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Abstract—The BATNRJ project, managed by Pyrescom, fo- More than 24h
cuses on improving energy efficiency while preserving comifo
in tertiary buildings. To this end, an open and cost-friendly
monitoring solution based on instrumentation as well as anlgsis 12 to 24h
and control tools is being developed. Solar radiation and idoor
temperature being key parameters, the present paper deals
with estimating missing data in case of sensor failures. Ft,
solar radiation is interpolated using as a basis the Gaussimor
the Cosine function. Mean relative error is about 10%. Then,
based on the concept of time series, feedforward artificial eural
networks are used to estimate up to the next 24 hours missing 4to 11h
data about indoor temperature. We obtained accurate resuk,
especially for failures limited to 3 hours. The mean relatie error
does not exceed 6%, even in case of long sensor failures.

1 hour

3h
I. INTRODUCTION

With the aim of optimizing energy management in tertiary 2h
buildings, the Pyrescom Company (www.pyres.com) has de-
veloped a monitoring system that carries out meteoroldgica Fig. 1. Failure percent according to their duration in hours
parameters and energy measurements. These data are used
to find out possible ways to improve energy efficiency in
such buildings and to develop an efficient HVAC (Heatindl2 hours per month. From this observation, our goal was
Ventilation and Air-Conditioning) control strategy. Inseaof to develop a correction system intended to estimate the
sensor failures, measurements cannot be performed amaor snissing data on a 24 hours time scale with an optimized
to the storing database. These failures have severalngtargéstimation between 1 and 3 hours. Specially developed
points. First, some sensors operate on batteries and thalg®rithms must be integrated into an existing server with
are not replaced in time despite proper warnings. Seconddyminimal calculation time in order to avoid penalizing the
failures may be caused by the impossibility of sending thather installed applications.
data or more rarely by a sensor malfunction. Because the de-
velopment of an efficient energy management system requiresn the literature, several methods have been developed to
real-time data, we propose tools for missing data estimatigperform solar radiation or temperature estimation. Paules
Two parameter measurements require missing data assdssnvesrk [1] is based on the Angstrom’s equation that uses
solar radiation and indoor temperature. Solar radiation é&itdoor temperature instead of solar radiation duration.
related to the potential of the instrumented area for a &ituDimas [2] first determined from outdoor humidity an
solar installation while temperature is linked to both théNd  atmospheric transmittance coefficient. With this coeffitie
system control and thermal comfort. and the temperature, he developed a statistical method to

Since 2010, many different sensors have been installed dgsess the solar radiation amplitude. Ruano [3] and Thomas
the Pyrescom Company on several pilot sites, including tibdd] built an indoor temperature prediction algorithm based
120 temperature and many solar radiation sensors. Afaatificial neural networks. This algorithm uses severatioot
having analyzed every error that occurred on the differeparameters such as temperature, humidity, and solar i@adiat
sensors (Figure 1), it has been noticed that about 2% of tteequantify the indoor warming. These models can be used
measurements are actually missing. The duration of thdseestimate missing measurements of a failing sensor from
failures varies, and its repartition is similar for each kkindata acquired by other working sensors of the monitoring
of sensor: 70% of failures last less than 3 hours and thsystem. In 1996, Khotanzaet al. [5] used artificial neural
rarely exceed 24 hours. In average, a sensor fails aboetworks to forecast hourly temperature values for the next



seven days, using daily high and low temperatures and @gfined perturbation level :
adaptative daily update of the weights. In 2000, Chen and
Hwang [6] used fuzzy time series to deal with temperatures Low: no significant impact of clouds,

forecasting problems and overcome the drawback related tq@ Medium: some radiation values are strongly attenuated

historical data represented by linguistic values. Theypsed o High: very cloudy day with a significant impact on solar
a new fuzzy time series model, called two-factor time-vatria radiation.

fuzzy time series model. Based on the proposed model, they

developed two algorithms for temperature prediction and TABLE |

Obtained gOOd forecasting results. |n 2002, Tassadﬁuql. OCCURENCE PERCENT ACCORDING TO THE PERTURBATION LEVEL
[7] usgd artificial neural networks to foreqast the tempemat Perturbation level _ Occurrence percentage

at a given hour of the next day, only using the temperature Low 50%

at the same hour of the present day. In 2011, Eyredrdl.

[8] used a wavelet-based multi-resolution analysis as aell
artificial neural networks to forecast outdoor temperattites
discrete wavelet transform allowed decomposing sequences . )
of past data in subsequences according to different freuen 12ble | shows the repartition of days according to the
domains while preserving their temporal characteristicBerturbation level. Half of the measurements shows no trace
From these coefficients, artificial neural networks weredus@' cloud perturbation and 80% allows to clearly observe
to estimate future subsequences. Future values of outdBofYPic@l solar radiation bell curve. As a consequence, the
temperature were obtained by simply summing up tPproximation is achievable in the majority of cases.

estimated coefficients. A. Approach

Medium 30%
High 20%

In this paper, when a sensor fails, we use data anteri0|An appropriate equation with a reasonnaple numbe_r of
and/or posterior to the failure in order to rebuild the nrigsi parameters is needed to fit the bell shape with a non-linear

. . : . regression. First, several distribution equations havenbe
information. Two differen roach re presen : . :
ormatio o different approaches are presented .?ested: Lorentzian, Lognormal and Gaussian ; the lattee gav

interpolation technique is used for the estimation of migsi the best results. The equation of a Gaussian curve can be
solar radiation data whereas an extrapolation technique ' q

based on artificial intelligence deals with indoor tempanet written as follows :

estimation. Using a feedforward neural network (a mulela 1 C1(zp)?
Perceptron), we developed an estimation tool based on the flx) = xexp ?
concept of time series. With this concept, missing values ) ) _
about indoor temperature are estimated using observedsaly Ve rewrite (1) to consider a potential offsel) and to
(data provided by the considered sensor just before itsrégil emphasize the fit pafam?te”ﬁl' Az, A3, and A4 These
only. In this paper, we focus on the developement phase of fyrameters are gathered in the vector Ay, Az, A3, Ad].
tool. As a result, we highlight an optimal configuration tdhse t—Ap\2

on the number of hidden neurons (related to the number of p(t, A) = Aq = 633p_(A—3) + Ay ()

parameters of the developped model), the estimation sUpporA second solution is to use as template a sinusoidal function

size and the number_of examples used_ to train the netwogé'sed on the theoretical solar radiation equation [9]:
The proposed tools will be implemented in embedded systems

with low energy consumption requirement to manage energy

)

ovV2r

resources in buildings. Go =¢e0* (14 0.0334 x cos(w * (j — 2))) x sin(h) (3)
Go : global horizontal of solar radiation on the upper
[I. SOLAR RADIATION ESTIMATION limit of the atmosphere;

This section of the paper deals with estimating missing” ~ : @ngular speed of sun above skyline;
solar radiation data. Since the latter has a lower priotignt ~ J - day of the year;
temperature data, its correction is simply done at the etideof 7 Solar height;
day using all valid measurements available. Data acquiisiti <0 : Solar constant.
takes place every 30 seconds and is then averaged over As for the Gaussian, we rewrite equation (3) by adding an
period of 60 minutes. Equivalent to low-pass filtering théagla Offset and emphasizing fit parameters:

averaging decreases the influence of rapid clouds. However, A = A At — A A 4
data can be strongly altered by clouds staying in front of the p(t,4) 1% cos( s 2)) + A4 “)
sun for a long period of time. To interpolate missing values, we approach the curve of

In order to check the model against the differertoth functions by a non-linear least-square criterion [Tbijis
meteorological conditions, solar radiation data set hanbestandard method is not detailed here. The partial derizgtiv
divided in three categories depending on a subjectivedguations required to complete the Jacobian matrix arefgpec
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to our application and given below for both the Gaussian and30
Cosine fits.
o 7(”4‘2)2 20 1
o = —eap U5
2
ori _ A(ti=Az) o~ (5 10
oAs = T2 gpoeap (%) )
. 2
ory Ay (ti—Ag)? - w
0As — —ZTexp ( o ) 0 . ; hour
J = -1 0 6 12 18
Fig. 2. Mean relative error, according to the duration offiires, for each
Iry —cos(A (t4 _A )) level of perturbation (low, medium, and high) and both pgzbapproaches:
%;‘_1 ‘3 v 2 Gaussian (blue solid line) and Cosine (red dashed line)
gXS = —Al(l‘,i - Ag) * Sin(Ag(ti — Ag))
Ori _ -1 C. Results
0A4

An intial guess for theA vector is necessary for the In a regression using all available measurements, the €osin
first iteration. A = [500,12,3,10] has been chosen for theapproach turns out to be a littte more accurate than the
Gaussian algorithm and = [500, 12, 0.6, 10] for the Cosine Gaussian approach, assuming low or no cloud perturbation. |
algorithm. These coefficients define curves whose shapes @eother cases, the Gaussian approach is always morergfficie
close to daily measurements. This minimizes the divergentéh a reduced mean relative error of about 2 to 3%.
risk, accelerates calculation convergence, and reduces thThe same trend is observed when simulating missing val-
required computation time. ues with the Gaussian approach being the most accurate

Using 4 coefficients requires a minimum of 4 measurdkigure 2). The mean relative error increases slightly &s th
to perform the fit. If too many values are missing, the leaguration of the failures increases from 1 to 12 hours: the
square algorithm cannot be executed. We assume that thre salgorithm can correctly estimate missing values. Beyorisl th
radiation values are similar to those of the previous day atftreshold, the error tends towards 25%: the number of days
we use the previous day computed coefficients for the curravith more than 4 valid measurements during daytime de-
day. To judge approximation’s quality, mean relative error creases, and the algorithm shall use the past day values to

is computed by equation (7) once the algorithm is completéarry out the estimation. This method should be improved.
) Table Il summarizes performance for all type of perturba-
1«
g = E Z

tions, with the weighted mean relative error (8).
i=0 TABLE 1|

In (7)’ 152 is the solar radiation estimated value at the timéNEIGHTED MEAN RELATIVE ERROR ACCORDING TO THE PERTURBATION
. . . . . LEVEL
t;. Since values during the night are irrelevant, they are imp

i — Di
— (7)
Dbi

ignored. Day/night separation is defined by a threshold at Perturbation  Gaussian _ Cosine
25W/m?, which eliminates low values of the regression. Level fit error  fit error
B. Missing values estimation Low 8.00% 8.33%

Medium 16.77% 18.58%
High 23.07%  26.22%

The accuracy of both approaches (Gaussian and Cosine)
has been compared for each of the three perturbation levels
previously defined. Data used to perform the study have been _ e . A :
measured from February 2010 to December 2011. To carryXeSPeCtively classified in “low’ and 'medium’ perturbation

out consistent tests, daily failures have been simulatetien Ievelst,) figu:jesllg and|4 show adffit of dgta from which \;]aludes
following manner. First, a one hour long failure is random| ave been deliberately removed from 12 to 15 PM. For the day

i ; b
introduced during the day. Then, it is successively ina@ddsy ith low perturbation level (Julg9™”, 2011), both approaches

one hour steps up to a total duration of 24 hours. Two quali@Ve Similar results. For_theo second day (Augest, 2011),
indicators are computed. The first one is a mean relative errc E Gausian approalch_ 'S|2 % bett(;ar than the Cosine approach,
that is determined only for interpolated values. The seaored WNe'eas data are relatively spread.

is a weighted mean relative error indicatqr that corresponds  Xesults are satisfying and the approach by the Gaussian
to ¢ for each failure duratiore,, is calculated with equation &l90rithm will be preferred for its greater accuracy. Moreo

(8), in which wj, is the failure percentage duriniy hours using Igast_ squalre crlter_lon a(ljlows to _quk Wlt_h data sets
(Z;Qlilwh — 1) and ¢, the error associated to this samdresenting irregular steptimes due to missing points.

duration: [1l. | NDOOR TEMPERATURE ESTIMATION

24 Another tool is proposed to estimate missing indoor temper-
Ew = Z Wp, * Ep (8) ature data. To this end, a real-time estimation algorithsetla
h=1 on the concept of time series has been developed. A timesserie



W/m? number of hidden neurons is sufficiant. Feedforward neural

networks are universal approximators [14].
~_July 29, 2011 We used the "GNU Octave” software [15] as well as the
800 1 // nnetpackage [16] to develop the model (Figure 5). First, the
600 | / network has to be trained using examples to understand the dy
namics of the indoor temperature measured by the considered
400 1 / \ sensor. The training phase allows the network parametérs to
900 | / \ identified. The Levenberg-Marquardt algorithm [17][18] sva
/ used. It is a standard technique to solve non-linear lepsire
() d—e—o—o— : : B V. hour Problems. This algorithm is a combination of two minimiza-
0 4 8 12 16 20 tion approaches: the gradient descent method and the Gauss-

F_ig-l 3. 5 Fit of igcltomlft?lete sglar radi_atiOT da,t;il_ (Ipwagg}uim).l_grl?en Newton method. In the gradient descent method, the sum of

circles: Data used for fitting; Green triangles: Missing ue solid line: : -

Gaussian approach with = 7.89%; Red dashed line: Cosine approach witr]ihe ngared_ermrs IS reducc_ad by updatlng _the pa_rr_:lr_neters (th

e =7.01% synaptic weights and the biases when using artificial neural
networks) in the direction of the greatest reduction of the

least squares objective. In the Gauss-Newton method, the su

W/m? of the squared errors is reduced by assuming that the least
squares function is locally quadratic and finding the mimmu

August3¢, 2011 of the quadratic. So, the Levenberg-Marquardt method acts

600 1 N like a gradient-descent method when the parameters are far

from their optimal values and like the Gauss-Newton method
when these parameters are close to these values.

The validation phase allows highlighting the right topolog
of the network. As previously mentioned in the paper, falur
200 duration is less than 3 hours in 70% of cases and less than

24 hours in 90%. That is why we set the estimation horizon

0 d—omome== . . . S e hour 10 24 hours. Moreover, a key point in time series estimation
0 4 8 12 16 20 is to work out the observed values to be taken into account

Fig. 4. Fit of incomplete solar radiation data (medium pedration). Green (named "estimation support”).
circles: Data used for fitting; Green triangles: Missingadd@lue solid line:
Gaussian approach with= 22.03%; Red dashed line: Cosine approach with

e = 24.00% ﬁ( \

400 1

Ly b1
t.. —>  Feed forward byt
is a sequence of data points, measured typically at suweessi tes > ters

time instants and spaced at uniform time intervals. Timeser

estimation deals with the development of a model to estimat

future values using observed values only (i.e. data pravide ¢, ., 3 teom
by a given sensor before its failure). With an interpolation \ j
algorithm, the faulty sensor has to be working again to emabl

mlssmg data estlmatlon. In adqmon, t,he d.ysfunctlonqndapf_ . Fig. 5. Time series estimation using a feedforward neurtwork. k is the
t|me haS tO be ShOI’t. T|me series est|mat|0n a”OWS fleX]blll time index' n is the estimation support size and m is the baoriz

neural network

Vv

A. Approach

Feedforward artificial neural networks are widely used iR Training and validation phases

time series estimation [11][12][13]. That is why we decided A sliding window mechanism was used to obtain training
a Multi-Layer Perceptron (MLP) neural network to estimatand validation subsets. Examples are defined by an estimatio
missing indoor temperature data. Such a network is capablgport (the considered observed values) and an horizon (as
of approximating any nonlinear continuous function to angreviously mentioned, set to 24 hours). To favour efficiency
desired degree of accuracy with one hidden layer and daring the learning process of the artificial neural network
appropriate number of neurons. A too small (resp. largayed, the training and validation examples were normalized
number of hidden neurons leads to under-parametrized.(relsptween -1 and 1. The error goal and the maximum training
over-parametrized) models. In this case, approximatidrats epochs were set to 10% and 100, respectively. In this paper,
what leads to a poor generalization ability. Hidden neuromge discuss about training examples and observed values. An
use non-linear activation functions while output neurose uobserved value is only suitable when correlation with migsi
linear functions. With this topoloy, one can approximatg ardata is high. In addition, examples have to cover most of
nonlinear function to any desired degree of accuracy if thbe possible cases the network will have to handle. As a
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Fig. 7. Weighted mean relative error according to the nundfenidden
neurons and the estimation support size (200 training ekmmmpsed to
develop the model)

Fig. 9. Weighted mean relative error according to the nundfenidden
neurons and the estimation support size (400 training ekmmpsed to
develop the model)

consequence, indoor temperature examples covering a Who'Eirst the number of examples used to train the network has
year are mandatory to achieve a good training of the network. ' AMpP

The validation phase allows checking if the trained networt b(_e chos_,en carefu_lly. With 100 examples, a I_arge_ number of
generalizes well and its ability to use learned information configurations provide good temperature estimations. When

new or partially unknown situations adding examples to the training subset, good configurations
' are less numerous. Overfitting seems to be more frequent.
C. Optimal configuration and results When using more than 200 examples to train the network,

We considered training sets of 100, 200, 300 and 4@61ditional data do not pr(_Jvide pertinent information about
examples, respectively. Examples were picked randomtylfrdndof)r temperature bghawour. As a re_sult, for .mOSt of the
indoor temperature data we collected during a period Ofmeigconflguratlops, the weighted mean relative e_rror_lncrea_ses
months (January to August, 2011). The number of hidd&qd't'on’ using more than three hours as egtlmatlon sujgport
neurons and the estimation support size range from 10 to %6‘ recommended, because_ of low correlat|c_)n _Ievels between
and from 1 to 10 hours, respectively. To avoid non-significal € observed data we _con5|d_gr a_nd the (m_|ssmg) data to be
results due to a bad convergence of the Levenberg-Marqua?rﬁtﬂmatgd' Generahz_atlon ability is cle_arly impacted by t
algorithm or related to parameters initialization, thewuark estimation s'upport Size. Moreover, taking a look at the way
was trained ten times for a given configuration. The modeiﬁe network’s topoloy impacts on accuracy, one can h|g_h||gh
were validated using indoor temperature data from Septem at _15 to 20 neurons are needed for a good est|mat!o_n of
2011 to July 2012. Figures 6 to 9 depict the way the weight@ySSing data. More than 20 neurons leads to overfitting.
(by the duration of the failures) mean relative error evejve 0, the optimal configuration we obtained is the followingon
according to the just-mentioned parameters (the number of

hidden neurons and the estimation support size), for the foue One hidden layer with 15 to 20 neurons,

training sets we considered. e An estimation support of 3 hours,



%

6 account. The results we obtained are very satisfactoryngJsi
the proposed approach, the mean relative error observed doe
4 not exceed 6%, even in case of long sensor failures.
2 1 These estimation tools will be now implemented in a
commercial embedded system with low energy consumption
0 , , , — hour requirement, developed by Pyrescom. This open and cost-
0 6 12 18 24 friendly monitoring solution will be used in tertiary buifths
Fig. 10. Mean relative error, according to the estimatiorizum, using the t0 control HVAC (Heating, Ventilation and Air-Conditiorg)
optimal network (indoor temperature) systems and manage energy resources while ensuring thermal
°C comfort.
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