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1 Introduction

Comparing two stochastic algorithms is not easy, even for one single problem. By
de�nition, comparing two algorithms means comparing the estimates of their respective
performance measures, and it is di�cult to be certain about the reliablities of these
estimates. In this study, we will explain why a claim like �On problem P, algorithm A
is better than algorithm B� should be carefully examined, and investigate the reasons
for such scrutiny. Some reasons are fairly well known, e.g., the number of runs or the
position of the solution point, but their importance is sometimes underestimated. Other
reasons (e.g., the byte size of the computer on which the algorithm was run, or the
kind of randomness that was used) are more subtle and not often taken into account,
although their e�ects may be quite prominent. Both of these, namely, byte size and type
of randomness, are in fact quite similar, for both modify the way the algorithm makes
use of random numbers. One interesting observation is this : a careful study of these
two reveals that it is sometimes possible to get excellent results with a very bad random
number generator (RNG).

2 Five reasons to be careful

To compare two optimisation algorithms on a given problem, we run both a large num-
ber of times, and we compare the results. However, the conclusions that can apparently
be drawn are sometimes questionable, for various reasons. Let us examine some of them.
In the following, we use the C version of Standard PSO 2011 as optimiser (4.1), available
on the Particle Swarm Central [8] (there is also a Matlab version, slightly di�erent), but
the principles are valid for any other stochastic algorithm.

2.1 The position of the solution point

Most iterative algorithms are biased. A simple and e�ective way to see it is to try
solving the following impossible Flat problem,
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Figure 2.1: 2000 successive positions of the particles with SPSO 2011 on the impossible
2D Flat problem. The default con�nement method is applied.


f (x) = 1

search space = [−1, 1]
2

objective = 0

We can plot the successive positions of the particles. By default, in SPSO 2011, a
con�nement method is applied (the particles are stopped at the boundary of the search
space). See �gure 2.1. It is not surprising that a lot of positions fall exactly on the
boundary. However, what is more unexpected is the higher density near the centre of
the search space. This phenomenon is explained in [10] (actually, even for symmetrical
functions, there is a higher density along the axes and the diagonals). It is even more
obvious if we do not con�ne the particles (the �let them �y� method). From �gure 2.2, we
see that the algorithm wrongly �thinks� that the solution is in the middle of the search
space. More precisely, with the usual values of the parameter, the swarm simply tends to
oscillate around the centre of the initialisation, even if it is not the centre of the search
space. For a perfectly unbiased algorithm, on this Flat problem the distribution of the
positions should be uniform inside the whole search space.

Actually, whenever an algorithm works �dimension by dimension�, this phenomenon
may occur. Let us say that a problem is biased when its solution point is on a special
position (diagonal, axis, centre). So, for fair comparison of algorithms, it is safer to apply
the following rule.

Rule 1 : Never trust biased problems for comparisons

2.2 The number of runs

On a given problem, it is very common to estimate an average performance after
several runs. For example, we can save the best �tness values found by the runs, and
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(a) Initialisation was in [-1,1]2 (b) Initialisation was in [0,1]2

Figure 2.2: Successive positions on the impossible 2D Flat problem, with SPSO 2011,
and no con�nement.

compute their mean. Or, as for a test problem we do know the solution point x∗, we can
de�ne an acceptable error ε > 0, and we can say that a run is successful if it �nds a point
x so that |f (x)− f (x∗) < ε|. Then we de�ne the success rate. There is nothing wrong
with that, except that the number of runs may be too small for a correct estimate. Figure
2.3 shows an example : after 30 runs, the success rate is 23.3%, but after 100 runs, it is
more or less stabilised around 17%. Therefore, if you perform only 30 runs, and if you
claim that this algorithm is better than another one whose success rate is, say, 18%, you
may be completely wrong.

Of course, the number of runs that are needed for such a stabilisation depends on
the problem. We may �nd it �visually� by plotting the curve �Success rate vs Number of
runs�, or more rigorously by de�ning a maximum acceptable variance, and by running the
algorithm as many times as necessary in order to have a variance below this threshold.
Hence, we have

Rule 2 : Be sure that the estimated performance has converged reasonably

However, in some rare cases, the estimated performance may never converge. In
particular, it may happen if the performance measure is the mean best value and if the
algorithm makes use of a probability distribution with an in�nite variance, like Lévy.
In such a case, this particular performance measure is meaningless, and we have to use
another one that does converge, like the success rate (which may be less robust, though,
see below).

2.3 The kind of performance measure

As mentioned before, the two most commonly used performance measures (criteria)
are the mean best and the success rate. But the important point is the relative �indepen-
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Figure 2.3: Success rate vs Number of runs. Shifted Rosenbrock 10D (90000 �tness
evaluations/run).

dence� between the two criteria, as noted, for example, in [5]. It may well happen that
an algorithm A seems better than an algorithm B with respect to the �rst criterion, but
performs worse than B with respect to the second criterion. See table 1. Of course, this
table is just an illustration, with a small number of runs, but the same phenomenon may
occur with a bigger number of runs, and with signi�cant di�erence. Hence we have

Rule 3a : Never trust just one performance criterion

and

Rule 3b : Always perform a statistical test

About the statistical test, a common mistake is to ignore some important assump-
tions. For example, a t-test can not be applied if the sample size is too small or if the
distributions are not more or less normal, and one may have to simply apply a non-
parametric test (Mann-Whitney, Friedman, ...), which is more �exible.
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Table 1: According to the mean best, algorithm A seems better than algorithm B.
According to the success rate, it is the opposite. The threshold value for success is 0.01.

Algorithm A Algorithm B

Run Best Success Best Success
1 0.0034 1 0.0069 1
2 0.0098 1 0.0083 1
3 0.0145 0 0.0001 1
4 0.0156 0 0.1292 0
5 0.0182 0 0.0037 1
6 0.0159 0 0.0044 1
7 0.0025 1 0.0025 1
8 0.0132 0 0.1246 0
9 0.0192 0 0.1158 0
10 0.0004 1 0.0178 0

Mean 0.0113 40% 0.0413 60%

2.4 The word size

If the numbers are internally coded in the computer as words of n bits, it means that
we have access to only 2n di�erent values. Of course, clever tricks may be used to increase
this range, for example using two words to represent one number, but anyway there is
a limitation. Such a limitation has an in�uence on the performance, as we can clearly
see from �gure 2.4. On the Shifted Sphere 30D problem, we always use the same RNG
(Random Number Generator) called KISS, but we simulate a less powerful machine,
whose byte size is 5, 7, 9 or 11. The results of the statistical tests are not shown here,
but the corresponding success rates are signi�cantly di�erent. For this simple problem,
the shorter the byte size, the better the performance, but it need not be the case for all
problems. And so, we get the following

Rule 4 : For reproducible results, do specify the word size

2.5 The kind of randomness

This may be the most important cause of erroneous comparisons, and we will focus
on it with the help of �gures 2.5 and 2.3. The problems under consideration are the very
classical Shifted Sphere (Parabolic (see 4.2.1)) and Shifted Rosenbrock (see 4.2.2). Let
us rigorously de�ne the di�erent kinds of �randomness� (or Random Numbers Generator,
RNG) that were used to plot these �gures :

� �C� means the RNG of this language. Whenever the algorithm needs a random
number, it calls the rand() function, and gets an integer between 0 and 32767, in a
deterministic cyclic way that depends on the initialisation (the �seed�) ;
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Figure 2.4: Shifted Sphere 30D. With the same RNG (KISS here), but di�erent byte
sizes, the performances are di�erent. In this particular simple example, the shorter the
word size, the better the performance, but it is not necessarily so for all problems.

� �KISS� has been de�ned in [4]. It is explicitly coded in the algorithm, and its cycle
length is far longer (greater than 2127). The deterministic sequence of produced
numbers also depends on the �seed�. In practice (as in this example) the number of
random numbers that are needed is about 1.7e+08, and there is no cycle ;

� �Q� means that each random number is coded by a sequence of bits coming from a
quantum system, which is supposed to generate �true� randomness. If we use just 3
bits, there are only 8 di�erent possible values, and therefore there are cycles. With
32 bits, there is probably no cycle for these examples (although it has not been
checked).

We can make at least three important remarks :

1. For a given RNG the performance (here the success rate) may be very di�erent for
30 runs and for 100 runs ;

2. For the same number of runs, the performance may also be very di�erent for di�er-
ent RNGs. In this particular case, it is perfect (100%) for the �rst example (Sphere
30D) with Q (3 bits).

3. There is no relationship between the quality of the randomness and the perfor-
mance. One may have good performance with a bad RNG like Q (3 bits), but
on the other hand the performance may be better with a better random number
generator, like Q (32 bits) vs KISS. The �gure 2.7 presents some results on four
quasi-real-world problems that illustrate this remark.
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Therefore, we need to apply

Rule 5 : For reproducible results, do specify the RNG that is used, including its
parameters, if any (like the seed)

Figure 2.5: Shifted Sphere 30D. The performance measure - here the success rate - may
be very di�erent when using di�erent RNGs. A bad one, like Q (3 bits) produces a perfect
result (100%) here.

Remark 3 above is particularly interesting, for it suggests that it may be possible
to replace almost any stochastic algorithm by a deterministic one. The only limitation -
and hence the �almost� - is that the random numbers must be bounded. If the stochastic
algorithm makes use of unbounded random numbers, sampled, for example from a Gaus-
sian or a Lévy distribution, theoretically, it can not be transformed into a list based one.
However, one may note that on a computer, the list of possible numbers is anyway always
bounded. So, in practice, such a transformation is always possible. Thus, we replace the
concept of stochastic optimisation by the list based one.

3 Future work

The kind of randomness that is used can be seen as a parameter of the optimiser.
Therefore, an obvious question is �Can we modify it during the iterative process, in
order to improve the performance ?� In short, can we de�ne an adaptive randomness ?
Preliminary results suggest that it is indeed possible. A simple way to do that is, for
example, to use the Q randomness (list of bits generated by a true random system),
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Figure 2.6: Shifted Rosenbrock 10D. Here too Q (3 bits) produces a better result.

and to modify the number of bits n that are used to generate real numbers in [0, 1]. An
adaptation rule could be �if improvement, decrease n, if not, increase it�.

4 Appendix

4.1 Standard PSO 2011

It was well suspected for years that the dimension by dimension method used by most
of PSO versions is biased : when the optimum point lies on a axis, or on a diagonal, or
worse, on the centre of the system of coordinates, it is easier to �nd it. The paper [6]
was not completely convincing, but a more complete analysis of this phenomenon has
been presented in 2010 [10]. That is why in SPSO 2011 the velocity is modi�ed in a
�geometrical� way that does not depend on the system of coordinates.

Let Gi (t) be the centre of gravity of three points : the current position, a point a
bit �beyond� the best previous position (relative to xi (t)), and a point a bit �beyond�
the best previous position in the neighbourhood. Formally, it is de�ned by the following
formula, in which t has been removed for simplicity

Gi = xi+(xi+c(pi−xi))+(xi+c(li−xi))
3 = xi + cpi+li−2xi

3
(4.1)

We de�ne a random point x′i (uniform distribution) in the hypersphere

Hi (Gi, ‖Gi − xi‖) (4.2)
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(a) Compression Spring

(b) Gear Train

(c) Pressure Vessel

(d) Lennard-Jones

Figure 2.7: Usually, when the number of possible random values decreases, the perfor-
mance also tends to decrease (a,b,c). However it is not always the case (d).
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Figure 4.1: SPSO 2011. Construction of the next position. The point x′i is chosen at
random inside the hypersphere Hi (Gi, ‖Gi − xi‖)

with centre Gi and of radius ‖Gi − xi‖. Then the velocity update equation is

vi (t+ 1) = wvi (t) + x′i (t)− xi (t) (4.3)

It means that the new position is simply

xi (t+ 1) = wvi (t) + x′i (t) (4.4)

Note that with this method it is easy to rigorously de�ne �exploitation� and �explo-
ration�. There is exploitation when xi (t+ 1) is inside at least one hypersphere Hj , and
exploration otherwise.

The source code contains some options (like hyperspherical Gaussian distribution
instead of the uniform one) that are not described here.

We may sometimes have li (t) = pi (t) when the particle i is precisely the one that
has the best previous best in its neighbourhood. In such a case li (t) is simply ignored,
and the equation 4.1 that de�nes the gravity centre Gi becomes

Gi =
xi + (xi + c (pi − xi))

2
= xi + c

pi − xi
2

(4.5)

SPSO 2011 keeps the same variable neighbourhood topology as the previous standard
versions (2006, 2007), i.e. the topology is modi�ed partly at random after each unsuccess-
ful iteration. For more details, see the original source code on the Particle Swarm Central
[8]. For this study, some options have been added, in particular more possible RNGs. The
modi�ed code (a C version) is available on my personal site [1]. The parameter values
are the suggested ones for the original version, i.e. S = 40 (swarm size), K = 3 (num-
ber of particles informed at random by a given one), w = 1/ (2ln (2)) (inertia weight),
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c = 0.5 + ln (2) (common value for cognitive and social coe�cient). All runs have been
performed on a 64 bit machine.

4.2 Test problems

4.2.1 Shifted Sphere (Parabola)

The function to minimise is

f (x) = −450 +
30∑
d=1

(xd − od)2

The random o�set vector O = (o1, · · · , o30) is de�ned below. The search space is

[−100, 100]30 . The function is unimodal and O is the solution point, on which f = −450.

O�set O for Sphere/Parabola (C source code)

static double O[30] = { -3.9311900e+001, 5.8899900e+001, -4.6322400e+001,
-7.4651500e+001, -1.6799700e+001, -8.0544100e+001, -1.0593500e+001,
2.4969400e+001, 8.9838400e+001, 9.1119000e+000, -1.0744300e+001,
-2.7855800e+001, -1.2580600e+001, 7.5930000e+000, 7.4812700e+001,
6.8495900e+001, -5.3429300e+001, 7.8854400e+001, -6.8595700e+001,
6.3743200e+001, 3.1347000e+001, -3.7501600e+001, 3.3892900e+001,
-8.8804500e+001, -7.8771900e+001, -6.6494400e+001, 4.4197200e+001,
1.8383600e+001, 2.6521200e+001, 8.4472300e+001 } ;

4.2.2 Shifted Rosenbrock

The function to minimise is

f (x) = 390 +

10∑
d=2

(
100

(
z2d−1 − zd

)2
+ (zd−1 − 1)

2
)

with

zd = xd − od + 1

The search space is [−100, 100]10 . The random o�set vector O = (o1, · · · , o10) is
de�ned below. This is the solution point, on which f = 390. There is also a local minimum
(o1 − 2, · · · , o30), on which the �tness value is 394.

O�set O for Rosenbrock (C source code)

static double O[10] = { 8.1023200e+001, -4.8395000e+001, 1.9231600e+001,
-2.5231000e+000, 7.0433800e+001, 4.7177400e+001, -7.8358000e+000,
-8.6669300e+001, 5.7853200e+001} ;
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4.2.3 Compression Spring

For more details, see[9, 2, 7]. There are three variables

x1 ∈ {1, . . . , 70} granularity 1
x2 ∈ [0.6, 3]
x3 ∈ [0.207, 0.5] granularity 0.001

and �ve constraints

g1 :=
8CfFmaxx2

πx3
3

− S ≤ 0

g2 := lf − lmax ≤ 0
g3 := σp − σpm ≤ 0

g4 := σp − Fp

K ≤ 0

g5 := σw − Fmax−Fp

K ≤ 0

with

Cf = 1 + 0.75 x3

x2−x3
+ 0.615x3

x2

Fmax = 1000
S = 189000
lf = Fmax

K + 1.05 (x1 + 2)x3
lmax = 14

σp =
Fp

K
σpm = 6
Fp = 300

K = 11.5× 106
x4
3

8x1x3
2

σw = 1.25

and the function to minimise is

f (x) = π2x2x
2
3 (x1 + 1)

4

The best known solution is (7, 1.386599591, 0.292) which gives the �tness value 2.6254214578.
To take the constraints into account, a penalty method is used. In this study, the maxi-
mum number of evaluations is 20,000.

4.2.4 Gear Train

For more details, see[9, 7]. The function to minimise is

f (x) =

(
1

β
− x1x2
x3x4

)γ
The search space is {12, 13, . . . , 60}4. In the original problem, β = 6.931, and γ = 2.

There are several solutions, depending on the required precision. For example f (19, 16, 43, 49) =
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2.7 × 10−12. So, if we set the objective value to zero and the acceptable error to 10−11,
any run that �nds this solution is successful.

4.2.5 Pressure Vessel

Just in short. For more details, see[9, 2, 7]. There are four variables

x1 ∈ [1.125, 12.5] granularity 0.0625
x2 ∈ [0.625, 12.5] granularity 0.0625
x3 ∈ ]0, 240]
x4 ∈ ]0, 240]

and three constraints

g1 := 0.0193x3 − x1 ≤ 0
g2 := 0.00954x3 − x2 ≤ 0
g3 := 750× 1728− πx23

(
x4 +

4
3x3
)
≤ 0

The function to minimise is

f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + x21 (3.1611x4 + 19.84x3)

The analytical solution is (1.125, 0.625, 58.2901554, 43.6926562)which gives the �tness
value 7,197.72893. To take the constraints into account, a penalty method is used.

4.2.6 Lennard-Jones

For more details, see for example [3]. The function to minimise is a kind of potential
energy of a set ofN atoms. The positionXi of atom i has three co-ordinates, and therefore
the dimension of the search space is 3N . In practice, the coordinates of a point x are
found by simply writing the coordinates of all the atoms Xiin order. In short, we can
write x = (X1, X2, . . . , XN ), and we then have

f (x) =

N−1∑
i=1

N∑
j=i+1

(
1

‖Xi −Xj‖2α
− 1

‖Xi −Xj‖α

)

In this study N = 5, α = 6, and the search space is [−2, 2]15.
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