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REDUCED BASIS NUMERICAL HOMOGENIZATION FOR SCALAR

ELLIPTIC EQUATIONS WITH RANDOM COEFFICIENTS:

APPLICATION TO BLOOD MICRO-CIRCULATION

YVON MADAY∗, NOURA MORCOS† , AND TONI SAYAH‡

Abstract. We consider a non periodic homogenization model designed to simulate the blood
flow at the level of the micro-vascularised tissues. We solve elliptic partial differential equations with
two length-scales on the domain and we use the reduced-basis method to speed up the numerical
resolution. Finally, we show numerical results and comparisons in 2D and 3D.

Key words. Porous media, stochastic homogenization, reduced basis method, microcirculation,
blood flow
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1. Introduction. Our goal in writing this paper is to develop a novel numeri-
cal technique for approximating the solution of second order scalar elliptic boundary
value problems with highly oscillating coefficients amenable to take into account some
randomness. Such mathematical models are involved in many applications, including
thermal diffusion in porous media, constitutive laws of composite materials, behavior
of biological tissues. The high oscillations are represented by a small parameter de-
noted by ε ∈ IR+ that actually may represent several distinct scales, ε being only a
notation for representing the small components that are present in the phenomenon.
In what follows we only focus on the two scale problem (one macro scale and one micro
scale). Solving directly such problems is generally quite expensive, even impossible.
For instance, with plain finite element methods, since the discretization mesh should
be small enough in order to represent well the oscillations meaning that the mesh
size should be smaller than ε, the computation load would scale at least as O(ε)−3 in
3-dimensions, which is difficult to manage especially when ε → 0.

It should first be noticed that, for most of the practical applications, there is only
one problem to be solved, corresponding to a unique value of ε say ε = ε0, however,
if ε0 is very tiny, with respect to the macroscopic size of the problem, it may be
smart to invent a family of problems depending on ε and discover the asymptotic
limit behavior of the solution as ε → 0, we then speak about homogenization theory
and homogenized problem.

In such cases, the determination and the mathematical justification of the limit
behavior is more or less known in some particular cases related to the dependency of
the problem in ε, with a full rigorous theory that is available only in few cases. Recent
advances have allowed to incorporate randomness in the structure of the oscillations
improving the range of applications of these models. In order to go even further,
numerical homogenization techniques have been introduced to cope with some current
holes in the theory. This subject is very much actual and active due to the variety of
applications that can be considered.
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In a nutshell, most of the homogenization techniques, when two scales are sepa-
rated, allow to replace the resolution of one problem with two scales into the resolution
of two classes of coupled problems each dealing with one scale, in particular the fine
scale problem depends on the large scale and its solution enters in the definition of
the large scale limit problem. Numerical homogenization techniques then require the
simulation of a huge number of micro scale problems. This paper builds up on the
contribution by Boyaval [12] that proposes and illustrates the use of reduced basis
methods for solving these micro scale problems. Reduced basis methods introduced
in [17, 28], offer a particularly well suited solution to the challenges of this many-query
framework, aiming to achieve efficiently the simulation of this huge amount of similar
problems. A fundamental observation and assumption utilized by RBM is that the
solutions at the micro scale level constitute a family of low dimension parameterized
by the macro scale variable. Therefore, one can expect that every particular solution,
at the micro scale level, can be well approximated by a finite and low dimensional
vector space. In the context of the RBM, this low dimensional space is chosen as
being spanned by (very well) approximated solutions to the same problem for very
few, well chosen, macro scale spacial variables. In addition, we incorporate in this
paper one important new feature: the stochastic dimension in the definition of the
microscopic structure.

In the second part of this paper, we present the particular problem that actually
has led us to develop the stochastic two scale homogenization: it is related to the
modeling of blood flow at the level of the micro-vascularised tissues. Many example
referring to homogenization exist in the literature describing such models of microcir-
culation that account for the highly oscillating media composed of microstructures.
Biological tissues are certainly a place where randomness is illustrated and mathe-
matical models have to account for this feature. The model we propose here enters
in this stochastic homogenization frame and leads to methods for constructing the
limit homogenized behavior. The stochastic frame and the particularity of the mate-
rial involving components in which the flow does not exist, lead to some new specific
difficulties and contributions (in terms of numerical analysis and limit behavior) that
we handle here.

2. Basics of homogenization theory.

2.1. Abstract homogenization. Let D be an open piecewise C 1 bounded do-
main of IRd with a boundary Γ = ∂D. We denote by ~n the exterior unit normal to
Γ defined a.e. and we assume that Γ is decomposed into two non overlapping open
parts ΓD and ΓN . We are interested in the behavior of a sequence of scalar functions
uǫ that satisfy the following scalar elliptic equation in divergence form with random
coefficients

−div(Aǫ(.;ω) ∇uǫ(.;ω)) = f, in D,

uǫ|ΓD
= gD; Aǫ∇uǫ.−→n |ΓN

= gN ;
(2.1)

for a sequence of scalars ǫ > 0. Here ω ∈ Ω, with (Ω,F , IP) being a probability space
over Ω. We assume that, e.g., f ∈ L2(D), gD ∈ H1/2(ΓD) and gN ∈ L2(ΓN ) and we
look for the asymptotic limit of the sequence uǫ(.;ω) when ǫ → 0. For every ǫ > 0 and
almost surely in ω, we assume that Aǫ(.;ω) ∈ L∞(D,Mα,β), where Mα,β is the set
of uniformly positive definite square matrices with uniformly positive definite inverse,
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that is, matrices B satisfying, for all x ∈ D,

0 < α|ξ|2 ≤< B(x)ξ, ξ >,∀ξ ∈ IRd,

0 < β|ξ|2 ≤< (B(x))−1ξ, ξ >,∀ξ ∈ IRd.
(2.2)

The problem (2.1) is almost surely well posed and for every ǫ > 0, there exists a
unique solution uǫ(.;ω) ∈ H1(D) verifying the relation

||uǫ(., ω)||H1(D) ≤ C(D, α, β)
[
||f ||L2(D) + ‖gD‖H1/2(ΓD) + ‖gN‖L2(ΓN )

]
.

Classical results about H-convergence (see e.g. [22], [25], [2], [7]) state that, under
the above hypothesis, there exists a subsequence, still denoted as ε, and a homogenized
matrix A∗(., ω) ∈ L∞(D,Mα,β) such that, almost surely in ω, Aε(., ω) H-converges
towards A∗(., ω). Let us restrict ourselves momentarily to the case where ΓN = ∅ and
gD = 0, since homogenization does not depend on the type of boundary conditions
that are imposed (nor on f). In this case, this means that, for ε → 0, the limit being
true in D ′(D; IRn)

uε(., ω) ⇀ u∗(., ω),
Aε∇uε(., ω) ⇀ A∗∇u∗(., ω), (2.3)

where u∗(., ω) is the solution to

−div(A∗(.;ω) ∇u∗(.;ω)) = f, in D,

u∗ = 0 on ∂D.
(2.4)

It should be noticed that, in many cases, the matrix A∗ (and thus u∗) is actu-
ally deterministic: this remarkable property of the matrix A∗ results from natural
assumptions of stationarity and ergodicity. However, it is possible to build materials
for which such a stochastic averaging effect does not hold.

Besides, except in some particular cases (e.g. periodic case, or in the stochastic
frame of [29]) an explicit formula for the limit A∗ is not available which leaves a large
room for investigation. Actually the result above goes only a little bit further by
introducing the following abstract elements defined implicitly as the solutions ŵε

i to
the problems

{
−div(Aǫ(.;ω) ∇ŵε

i (.;ω)) = −div(A∗(.;ω) ~ei) in D,

ŵε
i (.;ω) = xi on ∂D,

(2.5)

where (~ei)1≤i≤d denotes the canonical basis of IRd, and (xi)1≤i≤d the associated co-
ordinates.

We then have the limit properties almost surely in ω

ŵε
i (.;ω) ⇀ xi (2.6)

and

Aǫ(.;ω) ∇ŵε
i (.;ω) ⇀ A∗~ei. (2.7)
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In addition (see e.g. [2]), these solutions, ŵε
i , named “oscillating test functions” allow

to get the following corrector result:

∇uε(.;ω) =

d∑

i−1

∇ŵε
i (.;ω)

∂u∗(.;ω)

∂xi
+ rε(., ω), (2.8)

where rε(., ω) converges strongly to zero in L1(D). It results that, whenever u∗(.;ω) ∈
H2(D)

uǫ(.;ω) = u⋆(.;ω) +
d∑

i=1

(ŵε
i (.;ω) − xi)

∂u∗(.;ω)

∂xi
+ Rǫ(., ω), (2.9)

where the remainder Rε(., ω) converges strongly to zero in W 1,1(D). This powerful
theory is somehow weakened for the applications by the fact that A∗ is hard to
construct.

The above analysis has lead Kozlov [23] to suggest a change of variable, the so
called “harmonic coordinates”. This has been further used by [21], [2], [16], [18] in
various forms in order to propose a numerical integration method for approximating
the construction of A∗ (giving rise to the methods that are known now as MsFEM,
HMM..) .

In the following section, we restrict the generality of the frame and assume that
there exists a clear separation between the only 2 scales in presence and that the
situation is either periodic or a (stochastic) perturbation of a periodic situation.

2.2. Two-scale homogenization. Let us now introduce the two-scale homog-
enization theory (without randomness as for now) to get explicit expressions for the
homogenized problem ([1], [26]). We assume that the tensors Aǫ are functions of
two coupled variables on the set locally defined by a fast microscopic variable ǫ−1x
coupled with the slow macroscopic variable x in D.

Aǫ(x) = A(x,
x

ǫ
), (2.10)

where A(x, .) is Y = [0, 1]d-periodic, x ∈ D and A ∈ L∞(D,Mα,β). We denote by x

the macroscopic variable and by y =
x

ǫ
the microscopic variable. As A(x,

x

ǫ
) is locally

periodic, one possible manner to get explicit expression for the homogenized problem
is to perform a formal two-scale analysis with the following Ansatz:

uǫ(x) =

+∞∑

j=0

ǫjuj(x,
x

ǫ
) = u0(x,

x

ǫ
) + ǫu1(x,

x

ǫ
) + ǫ2u2(x,

x

ǫ
) + ....... (2.11)

where, for any x ∈ D, the functions uj(x, .) are Y -periodic. Inserting the Ansatz
(2.11) into equation (2.1) allows us to write uǫ as:

uǫ = u⋆ + ǫ

d∑

i=1

wi∂iu
⋆ + rǫ, (2.12)

where (wi(x, .))1≤i≤d are d Y -periodic, with zero average over Y , cell functions, pa-
rameterized by their macroscopic position x ∈ D that verify the following n cell
problems (that now can be used as it is explicit)

−divy(A(x, y)[~ei + ∇ywi(x, y)]) = 0,∀y ∈ Y. (2.13)
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The function u0 = u⋆ does not depend on the fast variable y = ǫ−1x any more and
verifies the homogenized problem:






−div(A∗(x) ∇u∗(x)) = f, ∀x ∈ D,
u∗|ΓD

= gD,
A∗(x) ∇u∗.−→n |ΓN

= gN .
(2.14)

the entries (A∗
ij(x))1≤i,j≤d of the homogenized matrix A∗ can now be explicitly com-

puted with the cell functions wi(x, .),

A∗
ij(x) =

∫

Y

A(x, y)(~ei + ∇ywi(x, y))~ejdy, (2.15)

where, provided u⋆ ∈ W 2,∞(D), the correction error rǫ can be estimated to locally
scale as ǫ (far enough from the boundary), and to globally scale as

√
ǫ (see [1]):

||rǫ||H1

ΓD
(ω) ≤ C1ǫ||u∗||W 2,∞(ω),∀w

c⊂ D,

||rǫ||H1

ΓD
(D) ≤ C2

√
ǫ||u∗||W 2,∞(D),

(2.16)

with constants C1 and C2 depending only on D.
The local periodicity assumption (2.10) allows to completely determine the homoge-
nized problem through explicit two-scale expressions. The derivation of the homog-
enized equation in the case of locally periodic coefficients serves as a basis in many
numerical homogenization strategies. For the algorithm concerning the two-scale ho-
mogenization strategy, we refer to [16].

For the numerical approximation of these problems, finite element methods can
be proposed. The construction of the associated stiffness matrix of the macroscopic
problem requires the construction of A∗ at every point in D or more precisely at every
integration points on (say) each tetrahedra composing the macroscopic mesh; in what
follows we shall denote this set as IN (D). Each of these evaluations involves the
resolution of a micro scale problem (2.13). If a standard approximation method is
used at the level of the microscopic problem, this may be a very expensive strategy,
even though all of these problems are mutually independent and thus can be solved
in a parallel way. This has motivated the use of reduced basis method to solve this
series of macroscopic problems (see [12]).

3. The reduced-basis method for non periodic homogenization prob-

lems.

3.1. Basics for the reduced-basis methods for 2-scale homogenization.

Let us first write the problem of interest in an abstract form so as to explain the
basics of the Reduced Basis Method (RBM) more easily.

Let X , be the quotient space H1(Y )/IR homeomorphic to the space of all Y -
periodic functions with zero average over Y , that belong to the Sobolev space H1(Y ).

X is equipped with the norm ||u||X = (

∫

Y

∇u.∇u)
1

2 .

For any integer i, 1 ≤ i ≤ d, the i-th cell problem (2.13) for the cell functions
wi(x, .) rewrites in the following weak form:

{
Find wi(x, .) ∈ X solution for:

a(wi(x, .), v;x) = fi(v;x), ∀v ∈ X .
(3.1)
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where x ∈ D appears to play the role of a parameter, a is a continuous and coercive
bilinear form in X × X parameterized by x ∈ D defined as

a(u, v;x) =

∫

Y

A(x, y)∇u(y).∇v(y)dy,

and fi are linear and continuous forms defined as

fi(v;x) = −
∫

Y

A(x, y)~ei.∇v(y)dy, 1 ≤ i ≤ d.

For many problems depending on some parameter (e.g. for an optimization prob-
lem, a control problem, an inverse problem or, like here for the resolution of the small
scale problem) the set of all solutions forms a manifold of very small Kolmogorov
dimension. In such cases, a reduced basis method can be implemented provided some
further ingredients (albeit less fundamental see [14]) are available. Among these in-
gredients the existence of a cheap error estimator is helpful. Then the RBM can be
implemented into two steps through what is known as offline/ online approach. Let
us explain it in our frame: Let us first introduce, for any i, the set of all solutions to
problem (2.13) Si = {wi(x, .), x ∈ D} that is a manifold over D.

The first step — that may be expensive but done once and for all and, may be,
before the RBM approximation is actually used — consists in choosing, e.g. through
a greedy method, conducted with an available error estimator, the values of xn that
are to be chosen to enrich at most the approximation quality of XiN for Si (see
[30] and algorithm 3.2 below). For these values, we then approximate the associated
solutions wi(xn, .), n = 1, . . . , N with some classical (e.g. finite element method)
accurate enough. After this is done, still in the offline stage, some scalar products
are computed and bilinear forms working on wi(xn, .), n = 1, . . . , N , so that the
evaluation of the RBM stiffness matrix will be rapidly achieved. Most of the times,
this will involve the use of the Empirical Interpolation Method (EIM) (see [4], [19]).

In a second step, called online stage, for every new values of the integration
point x ∈ D, and any i, 1 ≤ i ≤ d , the Galerkin approximation wiN (x, .) ∈ Xi,N =
Span{wi(xn, .), n = 1, . . . , N} of wi(x, .) satisfies:

a(wiN (x, .), v;x) = fi(v;x), ∀v ∈ Xi,N. (3.2)

The stiffness matrix (a(wiN (xn, .), wiN (xm, .);x))n,m is then built online in a very
few operations (since every thing is prepared for this in the offline stage) and the
problem is solved in O(N3) operations, providing a RBM approximation for wi(x, .),
possibly with an associated error estimate. We refer to [30] for a general presentation.

The RBM approach for the parameterized cell problems (2.13) should significantly
decrease the expense of computations in terms of CPU time for the homogenization
problems even if we take into account the construction time of the offline stage as we
shall see latter.

3.2. Approximation of the limit coefficients and a posteriori error anal-

ysis. The macroscopic stiffness matrix is thus computed by using, at every point x
involved in the macro scale numerical integration IN (D), the micro scale functions
wiN(x, y). This is done by the following quantities:

A∗
ij,N(x) =

∫

Y

A(x, y)(~ei + ∇ywiN(x, y)).~ejdy = sij,N (x) +

∫

Y

A(x, y)~ei.~ejdy,

(3.3)
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where (sij,N )1≤i,j≤d is defined by:

sij,N (x) = −fj(wi,N (x, .);x) =

∫

Y

A(x, y)~ej ,∇wi,N (x, y)dy. (3.4)

Let us recall now the two following theorems which enable us to define the a

posteriori bounds error of this matrix.

Theorem 3.1. [12] For 1 ≤ i ≤ d, we define the a posteriori error estimation
∆N (wi(x, .)) by:

∆N (wi(x, .)) = (‖ a(wi(x, .) − wiN (x, .), .;x) ‖X ′)/α,

and the corresponding effectivities ηi(x) by

ηi(x) = ∆N (wi(x, .))/ ‖ wi(x, .) − wiN(x, .) ‖X .

They satisfy the N-independent inequalities:

1 ≤ ηi(x) ≤ β−1

α
.

Theorem 3.2. [12] Let wi(x, .) (resp. wj(x, .)) be a solution of the problem (3.1)i

(resp. (3.1)j) and wiN(x, .) (resp. wjN(x, .)) a solution of the problem (3.2)i (resp.
(3.2)j) with i 6= j, we have

| sij,N (x) − sij(x) |≤ ∆s
ij,N (x),

with

∆s
ij,N (x) =

‖ a(wi(x, .) − wiN(x, .), .;x) ‖X ′‖ a(wj(x, .) − wjN(x, .), .;x) ‖X ′

α
.

Remark. The above definitions (e.g. ∆N (wi(x, .))) involve a norm in X ′ of the
residuals (a(wi(x, .) − wiN (x, .), .;x) = fi(.;x) − a(wiN (x, .), .;x)) that may be expen-
sive, a priori, to evaluate but for which there also exists an offline/ online strategy
that we shall not dwell upon and refer to [30]. Such a strategy allows to perform these
evaluations in O(N2) operations.

To conclude on this matter, let us summarize the construction of the reduced basis

Algorithm 1:

1. For some given x1, we compute the finite element approximation wi,h(x1, .)
of wi(x1, .) using (3.1).

2. We set ℓ = 1, and ξ1 =
wi,h(x1, .)

‖ wi,h(x1, .) ‖X
, the first reduced function.

3. Then while ℓ < N :
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(a) we compute for every x ∈ IN (D) the reduced basis approximations
wi,ℓ(x, .) in Xi,ℓ = span{ξj , 1 ≤ j ≤ ℓ} for the cell problem (3.2).

(b) for xℓ+1 = argmax
x∈IN (D)

∆s
ii,ℓ(x)

‖ wi,ℓ(x, .) ‖X
we compute the finite element ap-

proximation wi,h(xℓ+1, .) of wi(xℓ+1, .) using the (micro) finite element
approximation of (3.1).

(c) we set ξℓ+1(y) =
Rℓ+1(y)

‖ Rℓ+1(y) ‖X
, the (ℓ + 1)th reduced basis, where Rℓ+1

is the remainder of the projection of wi,h(xℓ+1, .) on the ℓ-dimensional
reduced basis:

Rℓ+1(.) = wi,h(xℓ+1, .) −
ℓ∑

k=1

(wi,h(xℓ+1, .), ξk)X ξk(.).

(d) we do ℓ = ℓ + 1 and go back to (a).

3.3. Numerical results. In this subsection, we present some numerical results
illustrating different points presented previously. We consider a case where d = 3, the
domain D =]0; 1[3 and the permeability is isotropic and diagonal with coefficients on
the diagonal equal to

aii(x, y) = 4 + cos(2y1)x1 + cos(2y2)x2 + cos(2y3)x3.

We first check that the complexity of the manifold of all micro scale solutions
when x varies is small. For this analysis, we perform a large number of finite element
approximations of the cell problem for various values of x. The computations are
performed with the software FreeFem++ [20], using IP1 finite elements. The con-
sidered mesh contains 48.000 elements (tetrahedra). The following figures show the
decreasing of the relative maximal error

AN = max
1≤i≤3,x∈IN (D)

∆N (wi(x, .))

‖ wi(x, .) ‖
X

,

the relative error of the cell functions

BN = max
1≤i≤3,x∈IN (D)

‖ wi(x, .) − wiN (x, .) ‖X
‖ wi(x, .) ‖X

and the relative error of sij ,

CN = max
1≤i,j≤3,x∈IN (D)

|sij(x) − sij,N (x)|
|sij(x)| ,

with respect to the number of basis functions.
As we can see in those figures (Figures 3.1 and 3.2), the considered relative errors

decrease rapidly with respect to the number of basis and the one corresponding to
sij,N converge twice as fast as the others.
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Fig. 3.1. AN in logarithmic scale with respect of N
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Fig. 3.2. Bn and CN in logarithmic scale with respect of N

NB NY N RBM FEM
10 125 216 1.5 s 140 s
10 1,000 216 1.5 s 1,100 s
10 125 9,261 95 s 8,800 s
10 1,000 9,261 95 s 70,000 s

Fig. 3.3. Comparison between the classical finite elements and the reduced basis method in
three dimensional.

The table (Fig. 3.3) shows the CPU time (in seconds) given by the Freefem++ code
to approximate the FE matrix for the homogenized problem either with a direct FE
approach or with a RB method for a porous medium, where NB is the bases number,
NY is the number of the degrees of freedom of the cell, N is the number of the degrees
of freedom of D, offline part is the time of the bases construction, RBM is the time
of the calculation of A∗ using the reduced basis method and FEM is the time of the
calculation of A∗ using the finite element method.

We can notice that the RB method is much faster than the FEM which shows
the efficiency of the RB method, even if we include the offline part, that corresponds
to solving less than N2 finite element solutions which is far less than twice the RBM
work, even in the largest case in table 3.3 (NY = 1, 000 , N = 9, 261).

3.4. About randomness. In order to account for some randomness we choose
an approach inspired by [8] where the randomness is incorporated in the descrip-
tion of the microstructure by using random deformations of the periodic coefficients
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previously defined. We thus introduce a (random) parameter dependent function
φθ(y) = −2θy3 + 3θy2 + (1 − θ)y which is a simple one to one mapping from [0, 1]
onto [0, 1] for every θ ∈] − 2, 1[.

Starting from a matrix Â(y), the definition of the previous coefficients A(x, y) in
every cell is obtained, for every 1 ≤ i ≤ d, by replacing each component yi by φθ(yi)
(we denote by Φθ(y) = (φθ(y1), . . . , φθ(yn))).
The coefficients are then

A(x, y; θ) = Â(Φθ(x,ω)(y)) (3.5)

meaning that at any macroscopic point x, the associated cell-matrix is randomly
modified through the mapping Φθ(x,ω).

For the simulation, this does not modify much the homogenization approach :
At every point x ∈ IN (D) we compute the micro scale problem (2.13) with a RBM
based on a discrete space XN that is constructed, as explained before, but where the
parameter x appears now through θ.

Note that this is a model for taking into account some randomness, it is somehow
similar to [8] but differs from it in the sense that here we do not construct a global
random map over IRd to modify the periodic cell structures. Since we are mainly
interested in numerical simulations, this cell by cell modification is sufficient. It
is out of the scope of this first paper to make the actual link between these two
versions or the theory developed in [10, 9] and further understand to what extent
the discrete version presented here is an approximation of the continuous random
stationary diffeomorphism introduced in [8]. Note that, in opposition to these cited
papers, our limit approximation remains random while the limit problem and solution
of [8] are deterministic (note however that this is also the case of the approximation
proposed in [15] that remains also random). We plan to analyze the link between
these two notions in a future paper.

The random macroscopic stiffness matrix is now computed by using, at every
point x involved in the macro scale numerical integration IN (D), the micro scale
functions wiN(x,Φθ(x,ω)(y)). This is done by the following quantities:

A∗
ij,N(x, θ) =

∫

Y

Â(Φθ(x,ω)(y))(~ei + ∇ywiN(x,Φθ(x,ω)(y))).~ejdy

= sij,N (x, θ) +

∫

Y

Â(Φθ(x,ω)(y))~ei.~ejdy. (3.6)

Remark. Note that, as is often the case when changes of variables are involved
as a parameter for RB approximation the manifold of solutions is defined as

Ŝi = {ŵi(x, .; θ) = wi(x, [Φθ(x,ω)]
−1(.)), x ∈ D} (3.7)

rather than the original

Si = {wi(x, .), x ∈ D};
since, most often, the Kolmogorov dimension is smaller in the former case.

Remark. Note that the matrix Â could also depend on x, the random cell matrix
would then be

A(x, y; θ) = Â(x,Φθ(x,ω)(y));

there would then be two parameters for the RB frame: x and θ.
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4. Application. The blood microcirculation in the capillaries can be modelled
by a flow in a porous media which is governed by the Darcy law, established by Henri
Darcy (1857) as a result of extensive work on the water flow in a layer of sand filter.
Considering that the blood is a Newtonian incompressible fluid, we can build the
corresponding problem modelling the blood flow in the capillaries in 2D and 3D,
using the Darcy law in a domain decomposed in small cells having the same small
size ǫ but different structures in each cell:

{
vǫ = −Aǫ∇pǫ,

divvǫ = 0.
(4.1)

Where vǫ is the velocity, pǫ the pressure and Aǫ a symmetric tensor representing the
quotient between the permeability and the viscosity of the blood. We suppose that
the viscosity has a constant value on the domain. There are many applications of the
Darcy law in the biology, for instance Vankan and Van Donkelaar [31] describe the
blood circulation in the muscles by five layers (arteries, arterioles, capillaries, venules
and veins) using Darcy law to represent horizontal flux in each layer, and Baeur D. &
all [5, 6] have described a vascular network by a three-layer model in order to model
the effect of the irritation on the microcirculation.

For a flow in a periodic porous medium, Aǫ can be represented by a periodic

function Aǫ(x) = A(
x

ǫ
) ([3, 7]). To model a porous media with a slight modification

of structures from one cell to the other, the tensor Aǫ can be considered as a function

of two variables A(x,
x

ǫ
) (see section 2.2).

4.1. Description of the model. In this section we aim at simulating the blood
flow in a network of capillaries. The model we propose will be represented by a non
uniform two scale system with cells of size ε where the part of the cell representing
the capillaries is permeable and connects the adjacent cells, while the remaining part
is not, and thus is represented by a permeability tensor which almost vanishes on
these regions of the domain. Each cell will be defined as the (random) deformation
of a reference cell: let ŷ = (ŷ1, . . . , ŷd) and let Λ̂ = [0, 1]d be the reference cell where
the permeability is defined as follows: ∀ŷ ∈ [0, 1]d,

K̂(ŷ) =
(
K̂ij(ŷ)

)

0≤i,j ≤d
,

with K̂ij = 0 if i 6= j and

K̂ii(ŷ) =
1

σ
√

2π
e
−

1

2
(
ŷ1 − 0.5

σ
)2

+ · · · + 1

σ
√

2π
e
−

1

2
(
ŷd − 0.5

σ
)2

+ ς,

where σ = 0.07 and 0 < ς << 1. We denote by X̂ = H1
♯ (Λ̂)/IR.

In order to build a random porous media, we will vary randomly the permeability
as explained in subsection 3.4 : K = Kθ in each cell by setting Kθ(y) = K̂ ◦ Φθ(y)
(remember that θ = θ(x, ω)) i.e.

(Kθ)ii(y) = K̂ii ◦Φθ(y) =
1

σ
√

2π

(
e
−

1

2
(
φθ(y1) − 0.5

σ
)2

+ · · ·+ e
−

1

2
(
φθ(yd) − 0.5

σ
)2)

+ ς
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Fig. 4.1. The domain D with variable x on the left with example of cell structures on the right
with variable y.

and then, we will solve the corresponding cell problem in order to compute uǫ solution
of (2.1), by applying the reduced basis method: For all i ∈ {1, . . . , d}

{ −div(Kθ(y)(~ei + ∇ywi(θ, y))) = 0 ∀y ∈ Y =]0, 1[d,
wi(θ, .) ∈ H1

♯ (Y )/IR.
(4.2)

In this case, as shown in the figure 4.1, at each quadrature points of D, we choose a
random value θ in a compact set K of ] − 2, 1[. Then at each cell, the matrix K is
different and leads to different size of pore.
From the last expression of K, we can deduce that the coercivity coefficient of the
bilinear form a is very small, since it is of the order of αA ≃ ς. From theorem 3.1 we
derive a non pertinent result because the effectivities ηi is bounded by β−1/αA. To
circumvent this problem, we will take into account the fact that

• the permeability constant almost vanishes in some part of the domain of
computation

• the cell design is inherited from a change of variable

this allows to map every solution on the reference domain Λ̂ and introduce, over Λ̂ a
new scalar product

[[ŵ, v̂]]X̂ =

∫

Λ̂

(K̂∇̂ŵ∇̂v̂)

for all ŵ, v̂ ∈ X̂ and we denote by |||.|||X̂ the associated norm.

Lemma 4.1. Let us associate to every w and v ∈ X , the functions ŵ = w ◦ Φ−1
θ

and v̂ = v ◦Φ−1
θ , and let us assume that we choose a random value θ in a compact set

K of ]−2, 1[, then the bilinear form a(w, v; θ) =

∫

Y

Kθ(y)∇w(y).∇v(y)dy is uniformly

continuous and elliptic with respect to the previously defined scalar product in the sense
that: there exists two constants C(K) and C ′(K) such that

a(w, v; θ) ≤ C(K)|||ŵ|||X̂ |||v̂|||X̂ ,
a(w, w; θ) ≥ C ′(K)|||ŵ|||X̂ |||v̂|||X̂ . (4.3)
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Proof. We use the change of variable based on Φθ and write

a(w, v; θ) =

∫

Y

Kθ∇w.∇v =

∫

Y

(K̂ ◦ Φθ).∇w.∇v

=

∫

Λ̂

(K̂ ◦ Φθ ◦ Φ−1
θ ). ((∇w) ◦ Φ−1

θ ).((∇v) ◦ Φ−1
θ ).|Jθ|

=

∫

Λ̂

K̂.((∇w) ◦ Φ−1
θ ).((∇v) ◦ Φ−1

θ )(φ−1
θ )′(ŷ1) . . . (φ−1

θ )′(ŷd)

=

∫

Λ̂

K̂ Jθ.∇Φ−1(w ◦ Φ−1
θ ).Jθ.∇Φ−1(v ◦ Φ−1

θ ).(φ−1
θ )′(ŷ1). . . . .(φ−1

θ )′(ŷd),

with Jθ the Jacobian matrix of Φ−1
θ , |Jθ| = (φ−1

θy )′(ŷ1). . . . .(φ−1
θy )′(ŷd) , ∇Φ−1 the

gradient with respect to Φ−1
θ . We then proceed

a(w, v; θ) =

∫

Λ̂

K̂Jθ.∇̂ŵ.Jθ.∇̂v̂.(φ−1
θ )′(ŷ1) . . . (φ−1

θ )′(ŷd)

=
( ∫

Λ̂

K̂11
dŵ

dŷ1
.
dv̂

dŷ1
.((φ−1

θ )′(ŷ1))
−1.(φ−1

θ )′(ŷ2). . . . .(φ−1
θ )′(ŷd)

)
+ . . .

+
( ∫

Λ̂

K̂dd
dŵ

dŷd

dv̂

dŷd
.(φ−1

θ )′(ŷ1). . . . .(φ−1
θ )′(ŷd−1).((φ

−1
θ )′(ŷd))

−1
)
.

And the proof is complete by introducing the constants C(K) (resp. C ′(K)) as being
the maximum (resp. the minimum) value of the quatities

(φ−1
θ )′(ŷ1).(φ

−1
θ )′(ŷ2). . . . .((φ−1

θ )′(ŷi))
−1. . . . .(φ−1

θ )′(ŷd)

over all possible 1 ≤ i ≤ d and θ ∈ K: i.e. C ′(K) = βd−1
A ζ−1

A and C(K) = β−1
A ζd−1

A

with ζA = max
y1∈[0,1]

(φ−1
θy )′(y1) and βA = min

y1∈[0,1]
(φ−1

θy )′(y1).

In what follows, we shall denote by â(ŵ, v̂, θ) the last bilinear form defined in the
reference cell Λ̂:

â(ŵ, v̂, θ) =
( ∫

Λ̂

K̂11
dŵ

dŷ1
.
dv̂

dŷ1
.((φ−1

θ )′(ŷ1))
−1.(φ−1

θ )′(ŷ2). . . . .(φ−1
θ )′(ŷd)

)
+ . . .

+
( ∫

Λ̂

K̂dd
dŵ

dŷd

dv̂

dŷd
.(φ−1

θ )′(ŷ1). . . . .(φ−1
θ )′(ŷd−1).((φ

−1
θ )′(ŷd))

−1
)
.

4.2. A posteriori error estimator in the degenerate case. In this subsec-
tion, we will establish the a posteriori errors corresponding to the new inner product.

Theorem 4.2. With this new inner product, we define the a posteriori estimate

∆̂i,N (θ) = (‖ fi − a(wiN (θ, .), .; θ) ‖X̂ ′)/C ′(K)

and the effectivities

η̂i,N (θ) = ∆̂i,N (θ, .)/ ‖ ŵi(θ, .) − ŵiN(θ, .))||X̂ .
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We have the inequality

1 ≤ η̂i,N (θ) ≤ C(K)

C ′(K)
. (4.4)

Proof. First, we have:

fi(v; θ) − a(wiN (θ, y), v; θ) = a(wi(θ, .) − wiN (θ, .), v; θ) ∀v ∈ X . (4.5)

Then lemma 4.1 and the coercivity of the form a allows us to obtain this inequality:

C ′(K)|||ŵ|||2
X̂

≤ a(w, w; θ) = â(ŵ, ŵ; θ).

By replacing w by wi(θ, .) − wiN (θ, .) we obtain:

C ′(K)|||ŵi(θ, .) − ŵiN (θ, .)|||X̂ ≤ |a(wi(θ, .) − wiN (θ, .), wi(θ, .) − wiN (θ, .); θ)|
|||wi(θ, .) − wiN (θ, .)|||X̂

≤ sup
v̂∈X̂

|fi(v; θ) − a(wiN (θ, y), v; θ)|
|||v̂|||X̂

≤ |||fi(.; θ) − a(wiN (θ, y), .; θ)|||X̂ ′ .

The continuity of the linear form a allows us to obtain:
For all w ∈ X , v ∈ X ,

a(w, v; θ) ≤ C(K)|||ŵ|||X̂ |||v̂|||X̂ ,

hence

|fi(.; θ) − a(wiN (θ, y), .; θ)| = |a(wi(θ, .) − wiN (θ, .), v; θ)|

≤ C(K)|||ŵi(θ, .) − ŵiN (θ, .)|||X̂ |||v̂|||X̂
which leads to:

|||fi(.; θ) − a(wiN (θ, y), .; θ)|||X̂ ′ ≤ C(K)|||ŵi(θ, .) − ŵiN (θ, .)|||X̂ (4.6)

and ends the proof of (4.4).

This theorem states that the effectivities η̂i,N (θ) are bounded by a term independent
of ς. The next theorem gives a bound on sij,N .

Theorem 4.3. With this new inner product, the theorem 3.2 becomes

| sij(θ) − sij,N (θ) |≤ ∆̂ij,N (θ)

with:

∆̂ij,N (θ) =
||a(wi(θ, .) − wiN(θ, .), .; θ)||X̂ ′ ||a(wj(θ, .) − wjN(θ, .), .; θ)||X̂ ′

C ′(K)
.
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Proof. According to the definition of the matrix s and the linearity of the function
f we have:

|sij(θ) − sij,N (θ)| = |fj(wi(θ, .) − wiN (θ, .), .)|
= |a(wj(θ, .), wi(θ, .) − wiN (θ, .); θ)|. (4.7)

The bilinear form a is symmetric as the matrix A(θ, y). We have:

|a(wj(θ, .), wi(θ, .) − wiN (θ, .); θ)| = |a(wi(θ, .) − wiN (θ, .), wj(θ, .); θ)|. (4.8)

On the other hand, wjN (θ, .) ∈ XN and thus

|a(wi(θ, .) − wiN (θ, .), wjN (θ, .); θ)| = 0,

then

|a(wi(θ, .) − wiN (θ, .), wj(θ, .); θ)| = |a(wi(θ, .) − wiN (θ, .), wj(θ, .) − wjN (θ, .); θ)|.
(4.9)

Using (4.7), (4.8) and (4.9), we obtain:

|sij(θ) − sij,N (θ)| = |a(wi(θ, .) − wiN (θ, .), wj(θ, .) − wjN (θ, .); θ)|. (4.10)

Then

|a(wi(θ, .) − wiN (θ, .), wj(θ, .) − wjN (θ, .); θ)|
≤ |||a(wi(θ, .) − wiN(θ, .), .; θ)|||X̂ ′ |||ŵj(θ, .) − ŵjN(θ, .)|||X̂

(4.11)

and

|||a(wj(θ, .) − wjN(θ, .), .; θ)|||X̂ ′ ≥ |a(wj(θ, .) − wjN (θ, .), wj(θ, .) − wjN (θ, .); θ)|
|||ŵj(θ, .) − ŵjN(θ, .)|||X̂

≥ C ′(K)|||ŵj(θ, .) − ŵjN(θ, .)|||X̂ .
(4.12)

which leads to

|||ŵj(θ, .) − ŵjN(θ, .)|||X̂ ≤ 1

C ′(K)
|||a(wj(θ, .) − wjN(θ, .), .; θ)|||X̂ ′ . (4.13)

The inequalities (4.11) and (4.13) give the result.

5. Numerical Results. In this section, we show numerical results in D =]0, 1[d

for d = 2, 3, for θ ∈ K = [−0.4, 0.4] and f = 0. These numerical computations are
performed with the Freefem++ software [20] with classical P1 Lagrange finite ele-
ments.

For the implementation of the RBM, we want to note now that if the permeability
Kθ(y) would have been affine as a function of θ, then a(w, v, θ) would also be affine
in θ, resulting in:

a(wiN , v; θ) =
∑

k

tk(θ)ak(wiN , v), (5.1)



16 Yvon Maday, Noura Morcos & Toni Sayah

where tk depends on θ while ak only depends on wiN and v. Then an extremely
efficient offline-online computational strategy may be developed (see [4]). In the offline
stage we could have form ak(ξj , ξi), 1 ≤ i, j ≤ N ; in the online stage we would need

only to assemble and invert a(ξj , ξi; θ) =
∑

k

tk(θ).ak(ξj , ξi) resulting in computation

that would be independent of N the number of degrees of freedom of the finite element
solver. Since N ≤ N large computational savings can be achieved.

Unfortunately, in our case Kθ(y) is not affine in θ, so we use the empirical in-
terpolation method [4] that recovers the previous online N -independence even in the
presence of non-affine parameter dependence. We do not elaborate on this matter
since it is quite classical by now.

First, we show the variation in logarithmic scale of:

ÂN = max
1≤i≤d,θ∈K

∆̂N (wi(θ, .))

||ŵi(θ, .)||X̂
with respect of N , when ς = 10−14 and 10−10.
Second, we compare this error values in logarithmic scale, of the a posteriori estimate
of the solution with the new scalar product ÂN and the a posteriori estimate of the

solution with the original inner product AN = max
1≤i≤d,θ∈K

∆N (wi(θ, .))

||wi(θ, .)||X
.

5.1. Results for d = 2. The repartition of the permeability is given by the next
figure 5.1. We have:

ΓD = Γ1 = {0}×]0.35, 0.65[, with the corresponding data gD = 0,

and

ΓN =

{
Γ2 = {1}×]0.35, 0.65[, with he corresponding data gN = −1,
Γ3 is the rest of the boundary, with he corresponding data gN = 0,

hence the flow is going from the right to the left.

Fig. 5.1. The domain D representing the capillary bed, a model of artery on the right and
model of vein on the left.

We conclude from the figures (Fig. 5.2) that, the errors of the solution AN

computed with the original product scalar depend on the values of ς (note that the
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Fig. 5.2. AN with respect of N , with ς = 1e − 10 (left) and ς = 1e − 14 (right)
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Fig. 5.3. AN with respect of N , with ς = 1e − 10 (left) and ς = 1e − 14 (right)

factor 4 between ς = 1e − 10 and ς = 1e − 14 is exactly visible on 5.2). The figure

(Fig. 5.3) shows that the errors with the new inner product values, ÂN is not affected
by the variation of ς. Moreover, the figures (Fig. 5.2) and (Fig. 5.3) illustrate clearly
that the errors of the solutions computed with the new product scalar is much better
than the other one. Hence the advantage of this modified approach.

Fig. 5.4. Modelisation of the velocity

The color figure 5.4 represents the flow repartition in a porous media for a value
of ǫ equal to 0.01

The table (Fig. 5.5) shows the CPU time (in seconds) given by the Freefem++ code
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NB NY N RBM FEM
5 100 121 0.017 s 0.76 s
5 400 121 0.017 s 3. s
5 100 10,201 1.8 s 64. s
5 400 10,201 1.8 s 270. s

Fig. 5.5. Comparison between the finite element method and the reduced basis method in 2D.

to approximate the FE matrix for the homogenized problem either with a direct FE
approach or with a RB method for a porous medium and for a small ǫ.
As we can see, the RB method is again much faster than the FE method.

In the figures 5.6–5.9 and just for illustrations, we show color results computed on a
coarse mesh (not so fine then that used if figure 5.4), for the problem with different
boundary conditions to illustrate different models of applications and to show the
powerful of this method. The following figures show some applications when the
boundary conditions at the input and the output are not aligned.

Fig. 5.6. Fig. 5.7.

Fig. 5.8.
Fig. 5.9.

5.2. Results for d = 3. As in the bi-dimensional case, we take the variation of
the permeability in the sphere of center (0.5, 0.5, 0.5) and of radius R = 0.4 attached
to the extremities with cylinders of surface section S = 0.3 representing the artery
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and the vein. In this case, we take the same boundary conditions as in 2D.
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Fig. 5.10. AN with respect of N , with ς = 1e − 10 (left) and ς = 1e − 14 (right)
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Fig. 5.11. AN with respect of N , with ς = 1e − 10 (left) and ς = 1e − 14 (right)

As we see in figures (Fig. 5.10) and (Fig. 5.11), in this case (3D), we have the
same conclusions as in the two dimensional case about the new product scalar which
gives results independent of ς.

This color figure (Fig. 5.12) represents the flow repartition in a porous media in
three dimensional

As in 2D, the table (Fig. 5.13) shows the CPU time (in seconds) given by the
Freefem++ code in 3D with the same notations.
As we can see, we have the same remarks concerning the RB method which is faster
than the FE method.

Conclusion: In this paper, we use the reduced basis method to solve and speed up
the resolution of the Darcy equation in the porous media using the locally homoge-
nization model. This Darcy problem is used as a model for the blood microcirculation
in the capillaries. The model is enriched with random properties leading to a random
macroscopic stiffness matrix. The microscopic behavior of the micro vessels leads
to the introduction of a mathematical model with very small values of the viscosity
in some regions. This yields to a non-pertinent a posteriori estimates making the
construction of the reduced basis problematic. We propose a new microscopic scalar
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Fig. 5.12. Modelisation of the velocity in 3D

NB NY N RBM FEM
5 125 216 0.13s 41 s
5 1,000 216 0.13 s 326 s
5 125 9,261 8 s 2,500 s
5 1,000 9,261 8 s 20,000 s

Fig. 5.13. Comparison between the finite element method and the reduced basis method in 3D.

product to circumvent this difficulty and obtain pertinent results in 2D and 3D. In
a future paper we shall analyze more in depth the stochastic behavior (averages,
variances . . . ) of the solutions to this model.
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