Maurice Clerc

Randomness matters

Randomness matters Maurice Clerc 5th May 2012 1 Introduction

Comparing two stochastic algorithms is not easy, even for one single problem. By denition, comparing two algorithms means comparing the estimates of their respective performance measures, and it is dicult to be certain about the reliablities of these estimates. In this study, we will explain why a claim like On problem P, algorithm A is better than algorithm B should be carefully examined, and investigate the reasons for such scrutiny. Some reasons are fairly well known, e.g., the number of runs or the position of the solution point, but their importance is sometimes underestimated. Other reasons (e.g., the byte size of the computer on which the algorithm was run, or the kind of randomness that was used) are more subtle and not often taken into account, although their eects may be quite prominent. Both of these, namely, byte size and type of randomness, are in fact quite similar, for both modify the way the algorithm makes use of random numbers. One interesting observation is this : a careful study of these two reveals that it is sometimes possible to get excellent results with a very bad random number generator (RNG).

Five reasons to be careful

To compare two optimisation algorithms on a given problem, we run both a large number of times, and we compare the results. However, the conclusions that can apparently be drawn are sometimes questionable, for various reasons. Let us examine some of them.

In the following, we use the C version of Standard PSO 2011 as optimiser (4.1), available on the Particle Swarm Central [START_REF] Psc | Particle Swarm Central[END_REF] (there is also a Matlab version, slightly dierent), but the principles are valid for any other stochastic algorithm.

2.1

The position of the solution point

   f (x) = 1 search space = [-1, 1] 2 objective = 0
We can plot the successive positions of the particles. By default, in SPSO 2011, a connement method is applied (the particles are stopped at the boundary of the search space). See gure 2.1. It is not surprising that a lot of positions fall exactly on the boundary. However, what is more unexpected is the higher density near the centre of the search space. This phenomenon is explained in [START_REF] William | Biases in particle swarm optimization[END_REF] (actually, even for symmetrical functions, there is a higher density along the axes and the diagonals). It is even more obvious if we do not conne the particles (the let them y method). From gure 2.2, we see that the algorithm wrongly thinks that the solution is in the middle of the search space. More precisely, with the usual values of the parameter, the swarm simply tends to oscillate around the centre of the initialisation, even if it is not the centre of the search space. For a perfectly unbiased algorithm, on this Flat problem the distribution of the positions should be uniform inside the whole search space.

Actually, whenever an algorithm works dimension by dimension, this phenomenon may occur. Let us say that a problem is biased when its solution point is on a special position (diagonal, axis, centre). So, for fair comparison of algorithms, it is safer to apply the following rule.

Rule 1 : Never trust biased problems for comparisons

The number of runs

On a given problem, it is very common to estimate an average performance after several runs. For example, we can save the best tness values found by the runs, and compute their mean. Or, as for a test problem we do know the solution point x * , we can dene an acceptable error ε > 0, and we can say that a run is successful if it nds a point x so that |f (x) -f (x *) < ε|. Then we dene the success rate. There is nothing wrong with that, except that the number of runs may be too small for a correct estimate. Figure 2.3 shows an example : after 30 runs, the success rate is 23.3%, but after 100 runs, it is more or less stabilised around 17%. Therefore, if you perform only 30 runs, and if you claim that this algorithm is better than another one whose success rate is, say, 18%, you may be completely wrong.

Of course, the number of runs that are needed for such a stabilisation depends on the problem. We may nd it visually by plotting the curve Success rate vs Number of runs, or more rigorously by dening a maximum acceptable variance, and by running the algorithm as many times as necessary in order to have a variance below this threshold.

Hence, we have

Rule 2 : Be sure that the estimated performance has converged reasonably However, in some rare cases, the estimated performance may never converge. In particular, it may happen if the performance measure is the mean best value and if the algorithm makes use of a probability distribution with an innite variance, like Lévy.

In such a case, this particular performance measure is meaningless, and we have to use another one that does converge, like the success rate (which may be less robust, though, see below).

The kind of performance measure

As mentioned before, the two most commonly used performance measures (criteria) are the mean best and the success rate. But the important point is the relative indepen- dence between the two criteria, as noted, for example, in [START_REF] Mendes | Population Topologies and Their Inuence in Particle Swarm Performance[END_REF]. It may well happen that an algorithm A seems better than an algorithm B with respect to the rst criterion, but performs worse than B with respect to the second criterion. See table If the numbers are internally coded in the computer as words of n bits, it means that we have access to only 2 n dierent values. Of course, clever tricks may be used to increase this range, for example using two words to represent one number, but anyway there is a limitation. Such a limitation has an inuence on the performance, as we can clearly see from gure 2.4. On the Shifted Sphere 30D problem, we always use the same RNG (Random Number Generator) called KISS, but we simulate a less powerful machine, whose byte size is 5, 7, 9 or 11. The results of the statistical tests are not shown here, but the corresponding success rates are signicantly dierent. For this simple problem, the shorter the byte size, the better the performance, but it need not be the case for all problems. And so, we get the following Rule 4 : For reproducible results, do specify the word size 2. [START_REF] Mendes | Population Topologies and Their Inuence in Particle Swarm Performance[END_REF] The kind of randomness

This may be the most important cause of erroneous comparisons, and we will focus on it with the help of gures 2.5 and 2. C means the RNG of this language. Whenever the algorithm needs a random number, it calls the rand() function, and gets an integer between 0 and 32767, in a deterministic cyclic way that depends on the initialisation (the seed) ; sizes, the performances are dierent. In this particular simple example, the shorter the word size, the better the performance, but it is not necessarily so for all problems.

KISS has been dened in [START_REF] Marsaglia | The KISS generator[END_REF]. It is explicitly coded in the algorithm, and its cycle length is far longer (greater than 2 127). The deterministic sequence of produced numbers also depends on the seed. In practice (as in this example) the number of random numbers that are needed is about 1.7e+08, and there is no cycle ;

Q means that each random number is coded by a sequence of bits coming from a quantum system, which is supposed to generate true randomness. If we use just 3 bits, there are only 8 dierent possible values, and therefore there are cycles. With 32 bits, there is probably no cycle for these examples (although it has not been checked).

We can make at least three important remarks :

1. For a given RNG the performance (here the success rate) may be very dierent for 30 runs and for 100 runs ;

2. For the same number of runs, the performance may also be very dierent for dierent RNGs. In this particular case, it is perfect (100%) for the rst example (Sphere 30D) with Q (3 bits).

3. There is no relationship between the quality of the randomness and the performance. One may have good performance with a bad RNG like Q (3 bits), but on the other hand the performance may be better with a better random number generator, like Q (32 bits) vs KISS. The gure 2.7 presents some results on four quasi-real-world problems that illustrate this remark.

Rule 5 : For reproducible results, do specify the RNG that is used, including its parameters, if any (like the seed) However, one may note that on a computer, the list of possible numbers is anyway always bounded. So, in practice, such a transformation is always possible. Thus, we replace the concept of stochastic optimisation by the list based one.

Future work

The kind of randomness that is used can be seen as a parameter of the optimiser.

Therefore, an obvious question is Can we modify it during the iterative process, in order to improve the performance ? In short, can we dene an adaptive randomness ?

Preliminary results suggest that it is indeed possible. A simple way to do that is, for example, to use the Q randomness (list of bits generated by a true random system), It was well suspected for years that the dimension by dimension method used by most of PSO versions is biased : when the optimum point lies on a axis, or on a diagonal, or worse, on the centre of the system of coordinates, it is easier to nd it. The paper [START_REF] Monson | Exposing Origin-Seeking Bias in PSO[END_REF] was not completely convincing, but a more complete analysis of this phenomenon has been presented in 2010 [START_REF] William | Biases in particle swarm optimization[END_REF]. That is why in SPSO 2011 the velocity is modied in a geometrical way that does not depend on the system of coordinates.

Let G i (t) be the centre of gravity of three points : the current position, a point a bit beyond the best previous position (relative to x i (t)), and a point a bit beyond the best previous position in the neighbourhood. Formally, it is dened by the following formula, in which t has been removed for simplicity

G i = xi+(xi+c(pi-xi))+(xi+c(li-xi)) 3 = x i + c pi+li-2xi 3 (4.1)
We dene a random point x i (uniform distribution) in the hypersphere

H i (G i , G i -x i) (4.2)
i (G i , G i -x i)
with centre G i and of radius G i -x i . Then the velocity update equation is

v i (t + 1) = wv i (t) + x i (t) -x i (t) (4.3)
It means that the new position is simply

x i (t + 1) = wv i (t) + x i (t) (4.4) Note that with this method it is easy to rigorously dene exploitation and exploration. There is exploitation when x i (t + 1) is inside at least one hypersphere H j , and exploration otherwise.

The source code contains some options (like hyperspherical Gaussian distribution instead of the uniform one) that are not described here. We may sometimes have l i (t) = p i (t) when the particle i is precisely the one that has the best previous best in its neighbourhood. In such a case l i (t) is simply ignored, and the equation 4.1 that denes the gravity centre G i becomes

G i = x i + (x i + c (p i -x i)) 2 = x i + c p i -x i 2 (4.5)
SPSO 2011 keeps the same variable neighbourhood topology as the previous standard versions (2006,2007), i.e. the topology is modied partly at random after each unsuccessful iteration. For more details, see the original source code on the Particle Swarm Central [START_REF] Psc | Particle Swarm Central[END_REF]. For this study, some options have been added, in particular more possible RNGs

Shifted Rosenbrock

The function to minimise is

f (x) = 390 + 10 d=2 100 z 2 d-1 -z d 2 + (z d-1 -1) 2 with z d = x d -o d + 1
The search space is [-100, 100] The best known solution is (7, 1.386599591, 0.292) which gives the tness value 2.6254214578.

To take the constraints into account, a penalty method is used. In this study, the maximum number of evaluations is 20,000.

Gear Train

For more details, see [START_REF] Sandgren | Non linear integer and discrete programming in mechanical design optimization[END_REF][START_REF] Onwubolu | New Optimization Techniques in Engineering[END_REF]. The function to minimise is

f (x) = 1 β - x 1 x 2 x 3 x 4 γ
The search space is {12, 13, . . . , 60}

4

. In the original problem, β = 6.931, and γ = 2. There are several solutions, depending on the required precision. For example f (19, 16, 43, 49) =

 Figure 2.2: Successive positions on the impossible 2D Flat problem, with SPSO 2011, and no connement.

Figure 2 . 3 :

 23 Figure 2.3: Success rate vs Number of runs. Shifted Rosenbrock 10D (90000 tness evaluations/run).

Figure 2 . 4 :

 24 Figure 2.4: Shifted Sphere 30D. With the same RNG (KISS here), but dierent byte

Figure 2 . 5 :

 25 Figure 2.5: Shifted Sphere 30D. The performance measure -here the success rate -may be very dierent when using dierent RNGs. A bad one, like Q (3 bits) produces a perfect result (100%) here.

Figure 2 . 6 :

 26 Figure 2.6: Shifted Rosenbrock 10D. Here too Q (3 bits) produces a better result.

Figure 2 . 7 :

 27 Figure 2.7: Usually, when the number of possible random values decreases, the performance also tends to decrease (a,b,c). However it is not always the case (d).

Figure 4 .

 4 Figure 4.1: SPSO 2011. Construction of the next position. The point x i is chosen at random inside the hypersphere H i (G i , G i -x i)

 . The modied code (a C version) is available on my personal site [1]. The parameter values are the suggested ones for the original version, i.e. S = 40 (swarm size), K = 3 (number of particles informed at random by a given one), w = 1/ (2ln (2)) (inertia weight), c = 0.5 + ln (2) (common value for cognitive and social coecient). All runs have been performed on a 64 bit machine.

3 -

 3 S ≤ 0 g 2 := l f -l max ≤ 0 g 3 := σ p -σ pm ≤ 0 g 4 := σ p -Fp K ≤ 0 g 5 := σ wand the function to minimise is f (x) = π 2 x 2 x 2 3 (x 1 + 1) 4

Table 1 :

 1 According to the mean best, algorithm A seems better than algorithm B.According to the success rate, it is the opposite. The threshold value for success is 0.01.

			Algorithm A	Algorithm B
		Run	Best	Success	Best	Success
		1	0.0034	1	0.0069	1
		2	0.0098	1	0.0083	1
		3	0.0145	0	0.0001	1
		4	0.0156	0	0.1292	0
		5	0.0182	0	0.0037	1
		6	0.0159	0	0.0044	1
		7	0.0025	1	0.0025	1
		8	0.0132	0	0.1246	0
		9	0.0192	0	0.1158	0
		10	0.0004	1	0.0178	0
		Mean 0.0113 40% 0.0413 60%
	2.4	The word size			

 The random oset vector O= (o 1 , • • • , o 30) is dened below. The search space is [-100, 100]30 . The function is unimodal and O is the solution point, on which f = -450.

	4.2	Test problems
	4.2.1 Shifted Sphere (Parabola)
	The function to minimise is
		30
		f (x) = -450 +	(x d -o d) 2
		d=1
	Oset O for Sphere/Parabola (C source code)
	static double O[30] = { -3.9311900e+001, 5.8899900e+001, -4.6322400e+001,
	-7.4651500e+001, -1.6799700e+001, -8.0544100e+001, -1.0593500e+001,
	2.4969400e+001, 8.9838400e+001, 9.1119000e+000, -1.0744300e+001,
	-2.7855800e+001, -1.2580600e+001, 7.5930000e+000, 7.4812700e+001,
	6.8495900e+001, -5.3429300e+001, 7.8854400e+001, -6.8595700e+001,
	6.3743200e+001, 3.1347000e+001, -3.7501600e+001, 3.3892900e+001,
	-8.8804500e+001, -7.8771900e+001, -6.6494400e+001, 4.4197200e+001,
	1.8383600e+001, 2.6521200e+001, 8.4472300e+001 } ;

 The random oset vector O = (o 1 , • • • , o 10) is dened below. This is the solution point, on which f = 390. There is also a local minimum (o 1 -2, • • • , o 30), on which the tness value is 394. more details, see[START_REF] Sandgren | Non linear integer and discrete programming in mechanical design optimization[END_REF] 2,[START_REF] Onwubolu | New Optimization Techniques in Engineering[END_REF]. There are three variables x 1 ∈ {1, . . . , 70} granularity 1 x 2 ∈ [0.6, 3] x 3 ∈ [0.207, 0.5] granularity 0.001

	4.2.3 Compression Spring
	and ve constraints
	-2.5231000e+000, 7.0433800e+001, 4.7177400e+001, -7.8358000e+000,
	-8.6669300e+001, 5.7853200e+001} ;

10

.

Oset O for Rosenbrock (C source code) static double O[10] = { 8.1023200e+001, -4.8395000e+001, 1.9231600e+001, For

2.7 × 10 -12 . So, if we set the objective value to zero and the acceptable error to 10 -11 , any run that nds this solution is successful.

Pressure Vessel

Just in short. For more details, see [START_REF] Sandgren | Non linear integer and discrete programming in mechanical design optimization[END_REF]2,[START_REF] Onwubolu | New Optimization Techniques in Engineering[END_REF]. There are four variables

x 1 ∈ [1.125, 12.5] granularity 0.0625 x 2 ∈ [0.625, 12.5] granularity 0.0625

and three constraints

The function to minimise is

The analytical solution is (1.125, 0.625, 58.2901554, 43.6926562)which gives the tness value 7,197.72893. To take the constraints into account, a penalty method is used.

Lennard-Jones

For more details, see for example [START_REF] Das | Problem Denitions and Evaluation Criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems[END_REF]. The function to minimise is a kind of potential energy of a set of N atoms. The position X i of atom i has three co-ordinates, and therefore the dimension of the search space is 3N . In practice, the coordinates of a point x are found by simply writing the coordinates of all the atoms X i in order. In short, we can write x = (X 1 , X 2 , . . . , X N), and we then have

In this study N = 5, α = 6, and the search space is [-2, 2]