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The Blasius equation

Bernard Brighi, Augustin Fruchard, Tewfik Sari

Abstract. The Blasius problem f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = b, f ′(+∞) = λ is investigated,
in particular in the difficult and scarcely studied case b < 0 � λ. The shape and the number of
solutions are determined. The method is first to reduce to the Crocco equation uu′′ + s = 0 and
then to use an associated autonomous planar vector field. The most useful properties of Crocco
solutions appear to be related to canard solutions of a slow fast vector field.

Keywords : Blasius equation, Crocco equation, boundary value problem on infinite interval, canard
solution.

1 Introduction

In this article we present a selection of results of [6]. The reader is referred to [6] for complete
proofs, additional and intermediate results. We take the occasion to completely change the order
of presentation: in [6] we first give the results on the Blasius equation with a sketch of proof,
then we introduce the Crocco equation and the vector field, we establish results and proofs on
these intermediate equations and then we return to the proof of the initial result. Here we choose
a different order and we postpone the main result at the end of the article. We hope that this
article may be a first approach before a thorough study of [6].

The article is organized as follows. In Section 2, we state the main problem of the paper
which is the investigation of the following Blasius Boundary Value Problem (BBVP for short)

f ′′′ + ff ′′ = 0 on [0, +∞[, (1)

f(0) = −a, f ′(0) = b, lim
t→+∞

f ′(t) = λ. (2)

We list some former results, according to the relative values of b and λ, and we focus our
attention on the case b < 0 � λ, which is our case of interest. In Section 3, we show that, in the
latter case, this boundary value problem is equivalent to the Crocco Boundary Value Problem
(CBVP) ⎧⎨

⎩
uu′′ + s = 0 on [b, λ[,

u′(b) = a, lim
s→λ

u(s) = 0.
(3)

where [b, λ[ appears as the maximal right-interval of definition of the solution. In Section 4, we
show that the similarity properties of the Blasius or the Crocco solutions permit to reduce the
non autonomous second order differential equation of Crocco to an autonomous planar vector
and we notice that the maximal right-interval of definition of the solutions of the Crocco equation
presents a discontinuity with respect to the initial condition. It is well known that the maximal
right-interval of definition of the solution of a differential equation is not continuous in general
with respect to the initial conditions. It is simply lower semicontinuous. Actually, in Section 6,
we see that the solutions of the Crocco differential equation which are close to 0 for s close to
0 are canard solutions of a slow-fast vector field. These solutions play an important role in the
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description of the discontinuity of the maximal right-interval of definition of the solution of the
Crocco equation. In Section 7, we analyze this discontinuity which occurs along a particular
orbit of the planar vector field considered in Section 4. In Section 8, we give a lower bound
of the number of solutions of the boundary value problem associated to the Blasius equation,
in the case b < 0 � λ. Section 9 describes a difficulty encountered in numerical simulations.
Indeed, due to the canard solutions phenomenon, some solutions of the Crocco equation become
exponentially small for s < 0 and the numerical scheme cannot give the right solution. We show
how to use the theoretical study in Section 5 to overcome this difficulty.

2 The Blasius Boundary Value Problem

The Blasius Boundary Value Problem (1-2) arises for the first time, with a = b = 0 and λ = 2,
in 1907 in the thesis of Blasius [3, 4]. In the case a = b = 0, Hermann Weyl [16] proves that
the BBVP has one and only one solution. The proof is elementary but strongly uses the fact
that a = b = 0, see also [5, 8]. The BBVP plays a central role in fluid mechanics [12]: The
Blasius equation (1) was obtained using a similarity transform and enabled successful treatment
of the laminar boundary layer on a flat plate. By considering equation (1) as a first order linear
differential equation for f ′′, we obtain

f ′′(t) = f ′′(0) exp

{
−

∫ t

0
f(τ)dτ

}
.

Hence, the BBVP splits into three cases, called respectively linear, concave and convex:

• If λ = b, then the BBVP has a unique solution, given by f(t) = bt − a.

• If λ > b, then any possible solution must satisfy f ′′(t) > 0 for all t � 0, i.e. has to be
convex.

• If λ < b, then possible solutions are concave.

The concave case is completely solved and well-known [1].

Proposition 1 — In the case λ < b, the BBVP (1 - 2) has exactly one solution if 0 � λ < b,
and no solution if λ < 0.

When b � 0, the convex case λ > b is also well-known, see [8].

Proposition 2 ([6] Corollary 3.6) — The BBVP (1 - 2), where b � 0 and λ > b, has exactly
one solution when a � 0 or b > 0. When a > 0 and b = 0, the BBVP has exactly one solution
for all λ > a2λ+ and no solution if 0 < λ � a2λ+, where λ+ � 1.304 is defined in Proposition 5.

It is known that every solution of the Blasius equation (1) such that f ′′(0) > 0 is defined for all
t and its derivative has a finite and non-negative limit as t → +∞ ([6] Proposition 3.1). Thus

Proposition 3 — The BBVP (1 - 2) has no solution if b < λ < 0.

In this article, we focus on the remaining case b < 0 � λ, which is much richer and trickier. Non
uniqueness for the BBVP is mentioned in the literature, but either only supported by numerical
investigations [9], or with incomplete proofs [10, 13].

The Blasius equation (1) has the following similarity property:

If t �→ f(t) is a solution of (1), so is t �→ σf(σt), for all σ ∈ R. (4)
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Figure 1: In the plane (b, λ), the number of solutions of the BBVP (5) in each region and on
their border. In gray, the remaining region to investigate, purpose of this article.

This allows us to restrict our attention without loss of generality to the case b = −1, i.e. to the
BBVP ⎧⎨

⎩
f ′′′ + ff ′′ = 0 on [0, +∞[,

f(0) = −a, f ′(0) = −1, lim
t→+∞

f ′(t) = λ � 0.
(5)

The purpose of this article is to count the number of solutions of (5). The main result, at the
end of Section 8, gives a minimum number of solutions of (5) depending on the values of a and
λ. We conjecture that this minimum number is the exact number of solutions.

3 The Crocco Boundary Value Problem

Let f be a convex solution of (1). Since f ′′ > 0 it follows that t �→ f ′(t) is a diffeomorphism.
Hence we can use f ′ as an independent variable and express f ′′ as a function of f ′. This is the
so-called Crocco transformation [7]

s = f ′, f ′′ = u(s)

Differentiating f ′′ = u(f ′) we obtain u′(s) = −f . Differentiating once again we obtain that u
satisfies the following so-called Crocco differential equation

u′′u + s = 0. (6)

As we will see, the BBVP (5) is equivalent to the Crocco Boundary Value Problem (3) for
b = −1, rewritten below for convenience⎧⎨

⎩
uu′′ + s = 0 on [−1, λ[,

u′(−1) = a, lim
s→λ

u(s) = 0.
(7)

The equivalence between (5) and (7) will become clear after the following remarks. In order to
solve (5) we use the shooting method. Let f( · ; a, c) denote the solution of the Blasius Initial
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Figure 2: On the left, the Blasius solution t �→ f(t;−2, 1); on the right, the corresponding
Crocco solution s �→ u(s;−2, 1).

Value Problem (BIVP)

f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = −1, f ′′(0) = c > 0. (8)

The solution f( · ; a, c) is defined for all t � 0 and its derivative has a finite and non-negative
limit as t → +∞ ([6] Proposition 3.1). Let Λ̃(a, c) denote the limit

Λ̃(a, c) := lim
t→+∞

f ′(t; a, c) � 0. (9)

Then ([6] Proposition 2.1), [−1, Λ̃(a, c)[ is the maximal right interval of existence of the solution
u( · ; a, c) of the Crocco Initial Value Problem (CIVP)

uu′′ + s = 0, u(−1) = c > 0, u′(−1) = a. (10)

See Figure 2 for a comparison between a Blasius solution and the corresponding Crocco solution.
Moreover, we have

lim
s→eΛ(a,c)

u(s) = 0 and
(
Λ̃(a, c) > 0 ⇒ lim

s→eΛ(a,c)
u′(s) = −∞)

This shows that (5) is equivalent to (7).

4 Symmetries

The similarity property (4) is rewritten as follows for the Crocco equation (6)

If σ > 0 and s �→ u(s) is a solution of (6), so is uσ : s �→ σ3u(σ−2s). (11)

This similarity property reduces the Crocco equation (6) to a system of autonomous differential
equations. Actually, the change of variables

x(s) = (−s)−1/2u′ (s) , y(s) = (−s)−3/2u (s)

leads to the system

x′ =

1
2 x + 1

y

−s
, y′ =

x + 3
2 y

−s
.

Then, using the change of independent variables s = −e−τ , we obtain the planar vector field

ẋ =
1

2
x +

1

y
, ẏ = x +

3

2
y, (12)
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Figure 3: On the left: the phase portrait of (12). On the right: sketch of enlargement of Γ∞
near S∗. The functions Ln and Rn are defined in Section 7.

where the dot is for differentiating with respect to the new independent variable τ . The initial
conditions u(−1) = c, u′(−1) = a in the CIVP (10) correspond to

x(0) = a, y(0) = c.

Notice that this vector field describes the Crocco equation (6) only for s < 0, since τ tends to
+∞ as s tends to 0.

Because the transformation u �→ uσ given by (11) corresponds to the shift τ �→ τ + 2 lnσ,
to each orbit

{(
x(τ), y(τ)

)
; τ ∈ R

}
of a solution of (12) corresponds a whole family (uσ)σ>0

of solutions of (6) connected by the similarity (11). In particular, the unique stationary point
S∗ =

( −√
3, 2√

3

)
of (12) corresponds to the unique self-similar positive solution u∗ of (6), i.e.

satisfying u∗(s) = σ3u∗(σ−2s) for s < 0 < σ, namely

u∗(s) = 2√
3
(−s)3/2. (13)

A study of this vector field, detailed in [6], shows the following.

• All nonstationary solutions of (12) are defined on R; they tend to S∗ as τ → −∞ and to
infinity as τ → +∞.

• There is one and only one orbit, denoted by Γ∞, such that any solution (x, y) parametrizing

Γ∞ satisfies that x(τ)
y(τ) tends to −1 as τ → +∞, see Figure 3.

• For all solutions
(
x(τ), y(τ)

)
except those on Γ∞ ∪ {S∗}, the quotient x(τ)

y(τ) tends to 0 as
τ → +∞.

• ([6] Theorem 2.4) For all solutions
(
x(τ), y(τ)

)
except those on Γ∞ ∪ {S∗}, x(τ)3

y(τ) has a

limit k ∈ R as τ → +∞. The number k parametrizes the orbit of (12) denoted by Γk. In
terms of positive Crocco solutions, we have the following properties:

1. if (a, c) ∈ Γ∞ then lim
s→0−

u(s; a, c) = 0 and lim
s→0−

u′(s; a, c) < 0,

2. if (a, c) = S∗ then lim
s→0−

u(s; a, c) = 0 and lim
s→0−

u′(s; a, c) = 0,

3. Otherwise (a, c) ∈ Γk for some k ∈ R. In that case, u(0; a, c) > 0 and u′(0; a, c) is of
the same sign as k.
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Figure 4: A sketch of the spiral Γ∞ and two numerical Crocco solutions with initial conditions
u1(−1) = c1 = 1.78, u′

1(−1) = a = −2 and u2(−1) = c2 = 1.62, u′
2(−1) = a = −2, where (a, c1)

and (a, c2) are on the convex and on the concave sides of Γ∞ respectively.
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Figure 5: Above: schematic graphs of the solution of (14) in the limit ε → 0, respectively in
the variables S, U , the variables U, V and S, V . Below: the numerical solution corresponding to
ε = 0.1 and α = 2.

Let (a, c) be an initial condition which is close to Γ∞. If (a, c) lies on the convex side of
Γ∞, then u(0; a, c) is close to 0 and u′(0; a, c) < 0. Since u(s; a, c) becomes concave for s > 0, it
follows that Λ̃(a, c) is close to 0. Otherwise, if (a, c) lies on the concave side of Γ∞, then u(0; a, c)
is small and u′(0; a, c) > 0. In fact, this implies that Λ̃(a, c) is not close to 0, see Figure 4.

This shows that the function Λ̃(a, c) is discontinuous on Γ∞. The precise description of this
discontinuity needs the knowledge of the behavior of the solutions u(s) of the Crocco equation
(6) for which u(0) is close to 0. This behavior is described in the following section.

5 Crocco solutions near u = 0 ...

The following statement describes Crocco solutions close to 0 and with positive slope for s = 0:
they take an exponentially small value at some small negative abscissa of s and then go far from
the s axis.

Proposition 4 — Fix α > 0 and let 0 < ε → 0. Let u = u(s, ε) denote the solution of (6)
such that u(0, ε) = ε and u′(0, ε) = α. Then u(s, ε) reaches its minimum at some abscissa
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s = κ(ε) < 0 satisfying κ(ε) = − ε
α

(
1 + o(1)

)
and

u(κ(ε), ε) = exp
(
− α3

2ε

(
1 + o(1)

))
as ε → 0.

Moreover, for all B < 0 fixed, we have u(εS, ε) = ε
(|αS + 1| + o(1)

)
as ε → 0, uniformly for

S ∈ [B, 0].

Proof. The reference [6] contains two proofs: one in Section 5 and an alternative one in Section
6. We give here an overview of the second one. The solution u(s, ε) is defined for all s � 0 and
is positive. The function U(S, ε), defined by

U(S, ε) =
1

ε
u (εS, ε) ,

is the solution of the initial value problem

U
d2U

dS2
+ εS = 0, U(0) = 1,

dU

dS
(0) = α. (14)

Except near the axis U = 0, and for bounded values of S, U ′′ is close to 0, i.e. the solutions are
almost affine. Precisely, one has for all fixed S0 ∈ ] − 1

α , 0
]

U(S, ε) = αS + 1 + o(1) as ε → 0, uniformly for S ∈ [S0, 0] (15)

What is less obvious is that this approximation is still valid up to − 1
α and that, for any fixed

B � − 1
α , the solution satisfies the approximation U(S, ε) = −αS − 1 + o(1) uniformly for

B � S � − 1
α . In other words, after its passage near the axis, the solution U(S, ε) behaves like

a light ray reflecting on a mirror, see Figure 5. To see this, we use the new variable W = ε lnU
and we choose V = dU

dS as an independent variable; we obtain

dS

dV
= −eW/ε

εS
,

dW

dV
= −V

S
. (16)

In a interval where W < 0 and S < 0, we have lim
ε→0

eW/ε

εS = 0. Thus (16) is a regular perturbation

of
dS

dV
= 0,

dW

dV
= −V

S
.

Since S is close to − 1
α when U is close to 0, we deduce that

S(V, ε) = − 1

α
+ o(1), W (V, ε) =

αV 2

2
+ W0 + o(1) as ε → 0, (17)

uniformly for V ∈ [−V0, V0], where W0 < 0 and V0 <
√−2W0/α, see Figure 6, left. With the

condition W (α, ε) = o(1), we obtain W0 = −α3

2 + o(1). Thus we have

S(V, ε) = − 1

α
+ o(1), W (V, ε) = α

V 2 − α2

2
+ o(1) as ε → 0,

uniformly for V ∈ [−A0, A0], where A0 can be chosen as close to α as we want. Hence we have

U(V, ε) = o(1) uniformly for V ∈ [−A0, A0]. (18)
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Figure 6: On the left, a scheme of the vector field in the variables V, W . On the right, the
numerical solution corresponding to ε = 0.1 and α = −2.

The minimum of U(S, ε) is reached for S = K(ε) which corresponds to V = 0. Hence

K(ε) = − 1

α
+ o(1), U(K(ε), ε) = exp

(
W (0, ε)

ε

)
= exp

(
−α3 + o(1)

2ε

)
.

Thus κ(ε) = εK(ε) = ε
(

1
α + o(1)

)
and, using ε = exp ε ln ε

ε = exp o(1)
ε , we have

u(κ(ε), ε) = εU(K(ε), ε) = ε exp

(
−α3 + o(1)

2ε

)
= exp

(
−α3 + o(1)

2ε

)
.

Using again the differential equation in (14), we have V (S, ε) = −α + o(1) uniformly for S ∈
[B, S1], where B < S1 and S1 is as close to − 1

α as we want. Thus

U(S, ε) = −α

(
S +

1

α

)
+ o(1), uniformly for S ∈ [S2, S1]. (19)

Using (15) and (19), together with (18) we conclude that

U(S, ε) = |αS + 1| + o(1) uniformly for S ∈ [S2, 0].

Hence u(εS, ε) = ε
(|αS + 1| + o(1)

)
uniformly for S ∈ [B, 0], as ε → 0.

6 ... are canard solutions!

The solution U(V, ε) considered in the proof of Proposition 4 is a canard solution. Indeed,(
S(V, ε), U(V, ε)

)
is a solution of the slow fast system

ε
dS

dV
= −U

S
, ε

dU

dV
= −V U

S
. (20)

whose slow manifold U = 0 is attractive when V < 0 and repulsive when V > 0. Notice that

S(V ) = constant < 0, U(V ) = 0, (21)

are canard solutions of (20) since they are on the attractive part of the slow manifold when
V < 0 and on its repulsive part when V > 0. These solutions do not correspond to actual
solutions of the differential equation in (14) since the latter are for U 
= 0.
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Considered as a system in R
3, (20) is a slow-fast system with two fast variables S and U and

one slow variable V . However, it is possible to rewrite it as a system with two slow variables
and only one fast. Actually T = V S − U is a slow variable. With this variable, (20) becomes

ε
dS

dV
=

T − V S

S
,

dT

dV
= S. (22)

This is a singularly perturbed system whose slow manifold is the surface T = V S. This slow
manifold is attractive for V < 0 and repulsive for V > 0. The Tikhonov theorem (see [14, 11]
and [15] Section 39) describes the behavior of the solution

(
S(V, ε), T (V, ε)

)
of (22) when V > 0.

There is a fast transition (see Figure 7) taking the trajectory
(
V, S(V, ε), T (V, ε)

)
, from its initial

point (α, 0,−1), to a o(1) neighborhood of the point
(
α,− 1

α ,−1
)

of the slow manifold, preceded

by a slow transition near a solution
( − 1

α ,−V
α

)
of the reduced problem

S =
T

V
,

dT

dV
= S.

More precisely, for any A0 and A1, such that 0 < A1 < A0 < α, we have

S(V, ε) = − 1

α
+ o(1) uniformly for V ∈ [A1, A0], (23)

T (V, ε) = −V

α
+ o(1) uniformly for V ∈ [A1, α].

Notice that A0 (resp. A1) is fixed but may be chosen as close to α (resp. 0), as we want. The
approximation for S does not hold near V = α since there is a boundary layer (fast transition)
from S = 0 at V = α to S = − 1

α for V close to α. We deduce that

U(V, ε) = V S(V, ε) − T (V, ε) = o(1) uniformly for V ∈ [A1, α]. (24)

A priori, Tikhonov theorem does not apply for V � 0, because for V = 0 the slow manifold
becomes repulsive, but it turns out that (24) still holds for negative values of V . This is the so-
called bifurcation delay [2]. The slow manifold is foliated by the explicit solutions S(V ) = S0 =
constant, T (V ) = V S0, corresponding to the solutions (21). These solutions are canard solutions
since they follow the attractive part and then the repulsive part of the slow manifold, see
Figure 7. Knowing the “exit” value V = α of the solution T (V, ε) in a small neighborhood of
the slow manifold, we can compute the “entry” value for which the solution was far from the
slow manifold. Since U = V S − T > 0, we use the change of variable W = ε lnU . In this
variable, it appears that the “entry” of the solution in the neighborhood of the slow manifold
holds asymptotically for V = −α, as shown in the proof of Proposition 4. For details and
complements see [6] Section 6.
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7 The discontinuity of the function Λ̃

Two particular solutions of the Crocco equation (6) play an important role in our study.
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Figure 8: The graphs of u− on the left and of u+ on the right.

Proposition 5 ([6] Theorem 2.2) — The Crocco equation (6) has two solutions, denoted by
u− and u+ such that u− is the unique solution of (6) satisfying

lim
s→0−

u−(s) = 0, lim
s→0−

u′
−(s) = −1

and u+ is the unique solution of (6) satisfying

lim
s→0+

u+(s) = 0, lim
s→0+

u′
+(s) = 1.

The solution u− is defined on ]−∞, 0[ and the solution u+ is defined on ]0, λ+[ for some λ+ > 0.

Numerical computations give λ+ ≈ 1.303918. See Figure 8 for the graphs of u− and u+.

The orbit Γ∞ on which Λ̃ is discontinuous (See Figure 4 for an illustration of this disconti-
nuity) is given by

Γ∞ =
{

m(s) =
(
(−s)−1/2u′

−(s), (−s)−3/2u−(s)
)

; s < 0
}

.

A consequence of Proposition 4 is the following; see [6] Section 5.2 for the proofs.

Proposition 6 — Let
(
(αn, γn)

)
n∈N

be some sequence of points tending to m(−1).

Then the sequence
(
u′(0;αn, γn)

)
n∈N

is bounded and has at most two cluster points: 1 and −1.
More precisely, if (αn, γn) tends to m(−1) on the convex side then u′(0;αn, γn) tends to −1, and
if (αn, γn) tends to m(−1) on the concave side then u′(0;αn, γn) tends to 1.

Remark — This statement seems to contradict the well-known property of continuity with
respect to initial conditions: if (a1, c1) and (a2, c2) are two points close to m(−1) such that
u′(0; a1, c1) is close to −1 and u′(0; a2, c2) close to 1, then this continuity property seems to
imply that, for any fixed d ∈ ] − 1, 1[ there would exist (a, c) between (a1, c1) and (a2, c2) with
u′(0; a, c) = d. In fact there is no contradiction: any small path joining (a1, c1) and (a2, c2) has
to cross the “singular line”

{(
u−(s), u′

−(s)
)

; s < 0
}

at some point (a0, c0) and the solution
with this initial condition is no longer defined at 0. This could explain an error in [13] Lemma 2
p. 257, which asserts the continuity of Λ̃.
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Figure 9: Numerical graphs of some orbits Γk and of the level set curves of the function Λ̃. On
the left nine curves Γk for various values of k ∈ R∪{∞} and Λ̃(a, c) = λ for λ = 0, 1 and 10. On
the right the sames curves in the plane (a, ln c), showing the details for small values of c. The
flow of (12) transforms a level curve of Λ̃(a, c) into another level curve. Notice that the level set
curve Λ̃(a, c) = 0 is the orbit Γ∞.

Proposition 6 shows that the discontinuity of Λ̃ at the point m(−1) of Γ∞ is equal to λ+,
see [6] Theorem 2.5. The discontinuity of Λ̃ at any point m(s) of Γ∞ can be obtained using the
similarity property (11). To see this, consider f = fa,b,c the solution of the BIVP

f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = b, f ′′(0) = c > 0

and set
Λ(a, b, c) = lim

t→+∞
f ′

a,b,c(t).

This limit is finite and non negative ([6] Proposition 3.1). The function Λ̃ is thus given by

Λ̃(a, c) = Λ(a,−1, c).

Then ([6] Proposition 2.1), [−1, Λ(a, b, c)[ is the maximal right interval of existence of the solution
u(s) of the CIVP

uu′′ + s = 0, u(b) = c > 0, u′(b) = a.

The similarity property (11) implies

∀σ > 0, Λ(σa, σ2b, σ3c) = σ2Λ(a, b, c). (25)

This formula justifies, as said in the introduction, that the properties of Λ for b < 0 can be
deduced from the case b = −1, i.e. from the properties of the function Λ̃ : (a, c) �→ Λ(a,−1, c).

Notice that, for any positive solution u of the Crocco equation defined on some interval I,
we obviously have

∀s ∈ I, Λ̃
(
u′(−1), u(−1)

)
= Λ

(
u′(−1),−1, u(−1)

)
= Λ

(
u′(s), s, u(s)

)
.

As a consequence, (25) gives

∀s < 0, Λ̃
(
u′(−1), u(−1)

)
= −sΛ̃

(
(−s)−1/2u′(s), (−s)−3/2u(s)

)
.
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In terms of the associated vector field, we deduce that for all (x, y) solution of (12)

∀τ ∈ R, Λ̃
(
x(τ), y(τ)

)
= eτ Λ̃

(
x(0), y(0)

)
. (26)

This formula shows how the τ -map flow of (12) transforms the level curve Λ̃(a, c) = λ into the
level curve Λ̃(a, c) = eτλ, see Figure 9. Hence the similarity property (11) yields the discontinuity
at any point of Γ∞.

Corollary 7 — The discontinuity of Λ̃ at a point m(s) of Γ∞ is as follows: on the convex side
of Γ∞, Λ̃ tends to 0, whereas on the concave side, Λ̃ tends to −λ+

s .

8 The number of solutions of the BBVP

To count the number of solutions of (5) we adopt the following strategy: for any values of a ∈ R

and λ � 0, we count the number of values of c for which Λ̃(a, c) = λ where Λ̃ : R×]0, +∞[→
[0, +∞[ is the limit defined by (9). Let A(λ) denote the abscissa of the point of Γ∞ where Λ̃
takes the values 0 and λ on each side of Γ∞ respectively. Corollary 7 yields −s = λ+

λ , from
which we deduce that

A : ]0, +∞[ → ]−∞, 0[ , λ �→
√

λ
λ+

u′
−

(
−λ+

λ

)
.
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–2

–1

0
1 2 3 4 5 6

–1.73

–1.725

–1.72

–1.715

0 0.02 0.04 0.06 0.08 0.1

−√
3

a = A(λ)

λ

−√
3

a

λ

a = A(λ)

Figure 10: On the left: the graph of A. On the right: an enlargement near (0,−√
3).

See Figure 10 for a numerical graph of A and Figure 12 for a sketch showing the oscillations
near λ = 0. A careful study of the vector field shows that Γ∞ has no inflexion point and S∗ is
a focus. Therefore for all n � 1, with the convention a0 = −∞, there exist functions

Ln : [a2n, a2n−1] → R, Rn : [a2n−2, a2n−1] → R,

Ln convex and Rn concave, such that Γ∞ is the union of the graphs of the mappings x �→ Ln(x)
and x �→ Rn(x); see Figure 3 right for the graphs of R1, R2 and L1. As a consequence, the
function A has the following properties.

Proposition 8 ([6] Proposition 1.1) — The function A is C∞ and has an infinite sequence of
extremal points (λn)n�1 decreasing to 0: local minima at λ2n and local maxima at λ2n+1, and
no other extremum. Let A(λn) = an denote these extremal values. Sequences (a2n) and (a2n+1)
are adjacent and

lim
n→+∞

λn+1

λn
= e−π

√
2, lim

n→+∞
an+1 +

√
3

an +
√

3
= −e−π

√
2. (27)

The map λ �→ A(λ) is increasing on each interval [λ2n, λ2n−1] and decreasing on each [λ2n−1, λ2n−2].
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Hence for all n � 1, with the convention λ0 = +∞, there exist one-to-one mappings

ln : [a2n, a2n−1] → [λ2n, λ2n−1], rn : [a2n−2, a2n−1] → [λ2n−1, λ2n−2],

such that the graph of λ �→ A(λ) is the union of the graphs of a �→ ln(a) and a �→ rn(a), see
Figure 12 left for the graphs of r1, r2 and l1.

Given a ∈ R and λ � 0, counting the number of solutions of the Blasius Problem (1 - 5)
amounts to counting the number of times the function Λ̃ takes the value λ on a vertical ray

Da := {a}×]0,+∞[. (28)

For that purpose, we introduce the function

Λ̃a : ]0, +∞[→ [0, +∞[, c �→ Λ̃(a, c).

The description below is succinct. We refer to [6] Section 2.4 for proofs, additional details and
explanatory figures.

Let n � 1 be such that a is between an−2 and an, possibly a = an (with the convention
a−1 = +∞, a0 = −∞). Then the ray Da crosses n − 1 times the spiral Γ∞ (if a = an, there
is an n-th point of contact but without crossing, hence without creating any discontinuity for
Λ̃a). To fix ideas, assume that n is odd. A similar description can be done for n even. Then the

�λ

�
c0

�

)

L1(a)

l1(a)

�

R1(a)

r1(a) (

C3(a)
Λ3(a)

Figure 11: A sketch of graph of Λ̃a in the case a3 < a < a1, a close to a3.

graph of Λ̃a consists of n branches: n−1
2 on the left, one central and n−1

2 on the right. On the

central part, by continuity, if a is close to an then Λ̃a has a minimum close to 0. Therefore we
consider dn ∈ ]an, an−2] as close to an−2 as possible such that, for any a ∈ [an, dn[, the central
branch of Λ̃a attains its infimum, at some (possibly non unique) abscissa c = Cn(a). We already
know that d1 = +∞. For n � 2, let μn ∈ ]λn−1, λn−2] be such that dn = A(μn). For a ∈ [an, dn[,
we define Λn(a) as the minimum of Λ̃a on its central branch. With the convention μ1 = +∞,
this yields a continuous map Λn : [an, dn[→ [0, μn[, satisfying Λn(an) = 0 and Λn(a) → μn as
a → d−n . See Figure 11 for a sketch of graph of Λ̃a, Figure 13 for some graphs of Λ̃a when a ≈ a1

and Figure 14 for the graph of Λ̃−
√

3. We now present our main result.

Theorem 9 — The BBVP (5) has

• no solution if and only if a > a1 and 0 � λ < Λ1(a),

• at least n solutions (where n > 0) if (λ, a) belongs to one of the regions marked n in Figure
12, right, in other words, if:
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– either a = A(λ) with μn+1 � λ < μn,

– or λ = Λn(a) with a ∈ [an, dn[ if n is odd, a ∈ ]dn, an] if n is even, including the
end-point (0, an),

– or (λ, a) is in the open region below the graphs of Λ2 and A in the case n = 1, and
in the open region between the graphs of Λn−1, Λn+1 and A in the case n � 2,

– or λ = 0 and an−1 < a < an+1 if n is odd, an+1 < a < an−1 if n is even.

• infinitely many solutions if λ = 0 and a = −√
3.
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�d4
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�
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�
��


λ = Λ2(a)

���
λ = Λ1(a)

� λ = r1(a)

� λ = l1(a)
� λ = r2(a)

��
a = A(λ)

0

2

1

3

45

� 0

�
3��

1

��� 2

��
3

�

2

�

� 1

�� 1

�� 2

�� 1
�

�� 3

��
2

�

��
2 ��

1

Figure 12: In the (λ, a) plane. On the left, a sketch of the graphs of the functions A and Λn; on
the right, a lower bound of the number of solutions of (5). We conjecture that this number is

exact. We stress that the distances are not respected: due to (27) with eπ
√

2 ≈ 85, on the true
graph of A no more than one extremal point is visible, see Figure 10.

Remark — We conjecture that each branch of Λ̃a is monotonous, except possibly the central
one, which can be either monotonous or first decreasing then increasing, depending on the place
of a with respect to the ak and dl. A consequence of this conjecture would be that this lower
bound is tight.

9 Numerical simulations

When (a, c) is close to Γ∞ and on its concave side, u(s; a, c) is exponentially small for the small
negative value of s at which u reaches its minimum on [−1, 0]. This phenomenon can lead to
bad numerical simulations. As we will see, the passage to the variables s(v), w(v), corresponding
to the variables S(V ), W (V ) described in Section 5, is appropriate, not only for theoretical but
also for numerical reasons. As an illustration, let us solve numerically, with the use of Maple,
the CIVP (in the phase plane, i.e. with v = u′) with the initial conditions{

(u(−1) = c1 = 2.94, v(−1) = a = −3.12
}

and {
u(−1) = c2 = 2.95, v(−1) = a

}
.

The first initial condition lies on the concave side of Γ∞ and the second one on its concave side.
For the convenience of the reader we give hereafter the Maple instructions and the resulting
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Figure 13: Scenario of bifurcation of the graphs of Λ̃a near a1 ≈ −1.702704. Top left: a = −1.68,
top right: a = −1.7027, bottom left: a = −1.7028, bottom right: a = −1.705.

output. Because the aim is to compute bounds of existence intervals of solutions, the output is
an error message, with a numerical value of a possible singularity.

> restart:

> a:=-3.12: c1:=2.94: c2:=2.95:

> EqCroccoUV:=diff(u(s),s)=v(s),diff(v(s),s)=-s/u(s):

du

ds
= v,

dv

ds
= − s

u
(29)

> SolCroccoUV:=proc(c)

> Sol:=dsolve({EqCroccoUV,u(-1)=c,v(-1)=a},{u(s),v(s)},

> numeric,output=listprocedure):

> SolU:=eval(u(s),Sol):

> SolU(50):

> end proc:

> SolCroccoUV(c1);

Error, (in SolU) cannot evaluate the solution further right of

-0.21850903e-2, probably a singularity

> SolCroccoUV(c2);

Error, (in SolU) cannot evaluate the solution further right of

0.99652635e-3, probably a singularity

The result for c1 is not correct since the solution must be defined for all s � 0. The second result
c2 is correct and predicts that Λ̃(a, c2) ≈ 0.001. It is a fact, not completely elucidated, that the
use of the logarithmic change of variable w = lnu does not yield better numerical results: in the
variables (w, v) the numerical solutions are still incorrect for c1 (and correct for c2).
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Figure 14: Numerical graph of Λ̃a for a = −√
3, with successive enlargements.

> EqCroccoVW:=diff(w(s),s)=v(s)*exp(-w(s)),

> diff(v(s),s)=-s*exp(-w(s));

dw

ds
= ve−w,

dv

ds
= −se−w (30)

> SolCroccoVW:=proc(c)

> Sol:=dsolve({EqCroccoVW,w(-1)=ln(c),v(-1)=a},{w(s),v(s)},

> numeric,output=listprocedure):

> SolW:=eval(w(s),Sol):

> SolW(50):

> end proc:

> SolCroccoVW(c1);

Error, (in SolW) cannot evaluate the solution further right of

-0.21862961e-2, probably a singularity

> SolCroccoVW(c2);

Error, (in SolW) cannot evaluate the solution further right of

0.99531941e-3, probably a singularity

Following Section 5, we now consider the change of variable w = lnu and use the variable v as
an independent variable. This gives correct numerical results.

> EqCroccoSW:=diff(s(v),v)=-exp(w(v))/s(v),diff(w(v),v)=-v/s(v);

ds

dv
= −ew

s
,

dw

dv
= −v

s
(31)
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> SolCroccoSW:=proc(c)

> Sol:=dsolve({EqCroccoSW,w(a)=ln(c),s(a)=-1},{w(v),s(v)},

> numeric,output=listprocedure):

> SolS:=eval(s(v),Sol):

> SolS(10):

> end proc:

> SolCroccoSW(c1);

Error, (in SolS) cannot evaluate the solution further right of

2.7651840, probably a singularity

> SolCroccoSW(c2);

Error, (in SolS) cannot evaluate the solution further right of

-2.7726621, probably a singularity

We see that for c1, the solution w(v) is computed until the value v = 2.7651840. Hence the
numerical solution succeeded to pass exponentially close to the axis u = 0 and to reflect on this
axis and get a positive derivative. The singularity encountered now at v = 2.7651840 is caused
by the fact that system (31) is defined only in the half space s < 0. For s � 0 we must return to
the original variables u(s) and v(s). Hence we use the following procedure to evaluate Λ̃(a, c).

> Lambda:= proc(a,c)

> erreur:=0.0000000001:

> fSW:=dsolve({EqCroccoSW,w(a)=ln(c),s(a)=-1},{s(v),w(v)},

> numeric,stop_cond=[s(v)+erreur]):

> fSW(10);

> IC:=subs(%,[v,s(v),w(v)]):

> v0:=IC[1]: s0:=IC[2]: w0:=IC[3]:

> f:=dsolve({EqCroccoUV,u(s0)=exp(w0),v(s0)=v0},{u(s),v(s)},

> numeric,stop_cond=[u(s)-erreur]):

> f(50):

> subs(%,s):

> end proc:

This procedure is easy to understand. First system (31) is solved with initial conditions w(a) =
ln(c), s(a) = −1 as far as s � −erreur. Next, one computes the values v0, s0 = s(v0) and
w0 = w(v0) such that the stopping condition s0 = −erreur is reached. Then system (29) is
solved with initial conditions u(s0) = ew0 , v(s0) = v0, as far as u � erreur. The procedure
gives the value s1 such that the stopping condition u(s1) = erreur is attained. This value is a
very good approximation of Λ̃(a, c).

> Lambda(a,c1);

Warning, cannot evaluate the solution further right of

2.7651840, stop condition #1 violated

Warning, cannot evaluate the solution further right of

10.012058, stop condition #1 violated

10.0120586420604791

> Lambda(a,c2);

Warning, cannot evaluate the solution further right of

-2.7726621, stop condition #1 violated

Warning, cannot evaluate the solution further right of

.99606109e-3, stop condition #1 violated
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0.000996061092810659674

Hence, Λ̃(a, c1) ≈ 10.012 and Λ̃(a, c2) ≈ 0.001. The following instructions which use the proce-
dure Lambda produce the numerical graph of Λ̃a for a = −√

3 and 1.15466 � c � 1.15476, see
Figure 14 bottom right.

> a:=-sqrt(3): c1:=1.15466: c2:=1.15476: N:=200;

> for n from 0 to N do LLambda[n]:=c1+n*(c2-c1)/N,

> Lambda(a,c1+n*(c2-c1)/N) end do:

> L1:=[[LLambda[i]]$i=0..112]: L2:=[[LLambda[i]]$i=113..N]:

> plot([L1,L2],c1..c2,-.0000031..0.00012,thickness =4,

> color=black);
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