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A POSTERIORI ERROR ANALYSIS OF THE TIME DEPENDENT STOKES

EQUATIONS WITH MIXED BOUNDARY CONDITIONS

CHRISTINE BERNARDI† AND TONI SAYAH‡

Abstract. In this paper we study the time dependent Stokes problem with mixed boundary conditions.

The problem is discretized by the backward Euler’s scheme in time and finite elements in space. We
establish an optimal a posteriori error with two types of computable error indicators, the first one being

linked to the time discretization and the second one to the space discretization.

Keywords. Stokes equations, mixed boundary conditions, finite element method, a posteriori analysis.

1. Introduction.

Let Ω be a bounded simply-connected open domain in IR3, with a Lipschitz-continuous connected bound-
ary ∂Ω, and let [0, T ] denote an interval in IR where T is a positive constant. We consider a partition
without overlap of ∂Ω into two connected parts Γm and Γ. Let also n be the unit outward normal vector
to Ω on its boundary ∂Ω. We intend to work with the following time dependent Stokes system:

∂u

∂t
(t,x)− ν∆u(t,x) +∇p(t,x) = f(t,x) in ]0, T [×Ω,

div u(t,x) = 0 in [0, T ]× Ω,

u(t,x) = uD on [0, T ]× Γ,

u(t,x) .n(x) = um on [0, T ]× Γm,

curl u(t,x)× n(x) = 0 on [0, T ]× Γm,

u(0,x) = u0 in Ω,

(1.1)

where f represents a density of body forces and the viscosity ν is a positive constant. The unknowns are
the velocity u and the pressure p of the fluid.

Indeed, the system of partial differential equations in (1.1) is provided with mixed boundary conditions
which are standard Dirichler conditions on the velocity on Γ and conditions on the normal component
of the velocity and the tangential components of the vorticity curl u on Γm. A huge amount of work
has been made concerning the discretization of the Stokes problem with Dirichlet boundary conditions
on the velocity, see [14], [15], [16] and the references therein, and the a posteriori analysis of a finite
element discretization for the time-dependent problem has been performed in several papers [13], [7].
Also a variational formulation with three unknowns (the vorticity, the velocity and the pressure) has
been proposed in [10], [11] for handling the new boundary conditions, and a posteriori estimates have
been proved in [1] and [12] for simple discretizations.

The aim of this work is to extend the a posteriori estimates to the more realistic case of mixed boundary
conditions. We propose a very standard low cost discretization relying on the Euler’s implicit scheme
in time combined with finite elements in space, and prove optimal a posteriori error estimates for the
discrete problem. To do this, we have rather follow the approach of [7] introduced in [3] which consists
in uncoupling as much as possible the time and space errors in view of a simple adaptivity strategy.
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2 C. BERNARDI AND T. SAYAH

The outline of the paper is as follows:

• Section 2 is devoted to the study of the continuous problem.
• In section 3, we introduce the discrete problem and we recall its main properties.
• In section 4, we study the a posteriori errors and derive optimal estimates.

2. Analysis of the model

We suppose that ∂Γm = ∂Γ is a Lipschitz-continuous submanifold of ∂Ω. For simplicity, we work with
zero boundary and initial conditions uD = 0, um = 0, u0 = 0; indeed the extension to the case of general
conditions is rather obvious and only hinted in what follows. In view of the variational formulation of
Problem (1.1), we recall the formula

−∆u = curl(curl u)−∇(divu).

Then Problem (1.1) can equivalently be written as (we suppress the variables x and t for brevity)

∂u

∂t
+ ν curl(curl u) +∇p = f in ]0, T [×Ω,

div u = 0 in [0, T ]× Ω,

u× n = 0 on [0, T ]× Γ,

u .n = 0 on [0, T ]× ∂Ω,

curl u× n = 0 on [0, T ]× Γm

u = 0 in {0} × Ω.

(2.1)

The reason for choosing this modified form is that the last boundary condition, namely curl u × n = 0
on Γm, can now be treated as a natural boundary condition.

In order to write the variational formulation of the previous problem, we introduce the Sobolev spaces:

Wm,p(Ω) = {v ∈ Lp(Ω), ∂αv ∈ Lp(Ω), ∀ | α |≤ m}, Hm(Ω) = Wm,2(Ω),

equipped with the following semi-norm and norm :

| v |m,p,Ω=

 ∑
|α|=m

∫
Ω

| ∂αv(x) |p dx


1/p

and ‖ v ‖m,p,Ω=

∑
k≤m

| v |pk,p,Ω


1/p

.

As usual, we shall omit p when p = 2 and denote by (·, ·) the scalar product of L2(Ω). We also consider
the spaces

H(div,Ω) = {v ∈ L2(Ω)
3
,div v ∈ L2(Ω)}

and

H(curl,Ω) = {v ∈ L2(Ω)
3
, curl v ∈ L2(Ω)

3}.
We recall [15, Chap. I, Section 2] that the normal trace operator v 7→ v .n is defined from H(div,Ω) onto
H−1/2(∂Ω) and the tangential trace operator v 7→ v×n is defined from H(curl,Ω) into H−1/2(∂Ω)3. In
view of the boundary conditions in system (2.1), we thus consider the spaces

H0(div,Ω) = {v ∈ H(div,Ω),v .n = 0 on ∂Ω}

and

H∗(curl,Ω) = {v ∈ H(curl,Ω),v × n = 0 on Γ}.
We set

X(Ω) = H0(div,Ω) ∩H∗(curl,Ω)

equipped with the semi-norm

||v||X(Ω) =
(
||divv||2L2(Ω) + || curl v||2L2(Ω)3

)1/2
.
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Since Ω is simply-connected, we recall from [2, Cor. 3.16] that this quantity is a norm, which is equivalent
to the graph norm of H(div,Ω) ∩ H(curl,Ω), i.e., that there exists a constant c only depending on Ω
such that

∀v ∈ X(Ω), ||v||L2(Ω)3 ≤ c||v||X(Ω). (2.2)

We denote by L2
◦(Ω) the space of functions in L2(Ω) with a zero mean-value on Ω, and we introduce the

kernel

V =
{
v ∈ X(Ω); ∀q ∈ L2

◦(Ω),

∫
Ω

q(x) divv(x) dx = 0
}
,

which is a closed subspace of X(Ω) and coincides with

V =
{
v ∈ X(Ω); divv = 0 in Ω

}
.

As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time
interval ]a, b[ with values in a separable functional space, say Y . More precisely, let ‖ · ‖Y denote the
norm of Y ; then for any r, 1 ≤ r ≤ ∞, we define

Lr(a, b;Y ) =
{
f mesurable in ]a, b[;

∫ b

a

‖f(t)‖rY dt <∞
}
,

equipped with the norm

‖ f ‖Lr(a,b;Y )=
(∫ b

a

‖f(t)‖rY dt
)1/r

,

with the usual modifications if r =∞. It is a Banach space if Y is a Banach space.

We now assume that the data f belongs to L2(0, T ;X(Ω)′) where X(Ω)′ is the dual space of X(Ω), set
u(t) = u(t, .) and consider the following variational formulation in ]0, T [: Find u(t) ∈ X(Ω) such that,

∀v ∈ X(Ω), (
∂

∂t
u(t),v) + ν(curl u(t), curl v)− (divu(t), p) = 〈f(t),v〉,

∀q ∈ L2
◦(Ω), (divu(t), q) = 0,

u(0) = 0.

(2.3)

Proposition 2.1. Any solution of Problem (2.3) is a solution of Problem (2.1) where the first two
equations are satisfied in the sense of distributions.

Proof. Let (u, p) be the solution of (2.3). Denoting by D(Ω) the space of infinitely differentiable functions
with a compact support in Ω, we first take v in D(Ω)3 in the first line of problem (2.3). This gives the
first equation in problem (2.1). Next, it is readily checked from the Stokes formula that the second line
of problem (2.3) is also satisfied when q is a constant, hence for all q in L2(Ω). Thus, we take q in
D(Ω), which yields the second equation in problem (2.1). It also follows from the definition of X(Ω) that
the first two boundary conditions in problem (2.1) hold. Finally, introducing an infinitely differentiable
function ϕ with a compact support in Γm and choosing v as a lifting in X(Ω)∩H1(Ω)3 of the extension
of ϕ× n by zero to ∂Ω gives the last boundary condition of problem (2.1).

The spaces L2
◦(Ω) and X(Ω) verify a uniform inf-sup condition (see for instance [4] or [15, Chap. I, Cor.

2.4]): There exists a constant β∗ > 0 such that

∀q ∈ L2
◦(Ω), sup

v∈X(Ω)

∫
Ω

q(x) divv(x) dx

||v||X(Ω)
≥ β∗||q||L2(Ω).

The arguments for the proof of the well-posedness of Problem 2.3 are exactly the same as [16, Chap. III,
Thm 1.1], see also [14, Chap. V].

Proposition 2.2. For any data f in L2(0, T ;X(Ω)′), Problem (2.3) has a unique solution (u, p).
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Remark 2.3. This existence and uniqueness result easily extends to the case of non homogeneous bound-
ary conditions as presented in system (1.1), when these data stisfy

uD ∈ L2(0, T ;H
1
2 (Γ)3), um ∈ L2(0, T ;H

1
2 (Γm)), u0 ∈ L2(Ω)3. (2.4)

Remark 2.4. In the case when Ω has a C1,1 boundary or is convex, it is proved in [2, Thm 2.17] that the
space H0(div,Ω) ∩H(curl,Ω) is contained in H1(Ω)3. We recall also that when Ω is a polyhedron, the
space of restrictions of functions of X(Ω) to Ω \ Θ̄, where Θ is a neighborhood of the re-entrant corners
of Ω inside Γm, is imbedded in H1(Ω \ Θ̄) (see the proof of [4, Lemma 2.5] for more details).

3. The discrete problem

From now on, we assume that Ω is a polyhedron and that f belongs to C0(0, T ;X(Ω)′). In order to
describe the time discretization with an adaptive choice of local time steps, we introduce a partition
of the interval [0, T ] into subintervals [tn−1, tn], 1 ≤ n ≤ N , such that 0 = t0 ≤ t1 ≤ · · · ≤ tN = T .
We denote by τn the length of [tn−1, tn], by τ the N-tuple (τ1, . . . , τN ), by |τ | the maximum of the τn,
1 ≤ n ≤ N , and finally by στ the regularity parameter

στ = max
2≤n≤N

τn
τn−1

.

From now on, we work with a regular family of partitions, i.e. we assume that στ is bounded indepen-
dently of τ .
We introduce the operator πτ : For any Banach space X and any function g continuous from ]0, T ] into X,
πτg denotes the step function which is constant and equal to g(tn) on each interval ]tn−1, tn], 1 ≤ n ≤ N .
Similarly, with any sequence (φn)1≤n≤N in X, we associate the step function πτφτ which is constant and
equal to φn on each interval ]tn−1, tn], 1 ≤ n ≤ N .
Furthermore, for any Banach space X, with each family (vn)0≤n≤N in XN+1, we agree to associate
the function vτ on [0, T ] which is affine on each interval [tn−1, tn], 1 ≤ n ≤ N , and equal to vn at tn,
0 ≤ n ≤ N .

We now describe the space discretization. For each n, 0 ≤ n ≤ N , let (Tnh)h be a regular family of
triangulations of Ω by tetrahedra, in the usual sense that:

• for each h, Ω̄ is the union of all elements of Tnh;
• the intersection of two different elements of Tnh, if not empty, is a vertex or a whole edge or a

whole face of both of them;
• the ratio of the diameter of an element K in Tnh to the diameter of its inscribed sphere is bounded

by a constant independent of n and h.

As usual, h denotes the maximal diameter of the elements of all Tnh, 0 ≤ n ≤ N , while for each n, hn
denotes the maximal diameter of the elements of Tnh. For each κ in Tnh and each nonnegative integer
k, we denote by Pk(κ) the space of restrictions to κ of polynomials with 3 variables and total degree at
most k.

In what follows, c, c′, C, C ′, c1, . . . stand for generic constants which may vary from line to line but are
always independent of h and n. From now on, we call finite element space associated with Tnh a space
of functions such that their restrictions to any element κ of Tnh belong to a space of polynomials of fixed
degree.

For each n and h, we associate with Tnh two finite element spaces Xnh and Mnh which are contained in
X(Ω) and L2

◦(Ω), respectively, and such that the following inf-sup condition holds for a constant β > 0:

∀qh ∈Mnh, sup
vh∈Xnh

∫
Ω

qh(x) divvh(x) dx

‖vh‖X(Ω)
≥ β‖qh|‖L2(Ω). (3.1)

Indeed, there exist many examples of finite element spaces satisfying these conditions (the inf-sup condi-
tion being usually proved with Xnh replaced by Xnh ∩H1

0 (Ω)3), see [15, Chap. II]. We give one example
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of them dealing with continuous discrete pressures which is presented in [15, Chap. II, Section 4.1] for
instance. The velocity is discretized with the “Mini-Element”

Xnh =
{
vh ∈ X(Ω); ∀κ ∈ Tnh, vh|κ ∈ Pb(κ)3

}
,

where the space Pb(κ) is spanned by functions in P1(κ) and the bubble function on κ (for each element
κ, the bubble function is equal to the product of the barycentric coordinates associated with the vertices
of κ). The pressure is discretized with classical continuous finite element of order one

Mnh =
{
qh ∈ L2

◦(Ω) ∩H1(Ω); ∀κ ∈ Tnh, qh|κ ∈ P1(κ)
}
.

As usual, we denote by Vnh the kernel

Vnh =
{
vh ∈ Xnh; ∀qh ∈Mnh,

∫
Ω

qh(x) div vh(x) dx = 0
}
.

The discrete problem associated with Problem (2.3) is: Knowing un−1
h ∈ Xn−1h, find (unh, p

n
h) with values

in Xnh ×Mnh solution of

∀vh ∈ Xnh,
1

τn
(unh − un−1

h ,vh) + ν(curl unh, curl vh) + ν(divunh,divvh)

− (pnh,divvh) = 〈fn,vh〉,
(3.2)

∀qh ∈Mnh, (divunh, qh) = 0, (3.3)

by assuming that u0
h = 0 and taking

fn(x) = f(x, tn), for a.e x in Ω. (3.4)

We begin by showing a bound for the solution unh of Problem (3.2)− (3.3).

Theorem 3.1. At each time step, knowing un−1
h ∈ Xn−1h, Problem (3.2)−(3.3) admits a unique solution

(unh, p
n
h) with values in Xnh ×Mnh. This solution satisfies, for m = 1, . . . , N ,

1

2
||umh ||2L2(Ω)3 +

ν

2

m∑
n=1

τn‖unh‖2X(Ω) ≤
c2

ν
||πτ f ||2L2(0,T ;X(Ω)′) ≤

c′2

ν
||f ||2L∞(0,T ;X(Ω)′). (3.5)

Proof. For un−1
h ∈ Xn−1h, it is clear that Problem (3.2)–(3.3) has a unique solution (unh, p

n
h) as a con-

sequence of the coerciveness of the corresponding bilinear form on Xnh ×Xnh and the inf-sup condition
(3.1). Therefore, we take vh = unh in (3.2) and we use the relation

a(a− b) =
1

2
a2 +

1

2
(a− b)2 − 1

2
b2, (3.6)

and inequality (2.2) to obtain the relation :

1

2
||unh||2L2(Ω)3 −

1

2
||un−1

h ||2L2(Ω)3 + ντn||unh||2X(Ω) ≤
τnε

2
||fn||2X(Ω)′ +

τnc
2

2ε
||unh||2X(Ω).

We choose ε =
c2

ν
and sum over n = 1, . . .m. We obtain :

1

2
||umh ||2L2(Ω)3 +

ν

2

m∑
n=1

τn‖unh‖2X(Ω) ≤
m∑
n=1

τnc
2

2ν
||fn||2X(Ω)′ .

This implies the estimates.

Remark 3.2. These results extend to the case of non homogeneous boundary conditions as presented in
system (1.1). Indeed, by assuming that these data satisfy

uD ∈ C0([0, T ]× Γ)3, um ∈ C0([0, T ]× Γm), u0 ∈ C0(Ω)3,

we can define a discrete problem where, with respect to (1.1), these data are replaced by appropriate
interpolates. Then slightly more complex arguments (lifting of the discrete traces) lead to the existence
and uniqueness result.
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4. A posteriori error analysis

We now intend to prove a posteriori error estimates between the exact solution (u, p) of Problem (2.3)
and the numerical solution (unh, p

n
h) of Problem (3.2)− (3.3). Several steps are needed for that.

4.1. Construction of the error indicators. We first introduce the space

Znh = {gh ∈ L2(Ω)3; ∀κ ∈ Tnh, gh|κ ∈ P`(κ)3},

where ` is usually lower than the maximal degree of polynomials in Xnh, and, for 1 ≤ n ≤ N , we fix an
approximation fnh of the data fn in Znh.

Next, for every element κ in Tnh, we denote by
• εκ the set of faces of κ that are not contained in ∂Ω,
• εmκ the set of faces of κ which are contained in Γ̄m,
• ∆κ the union of elements of Tnh that intersect κ,
• ∆e the union of elements of Tnh that intersect the face e,
• hκ the diameter of κ and he the diameter of the face e,
• and [·]e the jump through e for each face e in an εκ (making its sign precise is not necessary).
Also, nκ stands for the unit outward normal vector to κ on ∂κ.

For the demonstration of the next theorems, we introduce for an element κ of Tnh, the bubble function
ψκ (resp. ψe for the face e) which is equal to the product of the 4 barycentric coordinates associated
with the vertices of κ (resp. of the 3 barycentric coordinates associated with the vertices of e). We also
consider a lifting operator Le defined on polynomials on e vanishing on ∂e into polynomials on the at
most two elements κ containing e and vanishing on ∂κ \ e, which is constructed by affine transformation
from a fixed operator on the reference element. We recall the next results from [17, Lemma 3.3].

Property 4.1. Denoting by Pr(κ) the space of polynomials of degree smaller than r on κ, we have

∀v ∈ Pr(κ),

{
c||v||0,κ ≤ ||vψ1/2

κ ||0,κ ≤ c′||v||0,κ,
|v|1,κ ≤ ch−1

κ ||v||0,κ.
(4.1)

Property 4.2. Denoting by Pr(e) the space of polynomials of degree smaller than r on e, we have

∀ v ∈ Pr(e), c‖v‖0,e ≤ ‖vψ1/2
e ‖0,e ≤ c′‖v‖0,e,

and, for all polynomials v in Pr(e) vanishing on ∂e, if κ is an element which contains e,

‖Lev‖0,κ + he | Lev |1,κ≤ ch1/2
e ‖v‖0,e.

We also introduce a Clément type regularization operator Cnh [8] which has the following properties, see
[5, Section IX.3]: For any function w in H1(Ω)3, Cnhw belongs to the space of continuous affine finite
elements and satisfies for any κ in Tnh and e in εκ,

||w − Cnhw||L2(κ)3 ≤ chκ||w||1,∆κ and ||w − Cnhw||L2(e)3 ≤ ch1/2
e ||w||1,∆e . (4.2)

For the a posteriori error studies, we consider the piecewise affine function uh which take in the interval
[tn−1, tn] the values

uh(t) =
t− tn−1

τn
(unh − un−1

h ) + un−1
h ,

and we prove optimal a posteriori error estimates by using the norm:

[[u− uh]](tn) =
(
||u(tn)− uh(tn)||2L2(Ω)3

+νmax
(∫ tn

0

||u(t)− uh(t)||2X(Ω)dt,

n∑
m=1

∫ tm

tm−1

||u(t)− πτuh(t)||2X(Ω)dt
))1/2

.
(4.3)
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Since the solution of problem (2.3) is divergence-free, the solutions of Problems (2.3) and (3.2) − (3.3)
verify for t in ]tn−1, tn] and for all v(t) in X(Ω):

(
∂

∂t
(u− uh)(t),v(t)) + ν(curl (u(t)− uh(t)), curl v(t)) + ν(div (u(t)− uh(t)),divv(t))

−(divv(t), p(t)− πτpτ (t)) = (f(t),v(t))− 1

τn
(unh − un−1

h ,v(t))− ν(curl uh(t), curl v(t))

−ν(div uh(t),divv(t)) + (divv(t), πτpτ (t)),

(4.4)

and for all q(t) in L2
◦(Ω)∫

Ω

q(t,x) div(u(t,x)− uh(t,x)) dx = −
∫

Ω

q(t,x) divuh(t,x) dx (4.5)

The residual R(uh) is given in L2(0, T ;X(Ω)′) by, for t in ]tn−1, tn] and for all v(t) in X(Ω)

〈R(uh)(t),v(t)〉 = (f(t),v(t))− (
∂uh
∂t

(t),v(t))− ν(curl uh(t), curl v(t))

−ν(divuh(t),divv(t)) + (divv(t), πτpτ (t)).
(4.6)

Using (3.2), we introduce the space residual Rh and the time residual Rτ :

R(uh) = (f − fn) + (fn − fnh ) +Rh(uh) +Rτ (uh), (4.7)

such that, for t in ]tn−1, tn], and for all vh(t) in Xnh:

〈R(uh)(t),v(t)〉 = 〈f(t)− fn,v(t)〉+ 〈fn − fnh +Rh(uh)(t),v(t)− vh(t)〉+ 〈Rτ (uh)(t),v(t)〉, (4.8)

with

〈Rh(uh)(t),v(t)− vh(t)〉 = (fnh −
1

τn
(unh − un−1

h ,v(t)− vh(t)) + (div(v(t)− vh(t)), pnh)

−ν(curl unh, curl (v(t)− vh(t)))− ν(divunh,div (v(t)− vh(t)))

=
∑
κ∈Tnh

{∫
κ

(fnh −
1

τn
(unh − un−1

h )− ν curl curl unh + ν∇ divunh −∇pnh)(x)

·(v(t,x)− vh(t,x)) dx

−ν
∑
e∈εκ

∫
e

(curl unh × n + ν(divunh)n− pnhn)(σ) · (v(t,σ)− vh(t,σ)) dσ

−ν
∑
e∈εmκ

∫
e

(curl unh × n)(σ) · (v(t,σ)− vh(t,σ)) dσ
}

(4.9)

(where σ stands for the tangential coordinates on e) and

〈Rτ (uh)(t),v(t)〉 = ν(curl (unh − uh(t)), curl v(t)) + ν(div(unh − uh(t)),divv(t))

=
tn − t
τn

∑
κ∈Tnh

{
ν

∫
κ

curl (unh − un−1
h )(x) · curl v(t,x) dx

+ν

∫
κ

div(unh − un−1
h )(x) · div v(t,x) dx

}
.

(4.10)

All this leads to the following definition of the error indicators: For each κ in Tnh,

(ηhn,κ)2 = h2
κ||fnh −

1

τn
(unh − un−1

h )− ν curl curl unh + ν∇ divunh −∇pnh||20,κ + ||divunh||20,κ

+
∑
e∈εκ

he|| [curl unh × n + ν(divunh)n− pnhn]e||20,e +
∑
e∈εmκ

he||curl unh × n||20,e,

(ητn,κ)2 = τn
(
||curl (unh − un−1

h )||20,κ + ||div(unh − un−1
h )||20,κ

)
= τn||unh − un−1

h ||2X(Ω).

(4.11)

Even if these indicators are a little complex, each term in them is easy to compute since it only depends
on the discrete solution and involves (usually low degree) polynomials.
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The following lemma justifies our choice of error indicators. We skip its proof which is nearly obvious
(taking the definition of Rh in formula (4.9) with vh = Cnhv, using the Cauchy–Schwarz inequality and
the continuity of the imbedding of X(Ω) in H1(Ω), next by taking the definition of Rτ in formula (4.10)
and using the Cauchy–Schwarz inequality).

Lemma 4.3. The following estimates hold for 1 ≤ n ≤ N ,

(1) When Ω has no re-entrant corner inside Γm, for all v in X(Ω) and vh = Cnhv:

〈Rh(uh),v − vh〉 ≤ C
( ∑
κ∈Tnh

(ηhn,κ)2
)1/2

||v||X(Ω). (4.12)

(2) For all v in X(Ω) and t in ]tn−1, tn],

〈Rτ (uh)(t),v〉 ≤ C tn − t
τ

3/2
n

( ∑
κ∈Tnh

(ητn,κ)2
)1/2

||v||X(Ω). (4.13)

4.2. Upper bounds of the error. To prove the upper bound, we follow the idea used by C. Bernardi
and R. Verfürth in [7] in order to uncouple time and space errors. We introduce an auxiliary problem
corresponding to the time discretization and calculate upper bounds for the errors between the solution
of the last introduced problem and the exact solution firstly and the discrete solution secondly. Finally,
we combine the obtained errors to derive the desired upper bound for the a posteriori error estimation.

We introduce the following time semi-discrete problem: Knowing un−1 in X(Ω), find (un, pn) with values
in X(Ω)× L2

◦(Ω) solution of

∀v ∈ X(Ω),
1

τn
(un − un−1,v) + ν(curl un, curl v) + ν(divun,divv)

− (divv, pn) = 〈f(tn),v〉, (4.14)

∀q ∈ L2
◦(Ω), (divun, q) = 0, (4.15)

by assuming that u0 = 0. It is clear that Problem (4.14) − (4.15) has a unique solution owing to the
ellipticity of the bilinear form and the inf-sup condition on the form for the divergence.

Theorem 4.4. The following a posteriori error estimate holds between the velocity u of Problem (2.3)
and the velocity uτ associated with the solutions (un)0≤n≤N of Problem (4.14)− (4.15): For 1 ≤ m ≤ N ,

||u(tm)− uτ (tm)||2L2(Ω) +

∫ tm

0

||u(s)− uτ (s)||2X(Ω)ds

≤ C
( m∑
n=1

∑
κ∈Tnh

(ητn,κ)2 +

m∑
n=1

τn||un − unh||2X(Ω) + ||f − πτ f ||2L2(0,tm;X(Ω)′)

)
.

(4.16)

Proof. By combining Problems (2.3) and (4.14)-(4.15), we observe that the pair (u−uτ , p−πτpτ ) satisfies

(u− uτ )(0) = 0 a.e. in Ω,

and that, for 1 ≤ n ≤ N , for a.e. t in ]tn−1, tn] and for all (v, q) ∈ X(Ω)× L2
◦(Ω),

(∂t(u− uτ ),v) + ν(curl(u− uτ ), curl v) + ν(div(u− uτ ),divv)− (divv, p− πτpτ )

= 〈f − πτ f ,v〉+ ν(curl(un − uτ ), curl v) + ν(div(un − uτ ),divv),

−(div(u− uτ ), q) = 0.

(4.17)

By taking in the last system v = u− uτ and q = p− πτpτ and subtracting the second line from the first
one, we obtain

1

2

d

dt
||u− uτ ||20,Ω + ν||u− uτ ||2X(Ω)

≤
( 1

ν1/2
||f − πτ f ||X(Ω)′ + ν1/2||un − uτ ||X(Ω)

)
ν1/2||u− uτ ||X(Ω),
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whence
d

dt
||u− uτ ||20,Ω + ν||u− uτ ||2X(Ω) ≤ 2

(1

ν
||f − πτ f ||2X(Ω)′ + ν||un − uτ ||2X(Ω)

)
.

We remark that, for all t in [tn−1, tn],

(un − uτ )(t) =
tn − t
τn

(un − un−1),

integrate the last inequality between tn−1 and tn and sum over n to obtain

||u(tm)− uτ (tm)||20,Ω + ν

∫ tm

0

||u(s)− uτ (s)||2X(Ω)ds

≤ C
(
||f − πτ f ||2L2(0,tm;X(Ω)′) +

m∑
n=1

τn||un − un−1||2X(Ω)

)
.

By using a triangle inequality, we have

||un − un−1||X(Ω) ≤ ||un − unh||X(Ω) + ||unh − un−1
h ||X(Ω) + ||un−1 − un−1

h ||X(Ω),

whence the desired result follows due to the regularity of the family of partitions [tn−1, tn].

To derive an a posteriori estimate between the solution u of Problem (2.3) and the solution uh corre-
sponding to the solutions unh of (3.2)–(3.3), it suffices to obtain an a posteriori estimate between the
solution uτ of Problem (4.14)− (4.15) and the solution uh, and to apply the triangle inequality using the
previous theorem.

We observe that, for any v in X(Ω) and vh in Xnh(Ω),

1

τn
((un − un−1)− (unh − un−1

h ),v) + ν(curl(un − unh), curl v) + ν(div(un − unh),divv)

− (divv, pn − pnh) = 〈fn − fnh +Rhunh,v − vh〉,
(4.18)

and ∫
Ω

q(t,x) div(un − unh)(x) dx = −
∫

Ω

q(t,x) divunh(x) dx. (4.19)

A further lemma is needed to handle the non-zero right-hand side of equation (4.19).

Let now Π denotes the operator defined from X(Ω) into itself as follows: For each v in X(Ω), Πv denotes
the velocity w of the unique weak solution (w, r) in X(Ω)× L2

◦(Ω) of the Stokes problem

∀t ∈ X(Ω), (curlw, curl t) + (divw,div t)− (div t, r) = 0,

∀q ∈ L2
◦(Ω), (divw, q) = (divv, q).

(4.20)

The next lemma states some properties of the operator Π.

Lemma 4.5. The operator Π has the following properties:

(1) For all v in V , Πv is zero.
(2) The following estimates hold for all v in X(Ω),

||v −Πv||X(Ω) ≤ ||v||X(Ω) and ||Πv||X(Ω) ≤
1

β∗
||divv||L2(Ω).

Proof. Part (1) of the lemma is obvious. Moreover, since v − Πv has vanishing divergence, we conclude
from the weak form of the Stokes problem that

ν(curlΠv, curl(v −Πv)) + ν(div Πv,div(v −Πv)) = (div(v −Πv), r) = 0.

This proves the first estimate in part (2) of the lemma. Similarly, we obtain

||Πv||2X(Ω) = (curlΠv, curlΠv) + (div Πv,div Πv) = (div Πv, r) = (divv, r) ≤ ||divv||L2(Ω)||r||L2(Ω)
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and

β∗||r||L2(Ω) ≤ sup
z∈X(Ω)

(div z, r)

||z||X(Ω)
= sup

z∈X(Ω)

(curlΠv, curl z) + (div Πv,div z)

||z||X(Ω)

≤ ||Πv||X(Ω).

This proves the second estimate in part (2) of the lemma.

We are now in a position to prove a posteriori estimate corresponding to the problem (4.18).

Theorem 4.6. If the domain Ω has no re-entrant corner inside Γm, the following a posteriori error
estimate holds between the solutions um and umh of Problem (4.14)− (4.15) and (3.2)− (3.3)

||um − umh ||20,Ω +

m∑
n=1

τn||un − unh||2X(Ω) ≤ c
m∑
n=1

τn
( ∑
κ∈Tnh

h2
κ||fn − fnh ||20,κ + (ηhn,κ)2

)
. (4.21)

Proof. For abbreviation we set

en = un − unh, 0 ≤ n ≤ N and εn = pn − pnh, 0 ≤ n ≤ N.

For any n, 1 ≤ n ≤ N , we then have

1

2
||en||2L2(Ω)3 −

1

2
||en−1||2L2(Ω)3 +

1

2
||en − en−1||2L2(Ω) + ντn||en||2X(Ω)

= (en − en−1, en) + ντn(curl en, curl en) + ντn(div en,div en).
(4.22)

We obtain

(en − en−1, en) + ντn(curl en, curl en) + ντn(div en,div en)

= (en − en−1,Πen) + ντn(curl en, curlΠen) + ντn(div en,div Πen)

+(en − en−1, en −Πen) + ντn(curl en, curl(en −Πen))

+ντn(div en,div(en −Πen))− τn(div(en −Πen), εn).

(4.23)

By observing that div(en−Πen) = 0 and inserting v = en−Πen in equation (4.18), this yields for every
vh ∈ Xnh(Ω)

(en − en−1, en) + ντn(curl en, curl en) + ντn(div en,div en)

= (en − en−1,Πen) + ντn(curl en, curlΠen) + ντn(div en,div Πen)

+τn〈fn − fnh ,v − vh〉+ τn〈Rhunh,v − vh〉.
(4.24)

Next, we evaluate all the terms on the right-hand side separately. Taking into account that Πen = −Πunh
and using Lemma 4.5, the first term can be bounded as:

(en − en−1,Πen) ≤ 1

2
||en − en−1||2L2(Ω)3 +

1

2
||Πen||2L2(Ω)3

≤ 1

2
||en − en−1||2L2(Ω)3 + c||divunh||2L2(Ω)3

Similarly, we derive from Lemma 4.5 the estimate for the second and third terms

ντn(curl en, curlΠen) + ντn(div en,div Πen) ≤ ντn
4
||en||2X(Ω) + ντn||Πen||2X(Ω)

≤ ντn
4
||en||2X(Ω) + cτn||divunh||2L2(Ω)3
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To estimate the other terms in the right-hand side of (4.24), we take vh = Cnhv, and use the continuity

of X(Ω) into H1(Ω) (see Remark 2.4), Lemma 4.5, and the relation ab ≤ a2

4
+ b2, to derive

τn〈fn − fnh ,v − Cnhv〉 ≤ c1τn
∑
κ∈Tnh

hκ||fn − fnh ||L2(κ)3 ||v||2H1(∆κ)3

≤ c2τn

( ∑
κ∈Tnh

h2
κ||fn − fnh ||2L2(κ)3

)1/2

||v||H1(Ω)3

≤ c3τn

( ∑
κ∈Tnh

h2
κ||fn − fnh ||2L2(κ)3

)1/2

||v||X(Ω)

≤ 2c23τn
ν

( ∑
κ∈Tnh

h2
κ||fn − fnh ||2L2(κ)3

)
+
ντn
8
||en||2X(Ω).

To conclude, we bound the last term in the right-hand side of (4.24). We obtain by using the definition

of Rh, Lemma 4.5 and the relation ab ≤ a2

4
+ b2:

τn〈Rhunh,v − vh〉 ≤ Cτn

( ∑
κ∈Tnh

(ηhn,κ)2
)1/2

||v||X(Ω).

≤ C2

ν

∑
κ∈Tnh

τn(ηhn,κ)2 +
ντn
4
||en||2X(Ω)

Equation (4.24), the relation ||divunh||20,κ ≤ (ηhn,κ)2 and the above bounds give

1

2
||en||2L2(Ω)3 −

1

2
||en−1||2L2(Ω)3 +

3

8
ντn||en||2X(Ω) ≤ Cτn

∑
κ∈Tnh

(
h2
κ||fn − fnh )||2L2(κ)3 + (ηhn,κ)2

)
(4.25)

Summing with respect to n yields the desired estimate.

Remark 4.7. When Ω has at least a re-entrant corner inside Γm, it is only known [9] that X(Ω) is

contained in H
1
2 (Ω). So the previous estimate has to be replaced by

||um − umh ||20,Ω +

m∑
n=1

τn||un − unh||2X(Ω) ≤ c
m∑
n=1

τn
( ∑
κ∈Tnh

hκ||fn − fnh ||20,κ + h−1
κ (ηhn,κ)2

)
.

So, a lack of optimality of maxκ∈Tnh h
− 1

2
κ occurs in the upper bound.

Corollary 4.8. If the domain Ω has no re-entrant corners inside Γm, the following a posteriori error
estimate holds between the velocity u solution of Problem (2.3) and the velocity uh corresponding to the
solutions unh of Problem (3.2)− (3.3)

||u(tm)− umh ||2L2(Ω) +

∫ tm

0

||u(s)− uh(s)||2X(Ω)ds ≤ C
( m∑
n=1

∑
κ∈Tnh

(
τn(ηhn,κ)2 + (ητn,κ)2

)
+

m∑
n=1

τn
∑
κ∈Tnh

h2
κ||fn − fnh ||20,κ + ||f − πτ f ||2L2(0,tm;X(Ω)′)

)
.

(4.26)

Proof. The proof is a direct consequence of Theorems 4.4 and 4.6. First, we use the triangle inequality

||u(tn)− unh||2L2(Ω) +

∫ tn

0

||u(s)− uh(s)||2X(Ω)ds ≤ 2||u(tn)− uτ (tn)||2L2(Ω)

+2

∫ tn

0

||u(s)− uτ (s)||2X(Ω)ds+ 2||uτ (tn)− uh(tn)||2L2(Ω) + 2

∫ tn

0

||uτ (s)− uh(s)||2X(Ω)ds.

(4.27)
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Second, the fact that uτ −uh is piecewise affine, equal to un−unh at tn, gives, by using Simpson formula,∫ tn
tn−1
||uτ (s)− uh(s)||2X(Ω)ds =

τn
3

(
||uτ (tn)− uh(tn)||2X(Ω) + ||uτ (tn−1)− uh(tn−1)||2X(Ω)

+
(
curl(uτ (tn−1)− uh(tn−1)), curl(uτ (tn)− uh(tn))

)
+
(
div(uτ (tn−1)− uh(tn−1)),div(uτ (tn)− uh(tn))

))
and the inequalites ab ≥ −1

4
a2 − b2 and ab ≤ 1

2
a2 +

1

2
b2 yield the bound

τn
4
||uτ (tn)− uh(tn)||2X(Ω) ≤

∫ tn

tn−1

||uτ (s)− uh(s)||2X(Ω)ds

≤ τn
2

(||uτ (tn)− uh(tn)||2X(Ω) + ||uτ (tn−1)− uh(tn−1)||2X(Ω)).

By using the relation τn ≤ σττn−1, the last inequality yields

1

4

m∑
n=1

τn||un − unh||2X(Ω) ≤
m∑
n=1

∫ tn

tn−1

||uτ (s)− uh(s)||2X(Ω)ds ≤ 1 + στ
2

m∑
n=1

τn||un − unh||2X(Ω).

(4.28)
Theorems 4.4 and 4.6 conclude the result.

Next, we bound the function
∂

∂t
(u− uh)(t) +∇(p(t)− πτpτ (t)).

Theorem 4.9. If the domain Ω has no re-entrant corner inside Γm, the following a posteriori error
estimate holds between the solution (u, p) of problem (2.3) and the pair (uh, πτpτ ) associated with the
solutions of Problem (3.2)− (3.3): For 1 ≤ m ≤ N ,

|| ∂
∂t

(u− uh)(t) +∇(p(t)− πτpτ (t))||L2(0,tm;X(Ω)′) ≤ C
( m∑
n=1

∑
κ∈Tnh

(
τn(ηhn,κ)2 + (ητn,κ)2

)
+

m∑
n=0

τn
∑
κ∈Tnh

h2
κ||fn − fnh ||20,κ + ||f − πτ f ||2L2(0,tm;X(Ω)′)

)
.

(4.29)

Proof. We derive from (4.4) that

|| ∂
∂t

(u− uh)(t) +∇(p(t)− πτpτ (t))||X(Ω)′

= sup
v∈X(Ω)

−ν(curl (u(t)− uh(t)), curl v)− ν(div (u(t)− uh(t)),divv) + 〈R(uh)(t),v〉
||v||X(Ω)

.
(4.30)

For the first term of the right - side, we have

ν(curl (u(t)− uh(t)), curl v) + ν(div (u(t)− uh(t)),divv) ≤ ν||u(t)− uh(t)||X(Ω)||v||X(Ω).

We use equation (4.8) with vh = Rhv and Lemma 4.3 to bound the second term of the right-hand side.
Finally, by integrating over t from tn−1 to tn, summing over n and using Corollary 4.8, we obtain the
results.

To conclude the upper bound, we bound the quantity

m∑
n=1

∫ tm

tm−1

||u(t)− πτuh(t)||2X(Ω)dt.

Theorem 4.10. The following a posteriori error estimate holds between the velocity u solution of Problem
(2.3) and the velocity uh corresponding to the solutions unh of Problem (3.2)− (3.3)

m∑
n=1

∫ tn

tn−1

||u(s)− πτuh(s)||2X(Ω)ds ≤ C
(∫ tn

0

||u(s)− uh(s)||2X(Ω)ds+

m∑
n=1

∑
κ∈Tnh

(ητn,κ)2
)
. (4.31)
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Proof. We consider the velocity u solution of Problem (2.3) and the velocity uh corresponding to the
solutions unh of Problem (3.2)− (3.3). We have for t in ]tn−1, tn]:

||u(t)− πτuh(t)||2X(Ω) ≤
(
||u(t)− uh(t)||X(Ω) + ||uh(t)− unh||X(Ω)

)2
≤

(
||u(t)− uh(t)||X(Ω) +

t− tn
τn
||unh − un−1

h ||X(Ω)

)2
≤ 2

(
||u(t)− uh(t)||2X(Ω) +

( t− tn
τn

)2||unh − un−1
h ||2X(Ω)

)
.

When integrating between tn−1 and tn and summing over n, the estimate follows from the definition of
the ητn,κ.

The bounds (4.26), (4.29) and (4.31) constitute our upper bounds.

Remark 4.11. In the case of non-homogeneous boundary and initial conditions, the error indicators
remain exactly the same. However, the estimates involve some further terms, due to the approximations
of u0 (which is rather easy to treat) and uD and um (which requires appropriate liftings of the traces on
the boundary).

4.3. Upper bounds of the indicators. We now prove upper bounds of the indicators (or equivalently
lower bounds of the error) and we begin with the term ηhn,κ.

Theorem 4.12. The following estimate holds:

τn (ηhn,κ)2 ≤ c
(
|| ∂
∂t

(u− uh)(t) +∇(p(t)− πτpτ (t))||2L2(tn−1,tn;X(wκ)′) + ν||u− unh||2L2(tn−1,tn;X(wκ))

+||f − fn||2L2(tn−1,tn;X(wκ)′) + τn h
2
κ||fn − fnh ||20,wκ

)
,

(4.32)
where wκ denotes the union of the elements of Tnh that share at least a face with κ.

Proof. We denote by L(W ) the right-hand side of (4.32) for the domain wκ replaced by a domain W .
The solution u of Problem (2.3) and the solution velocity uh associated with the solution (unh)0≤n≤N of
Problem (3.2)− (3.3) verify : For all v in X(Ω), vh in Xnh and t in ]tn−1, tn] (1 ≤ n ≤ N),

(
∂

∂t
(u− uh)(t),v(t)) + ν(curl (u(t)− unh), curl v(t)) + ν(div (u(t)− unh),divv(t))

−(divv(t), (p(t)− πτpτ (t))) = 〈f(t)− fn,v(t)〉+ 〈fn − fnh +Rh(uh),v(t)− vh(t)〉.
(4.33)

Next, we estimate successively every term of ηhn,κ.
(1) First of all, we take vh = 0 and

v = vκ =

{
(fnh − 1

τn
(unh − un−1

h )−∇pnh − ν curl curl unh + ν∇ divunh)ψκ on κ

0 on Ω \ κ

and we integrate between tn−1 and tn to obtain:

τn||(fnh − 1
τn

(unh − un−1
h )−∇pnh − ν curl curl unh + ν∇divunh)ψ

1/2
κ ||2L2(κ)3

≤ c
(
τ1/2
n ||

∂

∂t
(u− uh)(t) +∇(p(t)− πτpτ (t))||L2(tn−1,tn;X(κ)′)|vκ|1,κ

+ντ1/2
n ||u− unh||L2(tn−1,tn;X(κ))|vκ|1,κ + τ1/2

n ||f − fn||L2(tn−1,tn;X(κ)′)||vκ||X(κ)

+τn||fn − fnh ||0,κ||vκ||0,κ
)
.

By using the inequality ab ≤ 2a2 + 1
8b

2 for all the terms of the right-hand side, multiplying by h2
κ,

remarking that ||vκ||X(κ) ≤ c|vκ|1,κ and thanks to Property 4.1, we obtain

τn h
2
κ||(fnh −

1

τn
(unh − un−1

h )−∇pnh − ν curl curl unh + ν∇ divunh)ψ1/2
κ ||2L2(κ)3 ≤ L(κ). (4.34)
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(2) Second, we take vh = 0 and for any e ∈ εκ, we denote by κ′ the other element containing e. We
introduce the function

Rhn,e =

{
[curl unh × n + ν(divunh)n− pnhn]e if e ∈ εκ
curl unh × n if e ∈ εmκ ,

(4.35)

and we take v = ve = Le(Rhn,eψe) extended by zero to Ω. Then, we integrate between tn−1 and tn to
obtain:

τn||Rhn,eψ
1/2
e ||2L2(e)3

≤ c
(
τn||(fnh −

1

τn
(unh − un−1

h )−∇pnh − ν curl curl unh + ν∇ divunh)||L2(κ∪κ′)3 ||ve||L2(κ∪κ′)3

+τ1/2
n ||

∂

∂t
(u− uh)(t)∇(p(t)− πτpτ (t))||L2(tn−1,tn;X(κ∪κ′)′)|ve|1,κ∪κ′

+ντ1/2
n ||u− unh||L2(tn−1,tn;X(κ∪κ′))|ve|1,κ∪κ′ + τ1/2

n ||f − fn||L2(tn−1,tn;X(κ∪κ′)′)||ve||X(κ∪κ′)

+τn||fn − fnh ||0,κ∪κ′ ||ve||0,κ∪κ′
)
.

(4.36)
By using the inequality ab ≤ 2a2 + 1

8b
2 for all the terms of the right-hand side, multiplying by he,

remarking that ||vκ||X(κ) ≤ c|vκ|1,κ, using Property 4.1 and summing over ∂κ, we obtain:

τn

( ∑
e∈εκ

he||curl unh × n + ν(divunh)n− pnhn||20,e +
∑
e∈εmκ

he||curl unh × n||20,e
)
≤ L(wκ) (4.37)

(3) Finally, we take in the equation (4.5)

q(t) = qκ(t) = divuh(t)ξκ,

where ξκ denotes the characteristic function of κ, and we integrate between tn−1 and tn to get

|| divuh||L2(tn−1,tn;L2(κ)3) ≤ ||div(u− uh)||L2(tn−1,tn;L2(κ)3).

The same argument which gives the inequality (4.2), can be applied here and gives

1

4
τn||divunh||0,κ ≤ ||divuh||L2(tn−1,tn;L2(κ)3)

≤ ||u− uh||L2(tn−1,tn;X(κ)).
(4.38)

Combining estimates (4.34), (4.37) and (4.38) leads to desired results.

To finish the lower bound, we have to bound the term ητn,κ.

Theorem 4.13. The following estimate holds

(ητn,κ)2 ≤ c
(
|| ∂
∂t

(u− uh)(t) +∇(p(t)− πτpτ (t))||2L2(tn−1,tn;X(κ)′) + ||u− uh||2L2(tn−1,tn;X(κ))

+||f − fn||2L2(tn−1,tn;X(κ)′) + τnh
2
κ||fn − fnh ||20,κ + τn(ηhn,κ)2

)
.

(4.39)

Proof. We consider Equation (4.4) and the definition of the operators R, Rh and Rτ to obtain : For all
v ∈ X(Ω), vh ∈ Xnh and t ∈]tn−1, tn] (1 ≤ n ≤ N),

(
∂

∂t
(u− uh)(t),v(t)) + ν(curl (u(t)− uh(t)), curl v(t)) + ν(div (u(t)− uh(t)),divv(t))

−(divv(t), (p(t)− πτpτ (t))) = 〈(f(t)− fn),v(t)〉
+〈(fn − fnh ) +Rh(uh),v(t)− vh(t)〉+ 〈(Rτ (uh),v(t)〉.

(4.40)

By taking

v = vκ =

{
(unh − un−1

h )ψκ on κ
0 on Ω \ κ,
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and vh = Cnhv, and by integrating between tn−1 and tn and by using the Cauchy-Schartz inequality, we
obtain:

ν
1

2
τn||(unh − un−1

h )ψ1/2
κ ||2X(κ) ≤ c

(
τ1/2
n ||

∂

∂t
(u− uh)(t) +∇(p(t)− πτpτ (t))||L2(tn−1,tn;X(κ)′)|vκ|1,κ

+ντ1/2
n ||u− uh||L2(tn−1,tn;X(κ))|vκ|1,κ

+τ
1/2
n ||f − fn||L2(tn−1,tn;X(κ)′)||vκ||X(κ)

+τnhκ||fn − fnh ||0,κ|vκ|1,κ + τnγn,κ|vκ|1,κ
)
.

By using the inequality ab ≤ 2a2 + 1
8b

2 for all the right hand side and Property 4.1, we obtain the result.

4.4. Conclusions. We have proved that, when the domain Ω has no re-entrant corner inside Γm, the
pressure and the velocity verify the upper bound:

[[u− uh]]2(tm) + || ∂
∂t

(u− uh)(t) +∇(p(t)− πτpτ (t))||2L2(0,tm;X(Ω)′)

≤ C
( m∑
n=1

∑
κ∈Tnh

(
τn(ηhn,κ)2 + (ητn,κ)2

)
+

m∑
n=1

τn
∑
κ∈Tnh

h2
κ||fn − fnh ||20,κ + ||f − πτ f ||2L2(0,tm;X(Ω)′)

)
,

(4.41)
while the lower bounds follow from (4.39) and (4.32).

We observe that estimate (4.41) is optimal: Up to the terms involving the data, the full error is bounded
by a constant times the sum of all indicators. Estimates (4.39) and (4.32) are local in space and local
in time. The indicator ητn,κ can be interpreted as a measure for the error of the time-discretization.
Correspondingly, it can be used for controlling the step-size in time. On the other hand, the other
indicator ηhn,κ can be viewed as a measure for the error of the space discretization and can be used to
adapt the mesh-size in space. We refer to [6, Section 6] for the detailed description of a simple adaptivity
strategy relying on similar estimates.

References

[1] H. Abboud, F. El Chami & T. Sayah, A priori and a posteriori estimates for three dimentional Stokes equations

with non standard boundary conditions, Numer. Methods Partial Differential Equations, 28, pp. 1178–1193 (2012).
[2] C. Amrouche, C. Bernardi, M. Dauge & V. Girault, Vector potentials in three-dimensional nonsmooth domains,

Math. Meth. Applied Sciences, 2, pp. 823-864 (1998).

[3] A. Bergam, C. Bernardi, F. Hecht & Z. Mghazli, Error indicators for the mortar finite element discretization of
a parabolic problem, Numerical Algorithms, 34, pp. 187–201 (2003).

[4] C. Bernardi, F. Hecht & R. Verfürth, Finite element discretization of the three-dimensional Navier-Stokes

equations with mixed boundary conditions, Math. Model. and Numer. Anal., 3, pp 1185-1201 (2009).
[5] C. Bernardi, Y. Maday & F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Collection
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