
HAL Id: hal-00764994
https://hal.science/hal-00764994v1

Submitted on 13 Dec 2012 (v1), last revised 13 Sep 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

List Based PSO for Real Problems
Maurice Clerc

To cite this version:

Maurice Clerc. List Based PSO for Real Problems. 2012. �hal-00764994v1�

https://hal.science/hal-00764994v1
https://hal.archives-ouvertes.fr

List Based PSO for Real Problems

Maurice Clerc

5th May 2012

Note: this is a short version, put online on my site [1], of a more complete paper.

1 Motivation

In the real world, engineers and practitioners often have to solve the same kind of problem,
again and again, with just small variations. Also, for some applications, a hardware
implementation is needed, which should ideally be small, quick, and deterministic. We
show here that is possible to transform a basic Particle Swarm Optimiser into an even
simpler one that has these three features.

In order to do that, we start from the concept of list based optimiser.

2 List Based Optimisers

In most of stochastic optimisers, we only need random numbers r that are in [0, 1] , even
if sometimes we have to linearly transform them by a formula like a+ r (b− a). Now, let
us suppose we have a prede�ned list of numbers in [0, 1], say L = (r1, r2 · · · , rn). During
the optimisation process, wheneveer we need a �random� number, we pick it sequentially
and cyclically in L, i.e. we pick r1, then r2, ..., then rn, then again r1, etc. Obviously
the resulting process is completely deterministic. Actually, this is already the case with
a random number generator (RNG) like KISS [4] or the ones that are embedded in a
language like C, at least if we always keep the same seed. However, the idea here is to
reduce as much as possible the length of the list L, and on the same time to improve the
performance. So, we will speak of List Based Optimiser (LBO) only when the number of
�random� number that is used is relatively small (typically at most a few hundreds for a
30D problem). Experimental results suggest the following

Conjecture 1. For any problem, for any performance measure, and for any stochastic

algorithm that needs only bounded random numbers, there exists a deterministic algorithm

that is better

The length of the list L can be extremely short. For example, for the Tripod problem
(4.2.1), which is only two dimensional (but nevertheless not that easy), and for a basic
PSO, the minimal size is probably 4. A possible such �magic� list is

1

L4 = (0.66636005245184826151,
0.48627235377349220524,
0.30526339730324419941,
0.00779071032578351665)

With this list, the success rate is 100% over 100 runs, as with a better RNG like
KISS it is slightly smaller (97%). Some other lists are of course possible (in particular
with no so many digits). But what is really interesting is that the same list is usable
for a lot of problems of the same dimension (see column L17 of the table 1. As said, we
replace then a stochastic algorithm by a list based one, which is deterministic. Of course,
the main di�culty is to build the lists, as few as possible, as short as possible, but that
nevertheless give good results.

In the table 1 we use such candidate lists for �ve well known quasi-real-world problems.
It is probably possible to �nd shorter ones but this is an open question.

3 List Based Classical PSO

For real-world ones, the engineers, and more generally the practitioners, usually want �a
reasonably good solution, in a reasonable time, for a reasonable cost�. Moreover, they
often have to solve the same kind of problems, again and again. A list based optimiser
may be then very useful for at least three reasons:

• deterministic

• quick

• can be easily embedded in a hardware optimisation device

The �rst feature is ensured by transforming a classical PSO into a list based one. For
the second and third features, the algorithm has then be simpli�ed as much as possible.
The source code, is also available on my PSO site [1]. In short, the main points are:

• no RNG, but a list of numbers. However, for comparison, the RNG KISS has been
implemented in the code;

• only the old classical ring topology (not a variable one like in the most recent PSO
versions);

• velocity update dimension by dimension (no rotationally invariant as in SPSO 2011
[6], but, as said, it is not really an issue here).

The table 1 gives the results for �ve classical quasi-real-world problems. On the one
hand, one may note that there is no relationship between the dimension and the list size,
but, on the other hand, nothing proves that the lists used here are the shortest possible
ones. If there exists such a relationship (or with the number of local minima, or the
relative sizes or the attraction basins) is another open question.

2

Table 1: For each quasi-real-world problem, it is possible to de�ne a short list that gives
excellent results. Sometimes it is also pretty good for another problem but this is not
the general case. The success rates are over 100 runs.

Problem D FEmax ε KISS L4 L9 L17a L17b

Lennard-Jones 15 30000 10−2 99% 0% 0% 100% 100%

Gear Train 4 20000 10−11 15% 0% 100% 0% 100%

Compression Spring 3 20000 10−10 56% 0% 0% 18% 99%

Pressure Vessel 4 50000 10−6 71% 0% 30% 44% 84%

Frequency Identi�cation 6 50000 10−6 24% 0% 0% 100% 0%

Table 2: A list is really interesting when it is valid for several variants of a given problem,
here the Gear Train with di�erent β and γ values. L9 is perfect, and L17b is still pretty
good, even if sometimes the success rate is not 100%.

β γ L9 Solution x∗ f (x∗) L17b Solution x∗ f (x∗)

6.0 2 100% (12, 12, 36, 24) 2.70e-12 100% (50, 12, 60, 60) 2.70e-12

3.5 100% (16,17,44,59) 3.06e-12 100% (12, 46, 56, 59) 2.26e-12

6.931 2 100% (19,16,49,43) 8.57e-16 100% (19, 16, 49, 43) 8.57e-16

3 100% (19,13,30,57) 2.50e-12 100% (30, 13, 54, 50 1.80e-12

3.5 100% (19,13,30,57) 2.69e-12 100% (133, 12, 53, 52) 32.37e-12

7.2 2 100% (20,15,48,45) 2.7e-12 51% (12, 30, 54, 48) 2.70e-12

2.5 100% (12,31,47,57) 2.7e-12 51% (12, 30, 54, 48) 2.70e-12

7.5 2 100% (12,12,28,60) 2.7e-12 100% (12, 34, 60, 51) 2.70e-12

The good news, from a practical point of view, is that when a given problem is slightly
modi�ed, the same list may be still valid (although not always with the same precision),
as seen on the table 2.

One may think that for the algorithm is deterministic, all runs are identical. This is
not the case. First, it is of course not the case when the success rate is neither 0% nor
100%. Second, the number of times that a �random� number is needed in a run is very
rarely a multiple of the length of the list. Therefore, for the second run the cyclical use
of the list does begin at another rank than 1, the third run yet at another rank, etc. So
those consecutive runs are not identical, as we can see on the �gure 3.1 Of course, some
runs are indeed identical, particularly when the list if short, and also many runs may
�nally �nd the same solution if the number of �tness evaluations is big enough.

For Gear Train with L9 the convergence is quick (typically after less than 2000 �tness
evaluations). However, from an engineer point of view, it may be more interesting to
�nd several quasi-solutions. In order to do that we can allow less �tness evaluations than
necessary for complete convergence, say 1000 here. As for L17b the convergence is a bit

3

Figure 3.1: Gear Train. Trajectories of the particle 0, for the twelve �rst moves of three
runs with L17b. For clarity, only two dimensions are represented here.

slower (it needs about 2400 evaluations), and as we can see on the table 3, less runs �nd
the same solution.

Table 3: Gear Train. Results of seven consecutive runs with L9 and L17b after 1000
evaluations. One �nds more di�erent solutions with a longer list.

L9 L17b

Run Solution x∗ f (x∗) Solution x∗ f (x∗)

1 (12,35,52,56)* 2.35e-9 (14,30,52,56)* 2.35e-9
2 (12,35,52,56) 2.35e-9 (30,13,54,50)* 2.73e-8
3 (12,35,52,56) 2.35e-9 (13,12,40,27)* 2.73e-8
4 (12,35,52,56) 2.35e-9 (30,13,54,50) 2.73e-8
5 (21,17,45,55)* 1.36e-9 (36,13,60,54)* 2.73e-8
6 (12,33,49,56)* 1.26e-9 (16,19,39,54)* 4.92e-9
7 (12,35,52,56) 2.35e-9 (30,13,54,50) 2.73e-8

4

4 Appendix

4.1 Generating �magic� lists

We want to transform a stochastic algorithm in a list based one. We are looking for a list
LD for a given dimension D, and valid if possible for many ariants of a given problem.
We de�ne a benchmark with such variant. We run the algorithm on this benchmark with
a classical RNG, say KISS, and we save the results. Now, we are looking for a list that
replaces the RNG so that the resulting list based algorithm gives never worse results,
and at least sometimes better ones. The idea is to start from a list length equal to 2D,
and to increase then this length if we are not enable to �nd a valid list. To build a list,
we have at least two ways: semi-manual or entirely automatic, by meta-optimisation.

4.1.1 Semi-manual methods

Let |LD| be the length of the list we are looking for. We divide]0, 1[(i.e. without 0,
and without 1) into |LD| intervals, and in each interval we choose a number at random.
Then we randomly permute these |LD| numbers to build the list. For these two phases,
�random� means �according to any decent RNG� (in this study, KISS). The intervals may
be of the same length. However, experimental results suggests that the �rst one and the
last one should be smaller than the other ones. For example, for D = 2, we can de�ne
the four intervals {]0, 0.2[, [0.2, 0.5[, [0.5, 0.8[, [0.8, 1[}.

For a given small problem, this method may be enough. For example, for the Tripod
problem, you can easily �nd that with the following list

L4b = (0.915702,
0.394833,
0.514620,
0.013374)

the performance is 100%, as with the L4 seen in the section 2. A variant of this
method is to not divide]0, 1[at all. We just choose the points at random in the whole
interval. However, it seems that using a non-uniform distribution may be interesting.
For example L17b, that gives a perfect result for the 5 atoms Lennard-Jones problem
(and also for Tripod), has been de�ned by using a linearly decreasing one, thanks to the
following formula

|rand (0, 1) + rand (0, 1)− 1| (4.1)

However, the result was not perfect, so three values have been then manually divided
by 100.

4.1.2 Meta-optimisation

We consider the search space]0, 1[
|LD|. Each point of this search space is a possible list,

which de�nes a list based optimiser when replacing the RNG of our stochastic optimiser.

5

We apply it many times (say 100) to all the problems of the benchmark, in order to
compute an averaged performance, which can be �mean success rate AND inverse of
variance of the success rates�. The aim of this meta-optimisation is to �nd the point of
the search space that maximises this performance. Of course, this process is very time
consuming, but this is computer time, not human one! And you have to do it just once
for each kind of problem.

This method has been used for Tripod, and found L4, which is then probably one of
the shortest possible list.

4.1.3 Three lists

They have been �rst generated at random in [0,1]. A few values have been then manually
modi�ed.

L9

0.0078309 0.4773970 0.8401877 0.1975513 0.7984400 0.9522297 0.0628870

0.0076822 0.0036478

L17a

0.78309922375860585575 0.47739705186216024879 0.84018771715470952355

0.19755136929338396046 0.79844003347607328536 0.95222972517471282661

0.91164735793678430831 0.27777471080318777430 0.33522275571488902024

0.39438292681909303816 0.63571172795990094073 0.55396995579543051313

0.51340091019561551189 0.1619506800370065225 0.062887092476192441026

0.76822959481190400410 0.0036478447279184333940

L17b

0.0078309922375860585575 0.47739705186216024879 0.84018771715470952355

0.19755136929338396046 0.79844003347607328536 0.95222972517471282661

0.91164735793678430831 0.27777471080318777430 0.33522275571488902024

0.39438292681909303816 0.63571172795990094073 0.55396995579543051313

0.51340091019561551189 0.1619506800370065225 0.062887092476192441026

0.76822959481190400410 0.0036478447279184333940

4.2 Test problems

4.2.1 Tripod (2D)

The function to minimise is

6

f (x) = 1−sign(x2)
2 (|x1|+ |x2 + 50|)

+ 1+sign(x2)
2

1−sign(x1)
2 (1 + |x1 + 50|+ |x2 − 50|)

+ 1+sign(x1)
2 (2 + |x1 − 50|+ |x2 − 50|)

with {
sign (x) = −1 if x ≤ 0

= 1 else

The search space is [−100, 100]2 ,and the solution point is (0,−50), on which the
function value is 0. This function has also two local minima.

4.2.2 Compression Spring

For more details, see[7, 2, 5]. There are three variables

x1 ∈ {1, . . . , 70} granularity 1
x2 ∈ [0.6, 3]
x3 ∈ [0.207, 0.5] granularity 0.001

and �ve constraints

g1 :=
8CfFmaxx2

πx3
3

− S ≤ 0

g2 := lf − lmax ≤ 0
g3 := σp − σpm ≤ 0

g4 := σp − Fp

K ≤ 0

g5 := σw − Fmax−Fp

K ≤ 0

with

Cf = 1 + 0.75 x3

x2−x3
+ 0.615x3

x2

Fmax = 1000
S = 189000
lf = Fmax

K + 1.05 (x1 + 2)x3
lmax = 14

σp =
Fp

K
σpm = 6
Fp = 300

K = 11.5× 106
x4
3

8x1x3
2

σw = 1.25

and the function to minimise is

f (x) = π2x2x
2
3 (x1 + 1)

4

7

The best known solution is (7, 1.386599591, 0.292) which gives the �tness value 2.6254214578.
To take the constraints into account, a penalty method is used. In this study, the maxi-
mum number of evaluations is 20,000.

4.2.3 Gear Train

For more details, see[7, 5]. The function to minimise is

f (x) =

(
1

β
− x1x2
x3x4

)γ
The search space is {12, 13, . . . , 60}4. In the original problem, β = 6.931, and

γ = 2. There are several solutions, depending on the required precision. For exam-
ple f (19, 16, 43, 49) = 2.7 × 10−12. So, if we set the objective value to zero and the
acceptable error to 10−11, any run that �nds this �tness value (or a smaller one) is
successful.

4.2.4 Pressure Vessel

Just in short. For more details, see[7, 2, 5]. There are four variables

x1 ∈ [1.125, 12.5] granularity 0.0625
x2 ∈ [0.625, 12.5] granularity 0.0625
x3 ∈]0, 240]
x4 ∈]0, 240]

and three constraints

g1 := 0.0193x3 − x1 ≤ 0
g2 := 0.00954x3 − x2 ≤ 0
g3 := 750× 1728− πx23

(
x4 +

4
3x3
)
≤ 0

The function to minimise is

f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + x21 (3.1611x4 + 19.84x3)

The analytical solution is (1.125, 0.625, 58.2901554, 43.6926562) which gives the �tness
value 7,197.72893. To take the constraints into account, a penalty method is used.

4.2.5 Lennard-Jones

For more details, see for example [3]. The function to minimise is a kind of potential
energy of a set of N atoms. The position Xi of the atom i has tree coordinates, and
therefore the dimension of the search space is 3N . In practice, the coordinates of a point x
are the concatenation of the ones of the Xi. In short, we can write x = (X1, X2, . . . , XN),
and we have then

8

f (x) =

N−1∑
i=1

N∑
j=i+1

(
1

‖Xi −Xj‖2α
− 1

‖Xi −Xj‖α

)

In this study N = 5, α = 6, and the search space is [−2, 2]15.

4.2.6 Frequency modulation sound parameter identi�cation

For more details, see for example [3]. The function to minimise is

f (x) =

100∑
t=0

(y (t)− y0 (t))2

with θ = π/50, and{
y (t) = x1 sin (x2tθ + x3 sin (x4tθ + x5 sin (x6tθ)))
y0 (t) = sin (5tθ + 1.5 sin (4.8tθ + 2 sin (4.9tθ)))

The search space is [−6.4, 6.35]6. Obviously, a solution point is x∗ = (1, 5, 1.5, 4.8, 2, 4.9),
with f (x∗) = 0, but there are in fact several ones, for example x∗ = (−1,−5, 1.5,−4.8,−2, 4.9).
They all are quite di�cult to �nd.

References

[1] Maurice Clerc. Math Stu� about PSO, http://clerc.maurice.free.fr/pso/.

[2] Maurice Clerc. Particle Swarm Optimization. ISTE (International Scienti�c and
Technical Encyclopedia), 2006.

[3] S. Das and P. N. Suganthan. Problem De�nitions and Evaluation Criteria for CEC
2011 competition on testing evolutionary algorithms on real world optimization prob-
lems. Technical report, Jadavpur University, Nanyang Technological University, 2010.

[4] G. Marsaglia and A. Zaman. The KISS generator. Technical report, Dept. of Statis-
tics, U. of Florida, 1993.

[5] Godfrey C. Onwubolu and B. V. Babu. New Optimization Techniques in Engineering.
Springer, Berlin, Germany, 2004.

[6] PSC. Particle Swarm Central, http://www.particleswarm.info.

[7] E. Sandgren. Non linear integer and discrete programming in mechanical design
optimization, 1990. ISSN 0305-2154.

9

