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Editorial Preface 
 
A typical question that almost all of us (the authors’ team and other colleagues) has been 
asked not only once has in general the meaning (although usually being shorter): “What is the 
best method for modeling of light diffraction by periodic structures?” Unfortunately for the 
grating codes users, and quite fortunately for the theoreticians and code developers, the 
answer is quite short, there is no such a bird like the best method. 
 In the more than 30 years active studies on the subject, I have worked on the theory 
and numerical applications of several approximate methods, like Rayleigh expansion, 
coupled-wave theory, beam propagation method, first-order approximations, singular Green’s 
function approximation, effective index medium theory, etc. My conviction is that they are 
quite useful (otherwise why to exist) for physical understanding, but my heart lies in what is 
considered as rigorous grating theories. Name ‘rigorous’ is used in the sense that in 
establishing the theories, exact vector macroscopic Maxwell equations and boundary 
conditions are applied without approximations. The approaches become approximate after 
computer implementation, due to the impossibility to work with infinite number of equations 
and unknowns, and due to the finite length of the computer word.   
 Of course, there are always initial approximations and assumptions, like the infinite 
dimensions of the grating plane, linearity of the optical response, etc. From physical point of 
view, the main feature of the methods, presented in this book are characterized by the use of 
optical parameters of different substances as something given by other physical optics 
theories and the experiment as an ultimate judge.  
 The necessity to use more than a single rigorous method comes from practice: 
different optogeometrical structures made of different materials and working in different 
spectral regions require a variety of methods, because each one is more effective in some 
cases, and less effective (or failing completely) in others. In addition, each approach is a 
subject of constant research and development. Grating modeling, grating manufacturing and 
grating use go hand in hand, and practice provides strong stimuli for the theory development. 
Vice versa, recent grating technologies and application cannot advance without proper 
theoretical and numerical support.  

When I started my grating studies, the method of coordinate transformations that uses 
eigenvector technique to integrate the Maxwell equations (sometimes known as the C-
method) has just been formulated. It worked perfectly for holographic grating whatever the 
polarization and the grating material, but failed completely for grooves with steep facets. It 
took more than 15 years to refine its formulation, so that now it can deal with echelles and 
pyramidal bumps (in the case of two-dimensional periodicity) with slopes up to 87 deg 
steepness. However, the method is not at all adapted to lamellar gratings. On the other hand, 
the Fourier modal method (also known as Rigorous coupled-wave approach, RCW) is perfect 
for such profiles, but its use in the case of arbitrary grating profiles (e.g., sinusoidal or 
triangular profiles) in case of metallic grating material causes problems when using a staircase 
approximation of the profile. The differential method does not use this approximation and 
could deal with arbitrary profiles, but it took more than 20 years to make it working with 
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metallic gratings in TM (p, or S) polarization. And quite ironically, the improvement came 
from advances in the competing RCW approach. 

These methods are relatively easy for programing nowadays, after solving the 
numerical problems due to growing exponentials and factorization rules of the product of 
permittivity and electric field, however there are still some persisting problems for highly 
conduction metals. In addition, neither the differential, nor the Fourier modal methods can 
deal with infinitely conducting gratings. 
 Several methods are quite flexible concerning the geometry of the diffracting objects 
and the grating material. For example, the integral method can treat inverted profiles, rod 
gratings with arbitrary cross section, finitely or infinitely conducting materials in any 
polarization, but its programming require deep mathematical understanding of the 
singularities and integrability of the Green’s functions. Other two flexible methods are quite 
famous and widely used, even in the form of commercially available codes. These are the 
finite-element method, and the finite-difference time domain method. The flexibility with 
respect to the geometrical structure, optical index inhomogeneity and anisotropy, etc. has to 
be paid by the necessity of sophisticated meshing algorithms and very large sparse matrix 
manipulations. 
 These few examples represent only the top of the iceberg, and are invoked to illustrate 
the basic idea that the best method has not been invented, yet. Probably never. 
 We have tried to gather a team of specialists in rigorous theories of gratings in order to 
cover as large variety of methods and applications as practically possible. The last such effort 
dates quite long ago, and it has resulted in the famous Electromagnetic Theory of Gratings 
(ed. R. Petit, Springer, 1980), a book that has long served the community of researchers and 
optical engineers, but that is now out of press and requires a lot of update and upgrade, 
something that we hope to achieve, at least partially with this new book. 
 Our choice of electronic publishing is determined by the desire to ensure larger free 
access that is not easily available through printed editions. I want to thank all the contributors 
to this Edition. Special thanks are due to my colleagues Fréderic Forestier and Boris Gralak 
for the technical efforts to make the electronic publishing possible. 
 
Marseille, France                 Evgeny Popov 
December 2012 
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