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Abstract—The BATNRJ project, managed by Pyrescom, fo-
cuses on improving energy efficiency while preserving comfort
in tertiary buildings. To this end, an open and cost-friendly
monitoring solution based on instrumentation as well as analysis
and control tools is being developed. Solar radiation and indoor
temperature being key parameters, the present paper deals
with estimating missing data in case of sensor failures. First,
solar radiation is interpolated using as a basis the Gaussian or
the Cosine function. Mean relative error is about 10%. Then,
based on the concept of time series, feedforward artificial neural
networks are used to estimate up to the next 24 hours missing
data about indoor temperature. We obtained accurate results,
especially for failures limited to 3 hours. The mean relative error
does not exceed 6%, even in case of long sensor failures.

I. I NTRODUCTION

With the aim of optimizing energy management in tertiary
buildings, the Pyrescom Company (www.pyres.com) has de-
veloped a monitoring system that carries out meteorological
parameters and energy measurements. These data are used
to find out possible ways to improve energy efficiency in
such buildings and to develop an efficient HVAC (Heating,
Ventilation and Air-Conditioning) control strategy. In case of
sensor failures, measurements cannot be performed and/or sent
to the storing database. These failures have several starting
points. First, some sensors operate on batteries and these
are not replaced in time despite proper warnings. Secondly,
failures may be caused by the impossibility of sending the
data or more rarely by a sensor malfunction. Because the de-
velopment of an efficient energy management system requires
real-time data, we propose tools for missing data estimation.
Two parameter measurements require missing data assessment:
solar radiation and indoor temperature. Solar radiation is
related to the potential of the instrumented area for a future
solar installation while temperature is linked to both the HVAC
system control and thermal comfort.

Since 2010, many different sensors have been installed by
the Pyrescom Company on several pilot sites, including about
120 temperature and many solar radiation sensors. After
having analyzed every error that occurred on the different
sensors (Figure 1), it has been noticed that about 2% of the
measurements are actually missing. The duration of these
failures varies, and its repartition is similar for each kind
of sensor: 70% of failures last less than 3 hours and they
rarely exceed 24 hours. In average, a sensor fails about
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Fig. 1. Failure percent according to their duration in hours

12 hours per month. From this observation, our goal was
to develop a correction system intended to estimate the
missing data on a 24 hours time scale with an optimized
estimation between 1 and 3 hours. Specially developed
algorithms must be integrated into an existing server with
a minimal calculation time in order to avoid penalizing the
other installed applications.

In the literature, several methods have been developed to
perform solar radiation or temperature estimation. Paulescu’s
work [1] is based on the Angstrom’s equation that uses
outdoor temperature instead of solar radiation duration.
Dimas [2] first determined from outdoor humidity an
atmospheric transmittance coefficient. With this coefficient
and the temperature, he developed a statistical method to
assess the solar radiation amplitude. Ruano [3] and Thomas
[4] built an indoor temperature prediction algorithm basedon
artificial neural networks. This algorithm uses several outdoor
parameters such as temperature, humidity, and solar radiation
to quantify the indoor warming. These models can be used
to estimate missing measurements of a failing sensor from
data acquired by other working sensors of the monitoring
system. In 1996, Khotanzadet al. [5] used artificial neural
networks to forecast hourly temperature values for the next



seven days, using daily high and low temperatures and an
adaptative daily update of the weights. In 2000, Chen and
Hwang [6] used fuzzy time series to deal with temperature
forecasting problems and overcome the drawback related to
historical data represented by linguistic values. They proposed
a new fuzzy time series model, called two-factor time-variant
fuzzy time series model. Based on the proposed model, they
developed two algorithms for temperature prediction and
obtained good forecasting results. In 2002, Tassadduqet al.
[7] used artificial neural networks to forecast the temperature
at a given hour of the next day, only using the temperature
at the same hour of the present day. In 2011, Eynardet al.
[8] used a wavelet-based multi-resolution analysis as wellas
artificial neural networks to forecast outdoor temperature. The
discrete wavelet transform allowed decomposing sequences
of past data in subsequences according to different frequency
domains while preserving their temporal characteristics.
From these coefficients, artificial neural networks were used
to estimate future subsequences. Future values of outdoor
temperature were obtained by simply summing up the
estimated coefficients.

In this paper, when a sensor fails, we use data anterior
and/or posterior to the failure in order to rebuild the missing
information. Two different approaches are presented : an
interpolation technique is used for the estimation of missing
solar radiation data whereas an extrapolation technique
based on artificial intelligence deals with indoor temperature
estimation. Using a feedforward neural network (a multi-layer
Perceptron), we developed an estimation tool based on the
concept of time series. With this concept, missing values
about indoor temperature are estimated using observed values
(data provided by the considered sensor just before its failure)
only. In this paper, we focus on the developement phase of the
tool. As a result, we highlight an optimal configuration based
on the number of hidden neurons (related to the number of
parameters of the developped model), the estimation support
size and the number of examples used to train the network.
The proposed tools will be implemented in embedded systems
with low energy consumption requirement to manage energy
resources in buildings.

II. SOLAR RADIATION ESTIMATION

This section of the paper deals with estimating missing
solar radiation data. Since the latter has a lower priority than
temperature data, its correction is simply done at the end ofthe
day using all valid measurements available. Data acquisition
takes place every 30 seconds and is then averaged over a
period of 60 minutes. Equivalent to low-pass filtering the data,
averaging decreases the influence of rapid clouds. However,
data can be strongly altered by clouds staying in front of the
sun for a long period of time.

In order to check the model against the different
meteorological conditions, solar radiation data set has been
divided in three categories depending on a subjectively

defined perturbation level :

• Low: no significant impact of clouds,
• Medium: some radiation values are strongly attenuated,
• High: very cloudy day with a significant impact on solar

radiation.

TABLE I
OCCURENCE PERCENT ACCORDING TO THE PERTURBATION LEVEL

Perturbation level Occurrence percentage

Low 50%

Medium 30%

High 20%

Table I shows the repartition of days according to the
perturbation level. Half of the measurements shows no trace
of cloud perturbation and 80% allows to clearly observe
a typical solar radiation bell curve. As a consequence, the
approximation is achievable in the majority of cases.

A. Approach

An appropriate equation with a reasonnable number of
parameters is needed to fit the bell shape with a non-linear
regression. First, several distribution equations have been
tested: Lorentzian, Lognormal and Gaussian ; the latter gave
the best results. The equation of a Gaussian curve can be
written as follows :
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1
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We rewrite (1) to consider a potential offset (A4) and to
emphasize the fit parametersA1, A2, A3, and A4. These
parameters are gathered in the vectorA = [A1, A2, A3, A4].

p(t, A) = A1 ∗ exp
−
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t−A2

A3

)

2

+A4 (2)

A second solution is to use as template a sinusoidal function,
based on the theoretical solar radiation equation [9]:

G0 = ε0 ∗ (1 + 0.0334 ∗ cos(w ∗ (j − 2))) ∗ sin(h) (3)

G0 : global horizontal of solar radiation on the upper
limit of the atmosphere;

w : angular speed of sun above skyline;
j : day of the year;
h : solar height;
ε0 : solar constant.

As for the Gaussian, we rewrite equation (3) by adding an
offset and emphasizing fit parameters:

p(t, A) = A1 ∗ cos(A3(t−A2)) +A4 (4)

To interpolate missing values, we approach the curve of
both functions by a non-linear least-square criterion [10]. This
standard method is not detailed here. The partial derivatives
equations required to complete the Jacobian matrix are specific



to our application and given below for both the Gaussian and
Cosine fits.
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An intial guess for theA vector is necessary for the
first iteration.A = [500, 12, 3, 10] has been chosen for the
Gaussian algorithm andA = [500, 12, 0.6, 10] for the Cosine
algorithm. These coefficients define curves whose shapes are
close to daily measurements. This minimizes the divergence
risk, accelerates calculation convergence, and reduces the
required computation time.

Using 4 coefficients requires a minimum of 4 measures
to perform the fit. If too many values are missing, the least
square algorithm cannot be executed. We assume that the solar
radiation values are similar to those of the previous day and
we use the previous day computed coefficients for the current
day. To judge approximation’s quality, mean relative errorε
is computed by equation (7) once the algorithm is complete:
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In (7), p̂i is the solar radiation estimated value at the time
ti. Since values during the night are irrelevant, they are simply
ignored. Day/night separation is defined by a threshold at
25W/m2, which eliminates low values of the regression.

B. Missing values estimation

The accuracy of both approaches (Gaussian and Cosine)
has been compared for each of the three perturbation levels
previously defined. Data used to perform the study have been
measured from February 2010 to December 2011. To carry
out consistent tests, daily failures have been simulated inthe
following manner. First, a one hour long failure is randomly
introduced during the day. Then, it is successively increased by
one hour steps up to a total duration of 24 hours. Two quality
indicators are computed. The first one is a mean relative error ε
that is determined only for interpolated values. The secondone
is a weighted mean relative error indicatorεw that corresponds
to ε for each failure duration.εw is calculated with equation
(8), in which wh is the failure percentage duringh hours
(
∑24

h=1 wh = 1) and εh the error associated to this same
duration:

εw =

24
∑

h=1

wh ∗ εh (8)
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Fig. 2. Mean relative error, according to the duration of thefailures, for each
level of perturbation (low, medium, and high) and both proposed approaches:
Gaussian (blue solid line) and Cosine (red dashed line)

C. Results

In a regression using all available measurements, the Cosine
approach turns out to be a little more accurate than the
Gaussian approach, assuming low or no cloud perturbation. In
the other cases, the Gaussian approach is always more efficient
with a reduced mean relative error of about 2 to 3%.

The same trend is observed when simulating missing val-
ues with the Gaussian approach being the most accurate
(Figure 2). The mean relative error increases slightly as the
duration of the failures increases from 1 to 12 hours: the
algorithm can correctly estimate missing values. Beyond this
threshold, the error tends towards 25%: the number of days
with more than 4 valid measurements during daytime de-
creases, and the algorithm shall use the past day values to
carry out the estimation. This method should be improved.

Table II summarizes performance for all type of perturba-
tions, with the weighted mean relative error (8).

TABLE II
WEIGHTED MEAN RELATIVE ERROR ACCORDING TO THE PERTURBATION

LEVEL

Perturbation Gaussian Cosine

Level fit error fit error

Low 8.00% 8.33%

Medium 16.77% 18.58%

High 23.07% 26.22%

Respectively classified in ’low’ and ’medium’ perturbation
levels, figures 3 and 4 show a fit of data from which values
have been deliberately removed from 12 to 15 PM. For the day
with low perturbation level (July29th, 2011), both approaches
give similar results. For the second day (August3rd, 2011),
the Gaussian approach is 2% better than the Cosine approach,
whereas data are relatively spread.

Results are satisfying and the approach by the Gaussian
algorithm will be preferred for its greater accuracy. Moreover
using least square criterion allows to work with data sets
presenting irregular steptimes due to missing points.

III. I NDOOR TEMPERATURE ESTIMATION

Another tool is proposed to estimate missing indoor temper-
ature data. To this end, a real-time estimation algorithm based
on the concept of time series has been developed. A time series
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Fig. 3. Fit of incomplete solar radiation data (low perturbation). Green
circles: Data used for fitting; Green triangles: Missing data; Blue solid line:
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Fig. 4. Fit of incomplete solar radiation data (medium perturbation). Green
circles: Data used for fitting; Green triangles: Missing data; Blue solid line:
Gaussian approach withε = 22.03%; Red dashed line: Cosine approach with
ε = 24.00%

is a sequence of data points, measured typically at successive
time instants and spaced at uniform time intervals. Time series
estimation deals with the development of a model to estimate
future values using observed values only (i.e. data provided
by a given sensor before its failure). With an interpolation
algorithm, the faulty sensor has to be working again to enable
missing data estimation. In addition, the dysfunction period of
time has to be short. Time series estimation allows flexibility.

A. Approach

Feedforward artificial neural networks are widely used in
time series estimation [11][12][13]. That is why we decidedfor
a Multi-Layer Perceptron (MLP) neural network to estimate
missing indoor temperature data. Such a network is capable
of approximating any nonlinear continuous function to any
desired degree of accuracy with one hidden layer and an
appropriate number of neurons. A too small (resp. large)
number of hidden neurons leads to under-parametrized (resp.
over-parametrized) models. In this case, approximation isbad
what leads to a poor generalization ability. Hidden neurons
use non-linear activation functions while output neurons use
linear functions. With this topoloy, one can approximate any
nonlinear function to any desired degree of accuracy if the

number of hidden neurons is sufficiant. Feedforward neural
networks are universal approximators [14].

We used the ”GNU Octave” software [15] as well as the
nnetpackage [16] to develop the model (Figure 5). First, the
network has to be trained using examples to understand the dy-
namics of the indoor temperature measured by the considered
sensor. The training phase allows the network parameters tobe
identified. The Levenberg-Marquardt algorithm [17][18] was
used. It is a standard technique to solve non-linear least-square
problems. This algorithm is a combination of two minimiza-
tion approaches: the gradient descent method and the Gauss-
Newton method. In the gradient descent method, the sum of
the squared errors is reduced by updating the parameters (the
synaptic weights and the biases when using artificial neural
networks) in the direction of the greatest reduction of the
least squares objective. In the Gauss-Newton method, the sum
of the squared errors is reduced by assuming that the least
squares function is locally quadratic and finding the minimum
of the quadratic. So, the Levenberg-Marquardt method acts
like a gradient-descent method when the parameters are far
from their optimal values and like the Gauss-Newton method
when these parameters are close to these values.

The validation phase allows highlighting the right topology
of the network. As previously mentioned in the paper, failure
duration is less than 3 hours in 70% of cases and less than
24 hours in 90%. That is why we set the estimation horizon
to 24 hours. Moreover, a key point in time series estimation
is to work out the observed values to be taken into account
(named ”estimation support”).

Fig. 5. Time series estimation using a feedforward neural network. k is the
time index, n is the estimation support size and m is the horizon

B. Training and validation phases

A sliding window mechanism was used to obtain training
and validation subsets. Examples are defined by an estimation
support (the considered observed values) and an horizon (as
previously mentioned, set to 24 hours). To favour efficiency
during the learning process of the artificial neural network
used, the training and validation examples were normalized
between -1 and 1. The error goal and the maximum training
epochs were set to 10% and 100, respectively. In this paper,
we discuss about training examples and observed values. An
observed value is only suitable when correlation with missing
data is high. In addition, examples have to cover most of
the possible cases the network will have to handle. As a
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consequence, indoor temperature examples covering a whole
year are mandatory to achieve a good training of the network.
The validation phase allows checking if the trained network
generalizes well and its ability to use learned informationin
new or partially unknown situations.

C. Optimal configuration and results

We considered training sets of 100, 200, 300 and 400
examples, respectively. Examples were picked randomly from
indoor temperature data we collected during a period of height
months (January to August, 2011). The number of hidden
neurons and the estimation support size range from 10 to 30
and from 1 to 10 hours, respectively. To avoid non-significant
results due to a bad convergence of the Levenberg-Marquardt
algorithm or related to parameters initialization, the network
was trained ten times for a given configuration. The models
were validated using indoor temperature data from September
2011 to July 2012. Figures 6 to 9 depict the way the weighted
(by the duration of the failures) mean relative error evolves,
according to the just-mentioned parameters (the number of
hidden neurons and the estimation support size), for the four
training sets we considered.
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develop the model)

First, the number of examples used to train the network has
to be chosen carefully. With 100 examples, a large number of
configurations provide good temperature estimations. When
adding examples to the training subset, good configurations
are less numerous. Overfitting seems to be more frequent.
When using more than 200 examples to train the network,
additional data do not provide pertinent information about
indoor temperature behaviour. As a result, for most of the
configurations, the weighted mean relative error increases. In
addition, using more than three hours as estimation supportis
not recommended, because of low correlation levels between
the observed data we consider and the (missing) data to be
estimated. Generalization ability is clearly impacted by the
estimation support size. Moreover, taking a look at the way
the network’s topoloy impacts on accuracy, one can highlight
that 15 to 20 neurons are needed for a good estimation of
missing data. More than 20 neurons leads to overfitting.
So, the optimal configuration we obtained is the following one:

• One hidden layer with 15 to 20 neurons,
• An estimation support of 3 hours,
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• 200 examples to train the feedforward network.

Figure 10 depicts the mean relative error we obtained during
the validation phase of the optimal network (using September
2011 to July 2012 data), according to the estimation horizon.
With an horizon shorter than 4 hours, the mean relative error
is lower than 4%. This error reaches 6% with an horizon of 12
hours then deacreases slowly up to 5% with an horizon of 24
hours. Figure 11 shows estimated indoor temperatures for a 24-
hour failure, starting at 3 PM (November15th and16th, 2011).
The developed algorithm tends to underestimate the missing
values of some tenth of degrees but accuracy is sufficient to
manage energy resources in tertiary buildings efficiently,in
case of sensor failure.

IV. CONCLUSION

The present paper deals with the development of estimation
tools in case of missing data due to failures of sensors
implemented in tertiary buildings. Solar radiation and indoor
temperature are the two considered parameters. First, solar
radiation missing data have been efficiently estimated using
the Gaussian or the Cosine function. In case of sensor failures
limited to a few hours only, mean relative error ranges between
3 and 8%. As a key point, the proposed algorithm needs at
least 4 or 5 valid values of solar radiation in a day to preserve
accuracy. As expected, and because of difficulties in modelling
cloud phenomena, error increases for very cloudy days.

In a second time, based on the concept of time series,
a feedforward artificial neural network is used to estimate
missing data about indoor temperature up to the next 24
hours. A parametric study has been carried out to find the
right topology of the network, an adequate number of training
examples and, finally, the observed values to be taken into

account. The results we obtained are very satisfactory. Using
the proposed approach, the mean relative error observed does
not exceed 6%, even in case of long sensor failures.

These estimation tools will be now implemented in a
commercial embedded system with low energy consumption
requirement, developed by Pyrescom. This open and cost-
friendly monitoring solution will be used in tertiary buildings
to control HVAC (Heating, Ventilation and Air-Conditioning)
systems and manage energy resources while ensuring thermal
comfort.
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