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Abstract. We study a Robin boundary problem for degenerate parabolic equation. We suggest a
notion of entropy solution and propose a result of existence and uniqueness. Numerical simulations
illustrate some aspects of solution behaviour. Monodimensional experiments are presented.
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1. Introduction

Let Ω be an open bounded domain of RN with a Lipschitz boundary ∂Ω, and η the unit normal to
∂Ω outward to Ω. The purpose of this paper is to discuss existence and uniqueness of entropy solution
for the following initial boundary value problem

(P )

 ut + div f(u)−∆φ(u) = 0 in Q =]0, T [×Ω,
u(0, x) = u0(x) in Ω,
b(u)− (f(u)−∇φ(u)).η = 0 on Σ =]0, T [×∂Ω.

Here, u0 is taking values on [0, umax] for some umax > 0. Further, the function f is a Lipschitz
continuous function. Moreover, we require that

f(0) = 0 and b(0) = 0. (H1)

The diffusion term φ is a continuous function. We consider that there exist a critical value uc of the
unkown u such that: φ(.) is zero on [0, uc] with 0 ≤ uc ≤ umax and φ(.) is strictly increasing on
[uc, umax]. Then problem (P ) degenerates to hyperbolic when u takes values in the region [0, uc] where
φ is flat.
We suppose that the function b is a continuous non-decreasing function on Σ. In some situation, b
may be a maximal monotone graph on R (see [4]). Here, we assume also that b satisfies the following
hypotheses:

b = β ◦ φ where β is a non-decreasing Lipschitz continuous function. (H2)

b(umax) ≥ |f(umax).η|. (H3)

For more than a few decades, the degenerate parabolic equation in bounded domain was studied by
many authors mainly in the case of Dirichlet boundary conditions (see e.g. [10], [8]). The zero-flux
boundary condition is studied in [1] for non-degenerate parabolic case, in [7] for fully degenerate
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hyperbolic equation and recently in [2] for the parabolic-hyperbolic problem. Remark, that the con-
dition b(u)− (f(u)−∇φ(u)).η = 0 on Σ includes in particular Neumann (zero-flux) condition on the
boundary.

We propose an adequate entropy formulation for problem (P ) which incorporates two boundary
integrals. In [2], existence and uniqueness for the zero flux boundary condition were proved, under
the assumption (H3) that reads f(umax) = 0 in the zero-flux case b ≡ 0. In constrast to the entropy
formulation in [2], where the passage to the limit in the only boundary integral is straighforward, for
our entropy inequality, we need the assumption (H2), which permits to give a sense to the boundary
integral with the term b(u). Indeed, we can deduce that b(u) has a trace on the boundary as a function
in Sobolev space H1(Ω).

The proof of existence of our entropy solution for any space dimensions N ≥ 1 employs a
vanishing viscosity approximation. We pass to limit in the interior of the domain Q, by using the local
compacity result of Panov [12], for this we suppose some relation between f and φ (see Definition 3.5).
One can refer to [2] for more details. We pay particular attention to the boundary term (here (H2) is
needed).

For the uniqueness result, we use nonlinear semigroup techniques (see, e.g., [6]) and Kruzhkov
doubling of variables methods. The main goal is to compare two solutions of (P), and it turns out
that it is simpler to compare a solution of (P ) with a regular solution (in the sense that the total flux
is continuous up to the boundary) of the stationary problem associated to (P ). Then we prove that
entropy solution of (P ) is an integral solution, and we refer to the uniqueness of integral solutions
granted by the general theory of nonlinear semigroup. Unfortunalely, we are not able to obtain regular
solution to the stationary problem for any space dimensions, but only in one space dimension. Then,
we can deduce the uniqueness just now when Ω is a bounded open interval of R. Notice that, for the
same argument as for the zero-flux boundary condition [2], the problem of uniqueness is still open in
multiple space dimensions.

The paper is organized as follows. In the next section, we give our definition of entropy solution
and state some remarks uselful for the well-possedness. In section 3, we prove existence result of entropy
solution. In the section 4, we prove uniqueness in the case of one space dimension. The latter part is
devoted to the numerical investigation of problem (P ). We adapt the approach of finite volumes in the
spirit of Vovelle ([11]) to illustrate and interprete some observations in the case where the assumptions
(H2) and (H3) are absent. Thereby, we justify the importance these assumptions in this paper.

2. Notion of Entropy Solution

Consider the following notion.

Definition 2.1. A measurable function u taking values on [0, umax] is called entropy solution of problem
(P ) if φ(u) ∈ L2(0, T ;H1(Ω)), b(u) ∈ L2(0, T ;H1(Ω)) and the following conditions hold:
∀k ∈ [0, umax], ∀ξ ∈ C∞0 ([0, T [×RN ), with ξ ≥ 0:∫ T

0

∫
Ω

{
|u− k|ξt + sign(u− k)

(
f(u)− f(k)−∇φ(u)

)
.∇ξ

}
dxdt

+

∫
Ω

|u0 − k|ξ(0, x)dx+

∫ T

0

∫
∂Ω

|f(k).η(x)− b(k)| ξ(t, x)dHN−1dt

−
∫ T

0

∫
∂Ω

|b(u)− b(k)|ξ(t, x)dHN−1dt ≥ 0. (1)

Here H represents the (N − 1)− dimensional Hausdorff measure on ∂Ω.

Remark 1. 1. The entropy solution in the sense of Definition 2.1 is in particular a weak solution.
Indeed, first take in inequality (1), k = 0 and use (H1). Next, take k = umax and use (H3).
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2. Let us stress that, in particular, the boundary condition (f(u) − ∇φ(u)).η = b(u) is verified
literally in the weak sense as in the case of zero flux boundary condition (see [2]). This contrasts
with the properties of the Dirichlet problem (see [5]); we expect that the boundary condition
should be relaxed if assumption (H3) is dropped (see [4, 3]) and numerical tests of section 5.

3. The integral in the boundary term is well defined due to the hypothesis (H2). We can use the
fact that the trace of b(u)(t, .) ∈ H1(Ω) on ∂Ω is well defined in L2(∂Ω) for t ∈ (0, T ) a.e.

According to the idea of J. Carrillo (cf [8]), we give an additional property of entropy solutions,
useful for the uniqueness techniques.

Proposition 1. Let ξ ∈ C∞([0, T [×RN ); then for all k ∈ [φc, umax]; for all D ∈ RN and for all entropy
solution u of (P ), we have:∫ T

0

∫
Ω

{|u− k|ξt + sign(u− k)(f(u)− f(k)−∇φ(u) +D).∇ξ} dxdt

+

∫
Ω

|u0 − k|ξ(0, x)dx−
∫ T

0

∫
∂Ω

|b(u)− b(k)| ξ(t, x)dHN−1dt

+

∫ T

0

∫
∂Ω

|b(k)− (f(k)−D).η(x)| ξ(t, x)dHN−1dt

≥ lim
σ→0

1

σ

∫ ∫
Q∩{−σ<φ(u)−φ(k)<σ}

∇φ(u).(∇φ(u)−D)ξ(t, x). (2)

In general, uniqueness for evolution equation of kind (P ) appear very difficult mainly for the
initial boundary values problems. In this context, the use of nonlinear semigroup techniques offers
many advantages. Let us present briefly another notion of solution coming from the theory of nonlinear
semigroups (see, e.g., [6]).

Definition 2.2. Let A be an m-accretive operator (see, e.g., [6]). Suppose that h ∈ L1(Q), u0 ∈ L1(Ω).
A measurable function v ∈ C([0, T ];L1(Ω; [0, umax]))1 is an integral solution of the abstract problem

vt +A(v) 3 h(t), v(t = 0) = u0, (3)

if v(0, .) = u0(.) and for all (u, z) ∈ A
d

dt
||v(t)− u||L1(Ω) ≤

∫
Ω

sign0(v(t)− u)(h(t)− z) +

∫
{v=u}

|h(t)− z| in D′(0, T ).

We will see that entropy and integral solution coincide in the case Ω = (a, b) an interval of R.

3. Existence of Entropy solution

The main result of this part is the following:

Theorem 3.1. Let N ≥ 1. Assume that (H1), (H2) and (H3) holds. Suppose that (f, φ) is non-
degenerate (in the sense of Definition 3.5 below). Then, there exists an entropy solution u for the
problem (P ).

To show the existence of entropy solutions, we approximate φ(u) by φε(u
ε) = φ(uε) + εId(uε) for

each ε > 0 and set bε(u
ε) = β ◦ φε(uε). We obtain the following regularized strictly parabolic problem

(Pε) with unknown uε

(Pε)

 uεt + div f(uε)−∆φε(u
ε) = 0 in Q =]0, T [×Ω,

uε(0, x) = uε0(x) in Ω,
bε(u

ε)− (f(uε)−∇φε(uε)).η = 0 on Σ =]0, T [×∂Ω,

where (uε0)ε is a sequence of smooth functions that converges to u0 a.e and respects the mini-
mum/maximum values of u0.

1Here, we will write L1(Ω; [0, umax]) for the set of all mesurable functions from Ω to [0, umax].



4 Gazibo M

Definition 3.2. Let u0 be a measurable [0, umax]-valued function. A function uε ∈ L2(0, T ;H1(Ω))
taking values on [0, umax] is called weak solution of problem (Pε) if : ∀θ ∈ L2(0, T ;H1(Ω)) ∩ L∞(Q)
such that θt ∈ L2(Q) and θ(T, .) = 0, one has∫ T

0

∫
Ω

{uεθt + (f(uε)−∇φε(uε)).∇θ} dxdt+

∫
Ω

uε0θ(0, x)dx

−
∫ T

0

∫
∂Ω

bε(u
ε)θdHN−1dt = 0. (4)

Theorem 3.3. For u0 ∈ [0, umax], assume (H1), (H2) and (H3) hold. Problem (Pε) admits a weak
solution uε which is also an entropy solution. In particular, we have 0≤ uε≤ umax. In addition, there
exists C independent on ε such that

||
√
ε∇uε||L2(Q) ≤ C; (5)

||φε(uε)||L2(0,T ;H1(Ω)) ≤ C; (6)

||bnε (uε)||L1(Σ) ≤ C and

∫
Σ

uεb
n
ε (uε) ≤ C. (7)

This result can be proved, e.g., using Galerkin method (cf [2]).

Lemma 3.4. Assume that the sequence (Ψj)j is such that: ||Ψj ||L2(0,T ;H1(Ω)) ≤ C and Ψj −→ Ψ in

L2(Q). Then γΨj −→ γΨ in L2(Σ), where γ is the trace operator.

The proof uses localization to a small neighbourhood of Σ.
To prove existence of entropy solution, we assume that the couple (f(.), φ(.)) is non-degenerate in the
sense of the following definition:

Definition 3.5. (Panov [12]). Let φ be zero on [0, uc], strictly increasing on [uc, umax] and a vector
f = (f1, ..., fN ). A couple (f(.), φ(.)) is said to be non-degenerate if, for all ξ ∈ RN\{0}, the functions

λ 7−→
∑N

i=1
ξifi(λ) are not affine on the non-degenerate sub intervals of [0, uc].

Theorem 3.6. (Panov [12]). Assume that (f, φ) is non degenerate in the sense of Definition 3.5. Suppose
uε, ε > 0, is a sequence such that

∃d > 1,∀l, r ∈ R with l < r

Tl,r(u
ε)t + div

(
f(Tl,r(u

ε))−∇φ(Tl,r(u
ε))
)

is pre-compact in W−1,d
Loc (Q).

Moreover, suppose uε, f(uε), φε(u
ε) are equi-integrable locally on Q. Then, there exists subsequence

(uε)ε that converges in L1
Loc(Q).

Proof of Theorem 3.1. (Sketched) The proof of existence of entropy solution uses Theorem 3.6 to
justify the passage to the limit in Q (for more details, see [2]) and Lemma 3.4 for boundary integral. �

4. Uniqueness result of Entropy Solution in one space dimension

The main result of this section is the following theorem:

Theorem 4.1. Suppose that Ω = (a, b) is a bounded interval of R, then (P ) admits a unique entropy
solution.

In order to study uniqueness in the framework of nonlinear semigroup theory, we consider for all
bounded function g taking values on [0, umax], the stationary problem (S) associated to problem (P ):

(S)

{
u+ div(f(u)−∇φ(u)) = g in Ω,
b(u)− (f(u)−∇φ(u)).η = on ∂Ω.
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The notion of entropy solution of (S) correspond to the time-independent entropy solution of (P )
with source term g−u. In the case where Ω = (a, b) is a bounded interval of R, we have an important
result, which states that, the total flux is regular at the points a and b. This kind of regularity seem
hard to obtain in multiple space dimensions for (S), and even in dimension N = 1 for (P ).

Proposition 2. For all measurable function g taking values in [0, umax] the problem (S) admits a
solution u such that (f(u) − φ(u)y) is continuous up the boundary, i.e., (f(u) − φ(u)y) ∈ C([a, b]).
Moreover, b(u)− (f(u)− φ(u)y).η(y) is zero at y = a and y = b. (Here η(a) = −1 and η(b) = +1).

From now, let’s define the operator Af,φ,b on L1 associated with regular solutions of (S) by its
graph:

(u, z)∈ Af,φ,b =
{
u such that u is an entropy solution of (S), with g = u+ z

}
.

Proposition 3. 1. Af,φ,b is accretive in L1(Ω).
2. For all λ sufficiently small, R(I+ λAf,φ,b) contains L1(Ω; [0, umax]).

3. D(Af,φ,b) = L1(Ω; [0, umax]).

For the proof of this proposition, we can refer to [2].
According to the general results of [6], it follows existence and uniqueness of integral solution in the
sense of Definition 2.1:

Corollary 1. Let Ω = (a, b), u0, û0 ∈ L1(Ω) and h, ĥ ∈ L1(Q). Let v, v̂ be integral solutions of (3) (with

operator Af,φ,b ) associated with the data (u0, h) and (û0, ĥ), respectively. Then for a.e. t ∈ [0, T ).

||v(t)− v̂(t)||L1 ≤ ||u0 − û0||L1 +

∫ t

0

||h(τ)− ĥ(τ)||L1dt.

Adapted to our case, we have the following result

Theorem 4.2. Let Ω = (a, b). Let v be an entropy solution of (P ) and u be an entropy solution of (S).
Then

d

dt
||v(t)− u||L1(Ω) ≤

∫
Ω

sign(v − u)(u− g)dx in D′(0, T ). (8)

In particular, v is an integral solution of (3) with h = 0.

Proof of Theorem 4.2 and Theorem 4.1. We consider v = v(t, x) an entropy solution of (P ) and u =
u(y) an entropy solution of (S). Consider nonnegative function ξ = ξ(t, x, y) having the property that
ξ(., ., y) ∈ C∞([0, T ) × Ω) for each y ∈ Ω, ξ(t, x, .) ∈ C∞0 (Ω) for each (t, x) ∈ [0, T ) × Ω. Apply the
doubling of variables [9] in the spirit of [2], we obtain this following inequality∫ T

0

∫
Ω

∫
Ω

|v − u|ξtdydxdt+

∫
Ω

∫
Ω

|v0 − u|ξ(0, x, y)dxdy

+

∫ T

0

∫
Ω

∫
Ω

sign(v − u)
[
(f(v)− φ(v)x)− (f(u) + φ(u)y)

]
.(ξx + ξy)

+

∫ T

0

∫
x∈∂Ω

∫
Ω

|b(u)− (f(u)− φ(u)y).η(x)| ξdydσdt

+

∫ T

0

∫
Ω

∫
y∈∂Ω

|b(v)− (f(v)− φ(v)x).η(y)| ξdσdxdt

+

∫ T

0

∫
Ω

∫
Ω

sign(v − u)(u− g(y))ξdydxdt

≥
∫ T

0

∫
x∈Ω

∫
y∈∂Ω

|b(u)− b(v)| ξdσdxdt+

∫ T

0

∫
y∈Ω

∫
x∈∂Ω

|b(u)− b(v)| ξdσdydt

+ lim
σ→0

1

σ

∫ T

0

∫∫
Ωc

x×Ωc
y∩{−σ<φ(v)−φ(u)<σ}

|φ(v)x − φ(u)y|2ξdydxdt ≥ 0. (9)
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Next, following the idea of [1], we take the test function ξ(t, x, y) = θ(t)ρn(x, y), where θ∈C∞0 (0, T ),
θ≥0, ρn(x, y)=δn(∆) and ∆=(1− 1

n(b−a) )x−y+ a+b
2n(b−a) . Then, ρn ∈ D(Ω×Ω) and ρn|Ω×∂Ω

(x, y) = 0.

Due to this choice, ∫ T

0

∫
x∈Ω

∫
y∈∂Ω

|b(v)− (f(v)− φ(v)x).η(y)| ρnθdydσdt = 0.

By Proposition 2, b(u)− (f(u)− φ(u)y).η(y) ∈ C0([a, b]). Therefore we have
|b(u)− (f(u)− φ(u)y).η(x)| −→ 0 when x→ y, i.e, as n −→∞. We conclude that

lim
n→∞

∫ T

0

∫
x∈∂Ω

∫
y∈Ω

|b(u)− (f(u)− φ(u)y).η(x)| ρnθdydσdt = 0.

with the calculation detailed in [2], we deduce that∫ T

0

∫
Ω

∫
Ω

θsign(v − u)
[
(f(v)− φ(v)x)− (f(u)− φ(u)y)

]
.
(
(ρn)x + (ρn)y

)
dydxdt→ 0.

Hence, we get (8) by passing to the limit in (9) with the above choice of ξ. Thus, the entropy solution
v of the problem (P ) is an integral solution of (3). This proves that v is a unique entropy solution due
to Corollary 1. �

5. Role of Hypotheses (H2), (H3) and some numerical illustrations

The numerical analysis of (P ) is not the aim of this paper, although we consider this alternative in a
future work. We present briefly the importance of the hypotheses (H2), (H3). We apply now the ideas
developped e.g., in the work ([11]) of Vovelle to construct a monotone scheme which take into account
the boundary condition. The interval [0,1] is divided into I cells and the numerical approximation at
t = nδt in the cell number i is :

∀i ∈ {1, ..., I} : u0
i =

1

δx

∫ iδx

(i−1)δx

u0(x)dx (10)

un+1
i = uni −

δt

δx

(
F (uni , u

n
i+1)− F (uni−1, u

n
i )−

φ(uni+1)− 2φ(uni )+ φ(uni−1)

δx

)
(11)

with the boundary conditions taken into account via

un+1
1 = un1−

δt

δx

(
F (un1 , u

n
2 )− φ(un2 )− φ(un1 )

δx
− b(un1 )

)
. (12)

un+1
I = unI −

δt

δx

(
b(unI )− F (unI−1, u

n
I )+

φ(unI )− φ(unI−1)

δx

)
. (13)

Here, F is a numerical flux which we assume monotone, consistent, Lipschitz continuous (see [11]).
In the sequel, we take u0(x) = 0.7 if x ∈ [ 1

2 , 1] and u0(x) = 0 if x ∈ [0, 1
2 [ for Figure 1, Figure 2,

Figure 3 and u0(x) = sin(y) for Figure 4. We take φ(u) = (u − 0.6)+, δx = 0.01, δt = δx2

2 , and
consider a numerical solution at time t = 0.1. Initially, we remove the hypothesis (H3), by taking

f(u) = u2

2 and b(u) = φ(u), we observe numerically the loss of maximum principle (see Figure 1 ).
Our entropy formulation requires to choose b(u) in the functional space that permit to define the
trace of b(u) on the boundary. In the context where assumption (H2) is not taken into account,
b(u) = u and f(u) = u(1− u)1[0,1]; numerically, we observe a boundary layer (see Figure 2 ) and this
is confirmed by theorical results of [4]. Now, taking into account assumptions (H3), (H2), with data
f(u) = u(1 − u)1[0,1]; b(u) = φ(u) the numerical observation shows that the boundary condition at
x = 0 and x = 1 is verified literally and the numerical solution respect the maximum principle (see
Figure 3 and Figure 4).
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Figure 1. Figure 2.

Figure 3. Figure 4.
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