

Summary

- BATNRJ Project
- Objectives and constraints
- Solar radiation estimation
- Temperature estimation
- Conclusion
- Prospects

BATNRJ project

- Monitoring system designed to improve energy efficacy of buildings
- Meteorological parameters acquisition
- Energy measurement

Instrumented sites

Place	Building type
Perpignan, Saint-Charles	Offices + 200 m ² manufacturing area
Meudon, Paris region	23 000 m ² individual offices or open spaces, positive energy building
Montpellier	Offices + datacenter

Sensors

About 400 sensors of various types installed:

- Temperature (ambient and radiative)(120)
- Energy consumption (electricity, gas, water)(50)
- Air speed (80)
- Humidity (60)
 - $CO_2(30)$

Solar radiation (10)

Sensor failures

- During the system development phase, failures occur due to:
 - Sensor batteries discharged
 - Network error
 - Sensor malfunction
- About 2% data missing
- Variable duration

Objectives and constraints

- Knowing the mean duration of failures, goal is to develop a correction system for solar radiation and temperature capable of:
 - 24-hour estimation
 - Efficient estimation between 1 and 3 hours
 - Minimal calculation time to integrate algorithm into an existing server without penalizing other installed applications

Solar radiation estimation

- Low priority: estimation can be done at the end of the day
- Interpolation made by fitting the available values to a function with a least square criterion
- Data measured each 30 seconds, then averaged over a period of one hour: equivalent to a low-pass filtering that decreases influence of rapid clouds

Equations used for fitting

Gaussian: based on repartition function equation

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} * exp^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma^2}\right)^2}$$

$$p(t,A) = A_1 * exp^{-\left(\frac{t-A_2}{A_3}\right)^2} + A_4$$

Cosine: based on theorical solar radiation equation

$$G0 = \varepsilon_0 * (1 + 0.0334 * cos(w * (j - 2))) * sin(h)$$

$$p(t, A) = A_1 * cos(A_3(t - A_2)) + A_4$$

Data set splitting according to a perturbation level

Perturbation level	Occurrence percentage
Low	50%
Medium	30%
High	20%

Data estimation for a 4-hour failure

Low perturbation

$$\varepsilon_{GAUSSIAN} = 7.9\%$$
; $\varepsilon_{COS} = 7\%$

Medium perturbation

$$\varepsilon_{GAUSSIAN}$$
 = 22%; ε_{COS} = 24%

Green circles: data used for fitting; Black circles: missing data; Blue line: Gaussian approach; Red dashed line: cosine approach

Mean relative error

Mean relative error according to failure duration for each level of perturbation

Blue line: Gaussian approach

Red dashed line: cosine approach

Average error weighted by failure distribution

Perturbation level	Gaussian fit error	Cosine fit error
Low	8.0%	8.33%
Medium	16.8%	18.6%
High	23.1%	26.2%

Gaussian approach more accurate

Temperature estimation

- Estimation of indoor or outdoor temperature
- Real-time estimation based on the concept of time series
- Flexibility, no need to wait failure ending
- Developed with artificial neural networks (multilayer Perceptron)

Concept of time series

 Neural network handled by GNU Octave and nnet package

Neural network training

- Training phase using Levenberg-Marquardt algorithm
- Training examples covering a whole year (January to August)
- Parametric study to find optimal network topology by adjusting:
 - Size of the estimation support
 - Number of hidden neurons
 - Number of training examples

Mean relative error

Best results with 200 training examples, a 3-hour estimation support and 15 to 20 hidden neurons

Estimation error according to horizon with optimal topology

Data estimation for a 24-hour failure

Blue line: measured data; Red dashed line: estimated data

Conclusion

- Solar radiation estimation:
 - Efficient tool
 - For short failures, mean relative error ranges from 3 to 8%
 - At least 4 or 5 valid values to preserve accuracy
 - Difficulties to model very cloudy days

Temperature estimation:

- Good accuracy up to a 24-hour failure
 - With optimal topology, error lower than 6%

Prospects

- Humidity estimation to compute thermal comfort
- Building modelling using Energy+ software
- Predictive HVAC system regulation in tertiary buildings

Any questions?