Maurice Clerc

List Based Optimisers -Experiments and Open Questions

For any iterative stochastic optimisation algorithm, it is possible to replace the Random Number Generator (RNG) that is used by a predened short list of numbers, used cyclically. We present here some experiments to check this approach.

The results show that it may indeed be interesting, for the same list can be used for variants of a given problem, and even for dierent problems. However, there are still some important open questions, in particular about the possible methods to built the lists, which are, for the moment, quite empirical.

1

Motivation and approach

In the real world, engineers and practitioners have often to solve the same kind of optimisation problem, again and again, with just small variations. Also, for some applications, a hardware implementation is needed, which should ideally be small, quick, and deterministic. We show here that is possible to transform two simple iterative stochastic methods, namely Particle Swarm Optimisation (PSO), and Adaptive Population-based Simplex (APS), into even simpler ones that has these three features. To do that, we rst present the concept of list based optimiser, and then some experiments and their results, which are quite good. Building good lists is however still challenging, and we suggest some empirical and semi-empirical methods.

List Based Optimisers

Most of stochastic optimisers, make use of a coded random number generator (RNG), like KISS [START_REF] Marsaglia | The KISS generator[END_REF], or Mersenne-Twister [START_REF] Matsumoto | Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator[END_REF], or the ones that are embedded in a language like C. As they are not based on a hardware system, they are in fact deterministic, at least if we always keep the same seed. They generate a long list of pseudo-random numbers (typically in [0, 1]), whose length is ideally far bigger than what we need to solve a problem, even if the algorithm is ran several times. In such a case all runs are dierent, and we do hope that it improves the probability to nd a good solution.

So, we can in fact consider we have a predened list of numbers in [0, 1], say L = (r 1 , r 2 • • • , r n). During the optimisation process, whenever we need a random number, we pick it sequentially and cyclically in L, i.e. we pick r 1 , then r 2 , ..., then r n , then again r 1 , etc.. In order to avoid any confusion with true random numbers, from now on we will call them l-random numbers. The idea here is to reduce as much as possible the length of the list L, and on the same time, to improve the performance. So, we will speak of List Based Optimiser (LBO) only when L is relatively small (typically at most one hundred of l-random numbers for a 10D problem).

The length of the list L can be extremely short. For example, for the Tripod problem (6.3.1), which is only two dimensional (but nevertheless not that easy), and a simple List-based PSO, the minimal size is probably 4. A possible such magic list is L 4 = (0.30526339730324419941, 0.00779071032578351665, 0.66636005245184826151, 0.48627235377349220524)

with a classical RNG like KISS, the success rate is 97% (over 100 runs). With L 4 , the run is successful. One could say that the success rate is 100%, but, of course, as the process is completely deterministic, if we launch it again we will get exactly the same result, so its success rate is either 0% or 100%. However, we could use the same list, but by starting from another element. Then, there are at most |L| dierent runs, where |L| is the length of the list L. Some of them may be successes, and the others may be failures. This way, we can dene a l-success rate, whose value is necessarily 100 k |K| , where k is an integer from [0, |L|]. Note that the meaning is not the same that the one of the classical success rate. For the later, no matter how big is it, if you launch the algorithm just once, you can not be completely sure that the run will be successful. On the contrary, as soon as the l-success rate is not null, if you launch the |L| dierent runs, you are absolutely sure that at least one run will be successful.

In our example, it means we can have four dierent runs. Here, the l-success rate is 100%. So, we could say that this list is perfect : no matter on which element you start, the run is always successful. Having a perfect list may be interesting if we want to obtain several acceptable solutions.

We will now present and comment more experiments. As we will see, what is really interesting is that the same list is sometimes usable for several problems. Building such a list is not always easy, and, for the moment, there are only empirical methods. Also, it seems even more dicult to nd a list that is usable for several methods.

3

Experiments with LB-PSO

We start from an already simple PSO ([START_REF] Bratton | Dening a standard for particle swarm optimization[END_REF]). We can easily transforming it into a list based one. Also, the algorithm has been simplied. The C source code is available on line [START_REF] Clerc | Math Stu about PSO[END_REF].

Note that the code contains a lot of options (like two dierent RNGs for comparison, dierent kinds of initialisation, dierent topologies, etc.), just for test purpose. So it is longer that it could be. In short, the main points of the basic algorithm are:

• no RNG, but a list of l-random numbers, used cyclically, as said;

• the topology is the old classical bi-directional ring (not a variable one like in more recent PSO versions);

• the swarm size is 40 (not adaptive as in some PSO versions);

• the initial velocity of each particle is set to zero.

The table 1 gives the results for ve classical quasi-real-world problems (the lists that are used are given in the 6). On the one hand, one may note that there is no clear relationship between the dimension and the list size, but, on the other hand, nothing proves that the lists used here are the shortest possible ones. Whether such a relationship does exist or not (or with the number of local minima, or with the relative sizes of the attraction basins) is an open question. We can see that the same list L 17 can be used for the ve problems. Moreover, if this list is used as it is, i.e. just once by starting from the beginning, the run is successful for each function. Another good news, from a practical point of view, is that when a given problem is slightly modied, the same list may be still valid as seen on the table 2.

Experiments with LB-APS

For PSO, we have specially written a simplied version. Let us try now to start from an existing stochastic method, based on a very dierent principle.

APS (Adaptive

Population-based Simplex) is in fact already a simplication of the method described in [START_REF] Luo | Low dimensional simplex evolution: a new heuristic for global optimization[END_REF]. The C code used here is exactly the one available on [START_REF]Adaptive Population-based Simplex[END_REF], except that the RNG is replaced by a list. In particular it means that the population size is automatically computed, depending on the dimension of the problem. In such a case, it is probably better to use two lists: one for initialisation, and one for the search itself. For the moment, there is no sure way to build a good list, i.e. valid for several kinds of problems, at least for a given method. Here are the ones that have been used for this study. For each method, the most tedious point is to nd the right size for the list. We have to try a lot of dierent ones.

Purely empirical methods

Let |L| be the length of the list we are looking for. We divide]0, 1[(i.e. without 0, and without 1) into |L| intervals, and in each interval we choose a number at random. Then we randomly permute these |L| numbers to build the list. For these two phases, random means according to any decent RNG (in this study, Mersenne Twister). The intervals may be of the same length. However, experimental results suggests that the rst one and the last one should be smaller than the other ones. For example, for a two dimension problems, we can dene the four intervals {]0, 0. For a given small problem, this method may be enough. For example, for the Tripod problem, you can easily nd that with the following list L 4b = (0.915702, 0.394833, 0.514620, 0.013374)

the performance is 100%, as with the L 4 seen in the section 2. We can also dene just three intervals, namely small, middle, and high values. For example, L 17 , which gives a perfect result with LB-PSO for the ve problems used here (and also for Tripod), has been dened by combining three random (uniform) selections: six numbers in]0, 2ε], six numbers in]0.5 -ε, 0.5 + ε] , and ve numbers in]1 -2ε, 1[, with ε = 0.01. And then, again, all these numbers have been randomly permuted. More generally, it seems that using a non-uniform distribution is more ecient.

Semi-empirical methods

If we have a look at a good list obtained by some of the previous methods, we can see that they are oscillating in]0, 1[between small and high values, as shown on the gure 4.1 Therefore, it is tempting to apply a mathematical formula that generates similar lists.

An easy way is to build an arithmetic progression by starting from a irrational 1 value smaller than 1, say d, which can be also the dierence, and then split it into]0, 1[

r 0 = d r i+1 = if (r i + d) > 1 then (r i + d -1) else (r i + d) (4.1)
1 With an irrational value we are sure to never generate twice the same number. 2 . Note that if you built this way L 24 and L 26 , they are both not as good (null l-success rate for some of our ve problems). For Tripod and LB-APS, the same method nds a list of size three. With L 3 = {0.12132, 0.70710, 0.41421} the l-success rate is 66.67% (i.e. 2/3, the third run, starting from 0.041421, fails). The rst run nds an acceptable solution (error 2.08 × 10 -5) after 2565 tness evaluations. Actually, as the only number we need to dene is d, what could say that to solve the problem just one number is enough (see the Annexe for more examples).

Meta-optimisation

We consider the search space]0, 1[|L| . Each point of this search space is a possible list, which denes a list based optimiser when replacing the RNG of our stochastic optimiser.

We apply it many times to all the problems of the benchmark, in order to compute an averaged performance, which can be mean l-success rate AND inverse of variance of the l-success rates. The aim of this meta-optimisation is to nd the point of the search space (i.e. the list) that maximises this performance. Of course, this process is very computer time consuming, but we have to do it just once. At least, we can more easily apply this method to just one problem. For example, for Tripod, it nds L 4 , which is then probably one of the shortest possible perfect lists for this problem and LB-PSO.

Open questions

The above experiments (and more not presented here) raise several questions, theoretical and practical. We assume that we have a set of methods (stochastic algorithms) and a set of problems (benchmark).

• if the original method is successful at least once on a problem, it means that the set of lists that can successfully replace the RNG for this problem is not empty.

But what is the size of the shortest list(s) of this set? And how to build such a list?

• for a given method, is there a list that can successfully replace the RNG on the whole benchmark? If so, how to build such a list? If not, how to build at least a good list (successful on as many problems as possible)?

• it is not rare that even if a list L is not very good, a sub-list (of consecutive numbers) is better. But to nd such a sub-list is there a clever way than exhaustive search? Frequency Identication 18 (5.56%)

Actually, using one number as seed, and then a formula to generate pseudo-random numbers is exactly what are doing all coded RNGs. However, they use very complicated formulae so that the generated numbers seem to be as random as possible. But it may be not necessary in the context of stochastic optimisation. This is a bit out of the scope of this paper, so we just present a few results in the table 5. For some problems the performance is signicantly better than with a classical RNG (see table 1). But also sometimes signicantly worse. Nevertheless it suggests it may be worth investigating this approach.

6.2 Some lists L 9 (empirical) 0.9046044347 0.4113702427 0.5567391497 0.8074334206 0.2958179712 0.7310219268 0.377415836 0.0002342685 0.5491584423 The function to minimise is

f (x) = 1-sign(x2) 2 (|x 1 | + |x 2 + 50|) + 1+sign(x2) 2 1-sign(x1) 2 (1 + |x 1 + 50| + |x 2 -50|) + 1+sign(x1) 2 (2 + |x 1 -50| + |x 2 -50|) with sign (x) = -1 if x ≤ 0 = 1 else
The search space is [-100, 100] 2 ,and the solution point is (0, -50), on which the function value is 0. This function has also two local minima. In this study, the maximum number of tness evaluations (when using a RNG) is 10,000, and the acceptable error is 10 -4 . Any run that nds this error value (or a smaller one) is said to be successful.

Lennard-Jones

For more details, see for example [START_REF] Das | Problem Denitions and Evaluation Criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems[END_REF]. The function to minimise is a kind of potential energy of a set of N atoms. The position X i of the atom i has tree coordinates, and therefore the dimension of the search space is 3N . In practice, the coordinates of a point x are the concatenation of the ones of the X i . In short, we can write x = (X 1 , X 2 , . . . , X N),

and we have then

f (x) = N -1 i=1 N j=i+1 1 X i -X j 2α - 1 X i -X j α
In this study N = 5, α = 6, and the search space is [-2, 2] 15 . The objective value is -6, and the acceptable error 10 -2 .

Gear Train

For more details, see [START_REF] Sandgren | Non linear integer and discrete programming in mechanical design optimization[END_REF][START_REF] Onwubolu | New Optimization Techniques in Engineering[END_REF]. The function to minimise is

f (x) = 1 β - x 1 x 2 x 3 x 4 γ
The search space is {12, 13, . . . , 60}

. In the original problem, β = 6.931, and γ = 2.

The objective value is 0, although it can not be reached, and the acceptable error is 10 -11 .

Compression Spring

For more details, see [START_REF] Sandgren | Non linear integer and discrete programming in mechanical design optimization[END_REF][START_REF] Clerc | Particle Swarm Optimization[END_REF][START_REF] Onwubolu | New Optimization Techniques in Engineering[END_REF]. There are three variables

x 1 ∈ {1, . . . , 70} granularity 1 x 2 ∈ [0.6, 3] x 3 ∈ [0.207, 0.5] granularity 0.001 and ve constraints The best known solution is (7, 1.386599591, 0.292) which gives the tness value 2.6254214578. This is the objective here, and the acceptable error is 10 -10 . To take the constraints into account, a penalty method is used.

g 1 := 8C f Fmaxx2 πx 3 3 -S ≤ 0 g 2 := l f -l max ≤ 0 g 3 := σ p -σ pm ≤ 0 g 4 := σ p - Fp K ≤ 0 g 5 := σ w - Fmax-Fp K ≤ 0 with C f = 1 + 0.

Pressure Vessel

Just in short. For more details, see [START_REF] Sandgren | Non linear integer and discrete programming in mechanical design optimization[END_REF][START_REF] Clerc | Particle Swarm Optimization[END_REF][START_REF] Onwubolu | New Optimization Techniques in Engineering[END_REF]. There are four variables The analytical solution is (1.125, 0.625, 58.2901554, 43.6926562) which gives the tness value 7,197.72893, which is therefore the objective. The acceptable error is 10 -6 . To take the constraints into account, a penalty method is used.

Frequency modulation sound parameter identication

For more details, see for example [START_REF] Das | Problem Denitions and Evaluation Criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems[END_REF]. The function to minimise is f (x) = 100 t=0 (y (t) -y 0 (t))

2 with θ = π/50, and y (t) = x 1 sin (x 2 tθ + x 3 sin (x 4 tθ + x 5 sin (x 6 tθ))) y 0 (t) = sin (5tθ + 1.5 sin (4.8tθ + 2 sin (4.9tθ)))

The search space is [-6.4, 6.35]

6

. Obviously, a solution point is x * = (1, 5, 1.5, 4.8, 2, 4.9), with f (x *) = 0, but there are in fact several ones, for example x * = (-1, -5, 1.5, -4.8, -2, 4.9). They all are quite dicult to nd. The acceptable error is 10 -6 .

Figure 4 . 1 :

 41 Figure 4.1: An empirical good list (L 17).

Figure 4 . 2 :

 42 Figure 4.2: Semi-empirical list (L 25), generated thanks to an arithmetical progression whose dierence is √ 2 2 .

 to minimise isf (x) = π 2 x 2 x 2 3 (x 1 + 1)4

x 1 ∈

 1 [1.125, 12.5] granularity 0.0625 x 2 ∈ [0.625, 12.5] granularity 0.0625x 3 ∈]0, 240] x 4 ∈]0, 240]and three constraintsg 1 := 0.0193x 3 -x 1 ≤ 0 g 2 := 0.00954x 3 -x 2 ≤ 0 g 3 := 750 × 1728 -πx 2 3 x 4 + 4 3 x 3 ≤ 0The function to minimise is f (x) = 0.6224x 1 x 3 x 4 + 1.7781x 2 x 2 3 + x 2 1 (3.1611x 4 + 19.84x 3)

Table 1 :

 1 For each quasi-real-world problem, it is possible to dene a short list that gives results equivalent to the ones with a classical RNG. Sometimes it is also pretty good for

	another problem but this is not the general case. When using KISS, the success rate is
	over 100 runs. When using a list, the table presents the l-success rate.
	Problem	D FEmax	ε	RNG L4	L 9	L17
	Lennard-Jones	15 30000 10 -2	99% 0%	0%	100%
	Gear Train	4	20000 10 -11 15% 0% 11.111% 5.882%
	Compression Spring	3	20000 10 -10 56% 0%	0%	35.294%
	Pressure Vessel	4	30000 10 -6	71% 0% 88.889% 70.588%
	Frequency Identication 6	50000 10 -6	24% 0%	0%	11.765%

Table 2 :

 2 A list is really interesting when it is valid for several variants of a given problem.Here, for the Gear Train problem, L 9 is usable with dierent β and γ values. The l-success rate is given over the nine possible runs. In all cases, the rst run (i.e. starting from the beginning of the list) is successful.

	β	γ	L 9	Best solution x *	f (x *)
	6.0	2	100%	(30, 12, 36, 60)	8.57 × 10 -35
		3.5	100%	(30, 12, 36, 60)	2.41 × 10 -60
	6.931 2 11.111% (17, 21, 55, 45) 2.7 × 10 -12
		3	100%	(15, 21, 56, 39)	1.14 × 10 -13
		3.5	100%	(24, 13, 45, 48)	5.78 × 10 -14
	7.2	2 88.889% (12, 25, 48, 45) 3.80 × 10 -35
		2.5	100%	(23, 16, 50, 53)	9.44 × 10 -44
	7.5	2	100%	(16, 29, 60, 58)	3.45 × 10 -36

Table 3 :

 3

	Problem	RNG L4	L 9	L17	L 25 L 25 with LB-PSO
	Tripod	96% 25% 0% 58.824% 16%	88%
	Lennard-Jones	58%	0% 0%	0%	8%	0%
	Gear Train	52%	0% 0%	0%	20%	4%
	Compression Spring	80%	0% 0%	0%	8%	0%
	Pressure Vessel	100% 0% 0%	0%	68%	4%
	Frequency Identication 47%	0% 0%	0%	4%	0%

A list that works for LB-PSO does not necessarily work for LB-APS, and vice-versa.

Table 4 :

 4 It is not shown here, but similar results can be obtained with some other seeds, for example d = e 10 . Some results with LB-PSO and nite lists generated by an arithmetical progression based on d = , and used cyclically. The table gives the length |L| of the smallest list for which the l-success rate is not null, and this l-success rate itself. Remember that it may nevertheless be null for a longer list. D is the dimension of the search space for

	6	Appendix
	6.1 When one number (and a formula) is enough
	We have seen that thanks to an arithmetical progression dened by just one number d = √ 2 2 , and the formula 4.1, we can generate a very short list (|L| = 3) which is enough

for LB-PSO to solve the Tripod problem. Here are a few more examples. Some problems are coming from the CEC 2005 benchmark

[START_REF] Pn Suganthan | Problem denitions and evaluation criteria for the CEC 2005 special session on real parameter optimization[END_REF]

. They all are shifted. Note that in their denitions the maximum number of tness evaluations is linearly increasing with the dimension. As we can see on the table 4, even for relatively dicult problems short lists are usable. For example exactly the same list of length six can be used for the four rst problems.

Table 5 :

 5 Some results with LB-PSO and innite lists generated by an arithmetical progression based on d =

	√ 2 . Here the success rate is the classical one, estimated over 100 2
	runs.			
	(a) CEC 2005 problems.	
	Problem	D = 5 D = 10 D = 30
	Sphere (F1)	100%	100%	100%
	Schwefel (F2)	100%	100%	99%
	Schwefel +noise (F4)	100%	0%	0%
	Rosenbrock (F6)	11%	4%	0%
	Rastrigin (F9)	39%	0%	0%
	(b) Other problems used in this study.	
	Problem	Success rate	
	Tripod			
	Lennard-Jones	98%		
	Gear Train	7%		
	Compression Spring	11%		
	Pressure Vessel	3%		
	Frequency Identication	14%		
	L 17 (empirical)			
	0.015736 0.496893 0.500413 0.990438 0.495484 0.490454 0.982801
	0.018933 0.000385 0.495026 0.997142 0.005010 0.498098 0.014213
	0.990877 0.1989995 0.991221	
	L 25 (generated by an arithmetic progression)	
	0.7071067812 0.4142135624 0.1213203436 0.8284271247 0.5355339059
	0.2426406871 0.9497474683 0.6568542495 0.3639610307 0.0710678119
	0.7781745931 0.4852813742 0.1923881554 0.8994949366 0.6066017178
	0.3137084990 0.0208152802 0.7279220614 0.4350288425 0.1421356237
	0.8492424049 0.5563491861 0.2634559673 0.9705627485 0.6776695297
	6.3 Test problems			
	6.3.1 Tripod (2D)