary and non-stationnary case.
The approach of Klibanov and Pamyatnykh [20] is different from [3], [4]; indeed
they measure a single output on Γ+× (0, T ) with given initial value and boundary
data on Γ− × (0, T ).
The inverse problem of reconstructing an absorption coefficient for the transport
equation from available boundary measurements using Carleman estimates has
been studied by Klibanov and Pamyatnykh in [20] and Machida and Yamamoto in
[25]. In comparison with [25], we consider in our work the case when the velocity
depends on the spatial variable x. Also, we use two large parameters instead of
one in the Carleman estimate and energy estimates are needed for the proof of
the stability result.
A Lipschitz stability estimate for the transport equation was also established by
Klibanov and Pamyatnykh in [19] where the authors give a pointwise Carleman
estimates. In control theory, such Carleman estimates have been used in order to
obtain exact controlability by Klibanov and Yamamoto in [22].

The article is organized as follows. In Section 2 we establish a global Carleman
estimate adapted to our problem and we prove some energy estimates. Section 3
is dedicated to the stability result for the absorption coefficient p.
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2. Carleman estimates

In this section we will prove two Carleman estimates, one for the forward problem
and another one for the backward problem.
We assume that the weight function ψ satisfies:

|(∂tψ +A · ∇ψ)(x, t)| 6= 0, ∀(x, t) ∈ Ω× [−T, T ]. (2.1)

Let us give an example in which condition (2.1) is satisfied :
Suppose that 0 /∈ Ω and A(x) = x. Then (2.1) is satisfied if

T <
1

β
min

Ω
|x|2.

On the other hand, condition (1.4) requires

T >
1√
β

max
Ω
|x|.

Therefore, we obtain the following requirement for the parameter β

√
β < min

Ω
|x|2 ·

(
max

Ω
|x|
)−1

.

We first give a Carleman estimate for the forward problem.

Proposition 2.1: We assume that p ∈ L∞(Ω). Let ψ be the weight function
defined by (1.3), satisfying (2.1). There exists s0, λ0 and a positive constant C =
C(s0, λ0,Ω, T,Γ) such that for all s > s0, λ > λ0

‖P1(esϕv)‖L2(ΩT ) + sλ2

∫ T

0

∫
Ω
ϕ|v|2e2sϕdxdt (2.2)

≤ C
∫ T

0

∫
Ω
|Lv|2e2sϕdxdt+ Csλ

∫ T

0

∫
Γ+

ϕ|v|2A · νe2sϕdσdt, (2.3)

for all v such that v ∈ L2(Ω×(0, T )) satisfying Lv := ∂tv+A ·∇v ∈ L2(Ω×(0, T )),
v|Γ− = 0 and v(·, 0) = v(·, T ) = 0, where P1 is defined by (2.4) and (2.5).

Proof of Proposition 2.1 We set, for s > 0, w(x, t) = esϕ(x,t)v(x, t) and we
introduce the operator

Pw = esϕL(e−sϕw).

Then we have

Pw = ∂tw +A · ∇w − sλϕ(∂tψ +A · ∇ψ)w := P1w + P2w (2.4)

where

P1w = ∂tw +A · ∇w and P2w = −sλϕ(∂tψ +A · ∇ψ)w. (2.5)
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Then

||Pw||2L2(ΩT ) = ||P1w||2L2(ΩT ) + ||P2w||2L2(ΩT ) + 2(P1w,P2w)L2(ΩT ). (2.6)

We first look for a lower bound of 2(P1w,P2w)L2(ΩT ). We essentially use integration
by parts and the fact that w(·, 0) = w(·, T ) = 0 and w|Γ− = 0.

2(P1w,P2w)L2(ΩT ) = 2

∫ T

0

∫
Ω

(∂tw +A · ∇w)(−sλϕ(∂tψ +A · ∇ψ)w)dxdt

= −2sλ

∫ T

0

∫
Ω

w∂twϕ(∂tψ +A · ∇ψ)dxdt− 2sλ

∫ T

0

∫
Ω

w∇w ·Aϕ(∂tψ +A · ∇ψ)dxdt

= −sλ
∫ T

0

∫
Ω

∂t(w
2)ϕ(∂tψ +A · ∇ψ)dxdt− sλ

∫ T

0

∫
Ω

∇(w2) ·Aϕ(∂tψ +A · ∇ψ)dxdt

= I1 + I2.

A direct calculation leads to

I1 = sλ2

∫ T

0

∫
Ω

w2ϕ∂tψ(∂tψ +A · ∇ψ)dxdt+ sλ

∫ T

0

∫
Ω

w2ϕ∂t(∂tψ +A · ∇ψ)dxdt.

I2 = sλ2

∫ T

0

∫
Ω

ϕ∇ψ ·A(∂tψ +A · ∇ψ)w2dxdt+ sλ

∫ T

0

∫
Ω

ϕ∇(A(∂tψ +A · ∇ψ))w2dxdt

−sλ
∫ T

0

∫
Γ+

w2A · ν(∂tψ +A · ∇ψ)ϕdσdt.

By gathering the higher order terms and the lower order terms according to the
powers of s and λ together, we obtain

sλ2

∫ T

0

∫
Ω

w2ϕ(∂tψ +A · ∇ψ)2dxdt− sλ
∫ T

0

∫
Γ+

w2A · ν(∂tψ +A · ∇ψ)ϕdσdt

+ sλ

∫
Ω

∫ T

0

w2ϕ
(
∂2
t ψ + 2A · ∇∂tψ + |A|2∆ψ +∇ ·A(∂tψ +A · ∇ψ)

)
dxdt = 2(P1w,P2w)L2(ΩT ).

We focus on the dominating term (higher powers in s and λ), we want it to be
positive. Using the regularity assumptions on ψ and A and condition (2.1), we get∫ T

0

∫
Ω
|P1w|2dxdt+ sλ2

∫ T

0

∫
Ω
ϕw2dxdt ≤ C

∫ T

0

∫
Ω
|Pw|2dxdt+ Csλ

∫ T

0

∫
Ω
ϕw2dxdt

+ Csλ

∫ T

0

∫
Γ+

w2A · νϕdσdt.

For large s > 0 and λ > 0, the last integral of the right hand side is absorbed by
the dominating term in sλ2 of the left hand side, it follows∫ T

0

∫
Ω
|P1w|2dxdt+ sλ2

∫ T

0

∫
Ω
w2ϕdxdt ≤ C

∫ T

0

∫
Ω
|Pw|2dxdt+ Csλ

∫ T

0

∫
Γ+

w2A · νϕdσdt.

Going back to v, we conclude the proof.
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Now, we give the Carleman estimate for the backward problem.

Proposition 2.2: We assume that p ∈ L∞(Ω). Let ψ be the weight function
defined by (1.3), satisfying (2.1). There exists s0, λ0 and a positive constant C =
C(s0, λ0,Ω, T,Γ) such that for all s > s0, λ > λ0

sλ2

∫ T

0

∫
Ω
ϕ|v|2e2sϕdxdt ≤ C

∫ T

0

∫
Ω
|Lbackv|2e2sϕdxdt

+Csλ

∫ T

0

∫
Γ+

ϕ|v|2A · νe2sϕdσdt.

(2.7)

for all v such that v ∈ L2(Ω × (0, T )) satisfying Lbackv := −∂tv + A · ∇v ∈
L2(Ω× (0, T )), v|Γ− = 0 and v(·, 0) = v(·, T ) = 0.

Proof of Proposition 2.2
In the same way as for the forward problem, we estimate the scalar product
(P1,backw,P2,backw)L2(ΩT ), we obtain

2(P1,backw,P2,backw)L2(ΩT ) = sλ2

∫ T

0

∫
Ω
w2ϕ(∂tψ −A · ∇ψ)2dxdt

+sλ

∫ T

0

∫
Ω
w2ϕ(∂2

t ψ − 2A · ∇ψ + |A|2∆ψ −∇ ·A(∂tψ −A · ∇ψ))dxdt

+sλ

∫ T

0

∫
Γ+

w2A · ν(∂tψ −A · ∇ψ)ϕdσdt.

In this case, we do not know the sign of ∂tψ−A · ∇ψ, we can only say, from (2.1),
that ∂tψ −A · ∇ψ 6= 0. So, we have

sλ2

∫ T

0

∫
Ω
w2ϕdxdt ≤

∫ T

0

∫
Ω
|Pbackw|2dxdt+ Csλ

∫ T

0

∫
Γ+

w2A · νϕdσdt.

Going back to v, we get (2.7).

Now with the two Carleman estimates (2.2) and (2.7), we give the following esti-
mate we shall use for the stability result.

Proposition 2.3: We assume that p ∈ L∞(Ω). Let ψ be the weight function
defined by (1.3), satisfying (2.1). We set

Â(x, t) =

{
A(x) if t ∈ (0, T ),
−A(x) if t ∈ (−T, 0).

(2.8)

Then, there exists s0, λ0 and a positive constant C = C(s0, λ0,Ω, T,Γ) such that
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for all s > s0, λ > λ0

‖P1(esϕv)‖L2(Ω×(−T,T )) + sλ2

∫ T

−T

∫
Ω
ϕ|v|2e2sϕdxdt ≤ C

∫ T

−T

∫
Ω
|Lv|2e2sϕdxdt

+Csλ

∫ T

−T

∫
Γ+

ϕ|v|2Â · νe2sϕdσdt,

(2.9)

for all v such that v ∈ L2(Ω × (−T, T )) satisfying Lv := ∂tv + Â · ∇v ∈ L2(Ω ×
(−T, T )), v|Γ− = 0 and v(·,−T ) = v(·, T ) = 0.

3. Stability result

In this section, we give a stability and a uniqueness result for the absorption co-
efficient p(x). In the perspective of numerical reconstruction, such problems are
ill-posed and thus, the stability results are important. For the proof of our main
result, we use both local and global Carleman estimates and energy estimates.
Such weighted energy estimates have been proven in [5] for the wave equation in a
bounded domain.

Theorem 3.1 : Let u (resp. ũ) be a solution of (1.1) associated to (p, h, u0)
(resp. (p̃, h, u0)). Let ψ be the weight function defined by (1.3), satisfying (2.1).
Then, there exists a constant C > 0 such that∫

Ω
|(p− p̃)(x)|2dx ≤ C

∫ T

0

∫
Γ+

|(∂tu− ∂tũ)(x, t)|2dσdt

Proof of Theorem 3.1 For the proof of our main result, we will proceed in
several steps.

Step 1. We linearize our problem. We set U = u − ũ and we extend ∂tU
as follows :

Y (x, t) =

{
∂tU(x, t) t > 0,
∂tU(x,−t) t < 0.

Then Y is solution of∂tY + Â(x, t) · ∇Y + p(x)Y = (p̃− p)(x)∂tũ in Ω× (−T, T ),
Y (x, t) = 0 on Γ− × (−T, T ),
Y (x, 0) = (p̃− p)(x)u0(x) in Ω.

(3.1)

where Â is defined by (2.8).

Step 2. Since Y does not satisfy the required hypothesis Y (·,−T ) = Y (·, T ) = 0,
in order to apply Proposition 2.3, we introduce a cut-off function χ ∈ C∞c (R)
such that 0 ≤ χ ≤ 1. We choose η ∈ (0, T ) such that ψ(x, t) ≤ C ≤ ψ(x, 0),
∀t ∈ (−T,−T + η) ∪ (T − η, T ) and we define

χ(t) =

{
1, if −T + η ≤ t ≤ T − η,
0, if t ≤ −T or t ≥ T.
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We set Ỹ = χY . Therefore, we can apply the Carleman estimate (2.9) to Ỹ which
is the solution to the following problem

∂tỸ + Â(x, t) · ∇Ỹ + p(x)Ỹ = χLY + Y ∂tχ in Ω× (−T, T ),

Ỹ (x, t) = 0 on Γ− × (−T, T ),

Ỹ (x,−T ) = Ỹ (x, T ) = 0 in Ω.

(3.2)

We obtain

‖P1(esϕỸ )‖L2(Ω×(−T,T )) + sλ2

∫ T

−T

∫
Ω
ϕ|Ỹ |2e2sϕdxdt ≤ C

∫ T

−T

∫
Ω
|χLY + Y ∂tχ|2e2sϕdxdt

+Csλ

∫ T

−T

∫
Γ+

ϕ|Ỹ |2Â · νe2sϕdσdt.

Note that supp ∂tχ ⊂ (−T,−T +η)∪ (T −η, T ), then we get the following estimate
for Y

‖P1(esϕY )‖L2(Ω×(−T+η,T−η)) + sλ2

T−η∫
η

∫
Ω

ϕ|Y |2e2sϕdxdt ≤ C
∫ T

0

∫
Ω

|LY |2e2sϕdxdt

+Csλ

∫ T

−T

∫
Γ+

ϕ|Ỹ |2Â · νe2sϕdσdt+ C

−T+η∫
−T

∫
Ω

|Y |2e2sϕdxdt+ C

T∫
T−η

∫
Ω

|Y |2e2sϕdxdt.

(3.3)
Step 3. Here, we want to give an estimation of the last two integrals of the right
hand side of (3.3) by the integral of the left hand side of the same inequality. The
aim is to absorb the last two terms in the right hand side of (3.3) by the left hand
side, for s large enough. In order to do that, we establish some energy estimates.
First, we fix λ = λ0 and use the fact that ϕ is bounded from below by 1 and from
above by some constants depending on λ. Then, we define the following weighted
energy:

E(t) =
1

2

∫
Ω
|Y |2e2sϕdx.

• Estimation of

T∫
T−η

∫
Ω

|Y |2e2sϕdxdt

We calculate

dE

dt
= s

∫
Ω
∂tϕ|Y |2e2sϕdx+

∫
Ω
|Y |∂tY e2sϕdx

= s

∫
Ω
∂tϕ|Y |2e2sϕdx+

∫
Ω

(LY − Â · ∇Y )Y e2sϕdx.

Then, we have

dE

dt
− s

∫
Ω
∂tϕ|Y |2e2sϕdx+

1

2

∫
Ω
e2sϕÂ · ∇(|Y |2)dx =

∫
Ω
Y LY e2sϕdx.
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After integration by parts, we get

dE

dt
− s

∫
Ω

(∂tϕ+∇ϕ · Â)|Y |2e2sϕdx+
1

2

∫
Γ+

Â · ν|Y |2e2sϕdσ

=

∫
Ω
Y LY e2sϕdx+

1

2

∫
Ω
∇ · Â|Y |2e2sϕdx.

(3.4)

Moreover for all large s > 0, since −(∂tϕ+∇ϕ · Â) ≥ c > 0, we obtain

dE

dt
+ sc

∫
Ω
|Y |2e2sϕdx ≤

∫
Ω
Y LY e2sϕdx. (3.5)

Using the formula 2ab ≤ εa2 + b2

ε with ε = sc, we estimate the right hand side as
follows: ∣∣∣ ∫

Ω
Y LY e2sϕdx

∣∣∣ ≤ 1

2
sc

∫
Ω
|Y |2e2sϕdx+

1

2sc

∫
Ω
|LY |2e2sϕdx.

Substituing this estimate in (3.5), we have

dE

dt
+ scE(t) ≤ 1

2sc

∫
Ω
|LY |2e2sϕdx.

On the other hand, for t ∈ (T − η, T ), using the Gronwall lemma, we get

E(t) ≤ e
∫ t
T−η −csdτ

(
E(T − η) +

∫ t

T−η

1

2sc

∫
Ω
e2sϕ(τ)|LY (τ)|2dxdτ

)

≤ e−sc(t−(T−η))E(T − η) +
esc(T−t−η)

2sc

∫ t

T−η

∫
Ω
e2sϕ(τ)|LY (τ)|2dxdτ

≤ e−sc(t−(T−η))E(T − η) +
1

2sc

∫ T

T−η

∫
Ω
e2sϕ(τ)|LY (τ)|2dxdτ.

Integrating this relation for t between T − η and T , we obtain:∫ T

T−η
E(t)dt ≤ E(T−η)

∫ T−η

T
e−sc(t−(T−η))dt+

∫ T

T−η

1

2sc

∫ T

T−η

∫
Ω
e2sϕ(τ)|LY (τ)|2dxdτdt

≤ E(T − η)

∫ T−η

T
e−sc(t−(T−η))dt+

η

2sc

∫ T

−T

∫
Ω
e2sϕ|LY |2dxdt,

and thus ∫ T

T−η
E(t)dt ≤ C

s
E(T − η) +

C

s

∫ T

−T

∫
Ω
e2sϕ|LY |2dxdt. (3.6)

Now, we want to estimate E(T − η) by E(τ) for τ ∈ (η, T − η). We use (3.4) and
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we integrate between τ and T − η, this leads to∫ T−η

τ

dE

dt
dt+

1

2

∫ T−η

τ

∫
Γ+

Â · ν|Y |2e2sϕdσdt

=

∫ T−η

τ
s

∫
Ω

(∂tϕ+ Â · ∇ϕ)|Y |2e2sϕdxdt+
1

2

∫ T−η

τ

∫
Ω
∇ · Â|Y |2e2sϕdxdt

+

∫ T−η

τ

∫
Ω
Y LY e2sϕdxdt.

Then, using the Cauchy-Schwarz inequality, we have∫ T−η

τ

dE

dt
dt+

1

2

∫ T−η

τ

∫
Γ+

Â · ν|Y |2e2sϕdσdt

≤ Cs
∫ T−η

τ

∫
Ω
|Y |2e2sϕdxdt+

1

2
sc

∫ T−η

τ

∫
Ω
|Y |2e2sϕdxdt+

1

2sc

∫ T−η

τ

∫
Ω
|LY |2e2sϕdxdt.

It follows that

E(T − η)− E(τ) ≤ Cs
∫ T−η

η

∫
Ω
|Y |2e2sϕdxdt+

C

s

∫ T

−T

∫
Ω
|LY |2e2sϕdxdt.

Integrating between η and T − η, we obtain, for s > 0 sufficiently large,

E(T − η) ≤ Cs
∫ T−η

η
E(t)dt+

C

s

∫ T

−T

∫
Ω
|LY |2e2sϕdxdt.

(3.7)

Finally, thanks to (3.6) and (3.7), we obtain

∫ T

T−η

∫
Ω
|Y |2e2sϕdxdt ≤ C

∫ T−η

η

∫
Ω
|Y |2e2sϕdxdt+

C

s

∫ T

−T

∫
Ω
e2sϕ|LY |2dxdt.

(3.8)

• Estimation of

−T+η∫
−T

∫
Ω

|Y |2e2sϕdxdt

Let t be in (−T,−T + η). We would like to obtain the same result as previously.
Therefore, we make the change of variables t → −t, we introduce Yback(x, t) =
Y (x,−t) and apply the above estimates to Yback. Thus, (3.6), (3.7) coincide with
the following ones:

∫ −T+η

−T
E(t)dt ≤ C

s
E(−T + η) +

C

s

∫ T

−T

∫
Ω
e2sϕ|LY |2dxdt. (3.9)
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E(−T + η) ≤ Cs
∫ T−η

−T+η
E(t)dt+

C

s

∫ T

−T

∫
Ω
|LY |2e2sϕdxdt. (3.10)

Finally, thanks to (3.9) and (3.10), we obtain∫ −T+η

−T

∫
Ω
|Y |2e2sϕdxdt ≤ C

∫ T−η

−T+η

∫
Ω
|Y |2e2sϕdxdt+

C

s

∫ T

−T

∫
Ω
e2sϕ|LY |2dxdt.

(3.11)
Now, using (3.8) and (3.11) in (3.3), we obtain:

s

T−η∫
−T+η

∫
Ω

|Y |2e2sϕdxdt ≤ C
∫ T

−T

∫
Ω

|LY |2e2sϕdxdt+ Cs

∫ T

−T

∫
Γ+

|Y |2Â · νe2sϕdσdt.

(3.12)
We deduce from (3.7), (3.8), (3.12), the following Carleman estimate for Y

‖P1(esϕY )‖L2(Ω×(−T+η,T−η)) + s

T∫
−T

∫
Ω

|Y |2e2sϕdxdt (3.13)

≤ C
T∫
−T

∫
Ω

|LY |2e2sϕdxdt+ Cs

∫ T

−T

∫
Γ+

|Y |2Â · νe2sϕdσdt.

Remark 1 : In (3.13), we obtain a lower bound of ||esϕP1Y ||L2(Ω×(−T+η,T−η)) but

we can obtain it on (Ω× (−T, T )). Since P1Y = ∂tY + Â ·∇Y = −pY − (p− p̃)∂tũ,
we have

−T+η∫
−T

∫
Ω

|P1Y |2e2sϕdxdt ≤ C
−T+η∫
−T

∫
Ω

|Y |2e2sϕdxdt+ C

−T+η∫
−T

∫
Ω

|p− p̃|2|∂tũ|2e2sϕdxdt,

and also

T∫
T−η

∫
Ω

|P1Y |2e2sϕdxdt ≤ C
T∫

T−η

∫
Ω

|Y |2e2sϕdxdt+ C

T∫
T−η

∫
Ω

|p− p̃|2|∂tũ|2e2sϕdxdt.

Finally, (3.13) yields the following estimate

‖P1(esϕY )‖L2(Ω×(−T,T )) + s

T∫
−T

∫
Ω

|Y |2e2sϕdxdt+

T∫
−T

∫
Ω

|P1Y |2e2sϕdxdt

≤ C
T∫
−T

∫
Ω
|p− p̃|2|∂tũ|2e2sϕdxdt+ Cs

∫ T

−T

∫
Γ+

|Y |2Â · νe2sϕdσdt.

(3.14)

Step 4. Stability result
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Let W = esϕỸ . Recall that P1W = ∂tW + Â · ∇W and consider the fol-

lowing integral I =

∫ 0

−T

∫
Ω
P1W ·W dxdt.

Following the method introduced in [6], we give an upper bound of I using
Carleman estimate.

|I| = |
∫ 0

−T

∫
Ω
P1W ·Wdxdt|

≤ s−
1

2

(∫ 0

−T

∫
Ω
|P1W |2dxdt

) 1

2
(
s

∫ 0

−T

∫
Ω
|Y |2e2sϕ

) 1

2

dxdt.

Applying Young inequality, we have

|I| ≤ s−
1

2

(∫ T

−T

∫
Ω
|P1W |2dxdt+ s

∫ T

−T

∫
Ω
|Y |2e2sϕdxdt

)
.

Using (3.14), we obtain

|I| ≤ Cs−
1

2

(∫ T

−T

∫
Ω
|p− p̃|2|∂tũ|2dxdt+ s

∫
Γ+

∫ T

−T
|Y |2Â · νe2sϕdσdt

)
. (3.15)

Now, let’s compute I. After integration by parts, we have

1

2

∫
Ω
|Y (x, 0)|2e2sϕ(x,0)dx = I +

1

2

∫ 0

−T

∫
Ω

(∇ · Â)|Ỹ |2e2sϕdxdt−
∫ 0

−T

∫
Γ+

Â · ν|Ỹ |2e2sϕdσdt.

With (3.15) and (3.14), we obtain

1

2

∫
Ω
|Y (x, 0)|2e2sϕ(x,0)dx ≤ C(s−

1

2 + s−1)
{∫ T

−T

∫
Ω
|p− p̃|2|∂tũ|2e2sϕdxdt

}

+ C(s
1

2 + 1)

∫ T

−T

∫
Γ+

Â · ν|Y |2e2sϕdσdt.

On the other hand, we have

Y (x, 0) = ∂tU(x, 0) = −(p− p̃)(x)ũ(x, 0).

Substituting Y in the last inequality, we get

1

2

∫
Ω
|(p− p̃)(x)ũ(x, 0)|2e2sϕ(x,0)dx ≤ C(s−

1

2 + s−1)

∫ T

−T

∫
Ω
|p− p̃|2|∂tũ|2e2sϕdxdt

+C(s
1

2 + 1)

∫ T

−T

∫
Γ+

Â · ν|Y |2e2sϕdσdt.

(3.16)

Remark 2 : Recall that x0 /∈ Ω, so by construction ϕ is strictly bounded from
below. Moreover e2sϕ(x,t) ≤ e2sϕ(x,0) for all x ∈ Ω and t ∈ (−T, T ). From ũ ∈
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W 1,2(−T, T ;L∞(Ω)), we have

∃k0 ∈ L2(−T, T ), |∂tũ(x, t)| ≤ k0(t)|ũ(x, 0)|, ∀x ∈ Ω, t ∈ (−T, T ).

Using the previous remark, from (3.16), it follows

(1

2
−C(s−

1

2 +s−1)
)∫

Ω
|(p−p̃)(x)|2|ũ(x, 0)|2e2sϕ(x,0)dx ≤ C(s

1

2 +1)

∫ T

−T

∫
Γ+

Â·ν|Y |2e2sϕdσdt.

Then, if s is large enough, we deduce that there exists a constant C =
C(s0, λ0,Ω, T,Γ) > 0 such that∫

Ω
|(p− p̃)(x)|2|ũ(x, 0)|2e2sϕ(x,0)dx ≤ C

∫ T

−T

∫
Γ+

Â · ν|Y |2e2sϕdσdt.

Under the conditions satisfied by ψ, Â, we note that Â · ν and e2sϕ are bounded on
(−T, T )× Γ+. Indeed, we denote

a = min
Ω

[exp(sϕ(x, 0))],

b = max
Ω×[0,T ]

[exp(sϕ(x, t))].

Therefore, since |ũ(x, 0)| ≥ r0 > 0 in Ω, we obtain the following stability result∫
Ω
|(p− p̃)(x)|2dx ≤ C

∫ T

−T

∫
Γ+

|Y |2e2sϕdσdt.

where C = C(
b

a
, s0, λ0,Ω, T,Γ).

Since Y is an extension to ∂tU := ∂tu− ∂tũ for t < 0, we have∫
Ω
|p− p̃|2dx ≤ C

∫ T

0

∫
Γ+

|∂tu− ∂tũ|2dσdt

and the proof of Theorem 3.1 is completed.
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