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Abstract

For the last three decades, many scienti�c �elds have known profound changes caused

by the advent of technologies for massive data collection. What was �rst seen as a blessing,

rapidely turned out to be termed as the curse of dimension. Reducing the dimension has

therefore become a challenge in statistical learning. In high dimensional linear regression

models, the quest for parsimony has long been driven by the idea that a few relevant variables

may be su�cient to describe the modeled phenomenon. Recently, a new paradigm was

introduced in a series of articles from which the present work derives. We propose here

a model that simultaneously performs variables clustering and regression. Our approach

no longer considers the regression coe�cients as �xed parameters to be estimated, but as

unobserved random variables following a Gaussian mixture model. The latent partition is

then determined by maximum likelihood and predictions are obtained from the conditional

distribution of the regression coe�cients given the data. The number of latent components

is chosen using a BIC criterion. Our model has very competitive predictive performances

compared to standard approaches and brings signi�cant improvements in interpretability.

Keywords: Dimension reduction, Linear regression, Variable clustering.

1 Introduction

We consider in the present article the standard linear regression model de�ned as

yi = β0 +

p∑

j=1

βjxij + εi, i = 1, . . . , n. (1)

For some individual i, yi is the observed response, xij is an observed value for the j-th covariate

and εi is an error term often assumed to be normally distributed. We also often assume the εi's

to be independent and identically distributed.

The dimension p of model (1) is tighly related to both its interpretability and ability to yield

reliable prediction. Pragmatically, we can argue for the former that the more covariates we add

to the model the harder becomes its interpretation. Stein [2] established besides, that the mean
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prediction squared error attributable to a linear regression model increases with its dimension.

Reducing the model's dimension therefore pursues the goal of minimizing prediction error while

keeping the model interpretable. This problem, also referred to as the bias-variance trade-o� in

the literature, becomes more challenging when the set of covariates exceeds the sample size in

classical experiments. This situation is called high dimensionality and has fueled a number of

researches during the last three decades.

Variables selection is one of the most popular approaches for reducing dimensionality. Although

it has a direct impact on p, stepwise algorithms for �nding the best subset of predictors had a

mitigated success because of their heavy computational burden. With a lower computational cost,

penalized approaches rose and spread rapidly. Penalized approaches impose an identi�ability

constraint on the vector of regression coe�cient β = (β1, . . . , βp) that depends on a tuning

parameter. The least absolute shrinkage and selection operator (LASSO) [11] is probably the

most emblematic of this second family of approaches. LASSO imposes an upper-bound to the

L1 norm of β. This upper-bound is a tuning parameter speci�ed by the user.

Another relevant approach for reducing dimensionality consists in identifying patterns under

which covariates can be pooled together. This idea was recently implemented in a gene expression

study [15]. In that study, groups of genes were built from hierarchical clustering of gene expression

levels. The authors created surrogate covariates by averaging gene expression levels within each

group. Those new predictors were afterwards included in a linear regression model, replacing

the primary variables. The major limitation in this approach is the independence between the

prediction and clustering parts of their strategy. Consequently, e�ects of the surrogate covariates

can be diluted if they contain primary variables with either no e�ect or even opposite e�ects on

the response. To sidestep the previous limitation, Bondell and Reich [3] introduced in 2008 the

octogonal shrinkage and clustering algorithm for regression (OSCAR). The OSCAR methodology

belongs to the family of penalized approaches. It imposes a constraint on β that is a weighted

combination of the L1 norm and the pairwise L∞ norm. Upper-bounding the pairwise L∞ norm

enforces the covariates to have close coe�cients. When the constraint is strong enough, closeness

translates into equality achieving thus a grouping property. In the aftermath of OSCAR other

methodologies aiming at simultaneously performing parameter estimation and clustering were

proposed. We can for instance refer to Petry [13] and She [16] works which also mixed L1 and

pairwise L∞ penalties or Daye [9] and Shen [14] works based on alternative penalties.

In line with the latter works, we introduce in this paper the clusterwise e�ect regression (CLERE),

a new methodology aiming at simultaneously performing regression and clustering of covariates.

CLERE considers each βj no longer as a �xed parameter but as an unobserved random variable

following a Gaussian mixture distribution. The present paper is organized as follows. In Section

2 we present our model, its parametrization as well as an identi�ability condition. In Section

3, a maximum likelihood strategy is presented for estimating the model parameters as well as

a criterion to select the number of latent groups. In this section is also illustrated how to

make prediction using our model. Section 4 presents then some numerical experiments both on
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simulated and real data. This section aims at presenting the predictive performances of our model

compared to standard approaches for dimension reduction in linear regression. Another part of

Section 4 presents a detailed case study on real data illustrating the improvements brought by

CLERE in terms of parcimony and interpretation. Finally, the perspectives of this research are

discussed in Section 5.

2 Model de�nition and notations

2.1 Model

As aforementioned, the number of predictors may be very large (up to 100-fold) with respect to

the number of samples (p ≫ n). It is thus impossible to uniquely estimate each coe�cient βj .

We may however hypothesize the existence of g latent groups of covariates, say (G1, . . . , Gg),

within which the βj 's are su�ciently close to one another that all of them may be summarized by

their average. Among possible mathematical translations of the latter assumption, we propose

to consider the βj 's no longer as �xed e�ect parameters but as unobserved independent random

variables following a Gaussian mixture distribution:

βj ∼

g∑

k=1

πkN
(
bk, γ

2
)
. (2)

In other words, we assume for each βj the existence of a Bernoulli distributed random variable,

zjk which equals 1, with probability πk, when βj is drawn from the k-th component of the

mixture. Our model can then be written:






yi = β0 +
∑p

j=1 βjxij + εi

εi ∼ N (0, σ2)

βj |zj ∼ N
(∑g

k=1 bkzjk, γ
2
)

zj = (zj1, . . . , zjg) ∼ M (π1, . . . , πg) .

(3)

We add the following identi�ability condition to model (3):

∀k = 1, . . . , g

p∑

j=1

zjk ≥ 1. (4)

This condition basically says that none of the groups should be empty.

2.2 Notations

We introduce here some matricial and vectorial notations:

y = (y1, . . . , yn)′, β = (β1, . . . , βp)
′, X = (xij), Z = (zjk), b = (b1 . . . bg)

′ and π = (π1, . . . , πg)
′.

Let log p(y|X; θ) denote the log-likelihood of the model (3) assessed for the parameter θ =
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(
β0,b, π, σ2, γ2

)
.

3 Estimation, prediction and model selection

3.1 Maximum Likelihood Estimation

The estimation strategy studied in this paper is the maximum likelihood estimation (MLE). The

log-likelihood log p(y|X; θ) is de�ned as

log p(y|X; θ) = log

[
∑

Z

∫
p(y, β,Z|X; θ)dβ

]
. (5)

It involves integration over unobserved data (β,Z) which renders impossible a direct maximiza-

tion to estimate θ.

The Expectation-Maximization (EM) algorithm [10] has been introduced to perform MLE in the

presence of unobserved data. The EM algorithm is an iterative method, which starts with initial

estimates of the parameters and updates these estimates at each iteration until convergence is

achieved. We propose in the following subsections its implementation in the special case of model

(3).

3.1.1 Initialization

The algorithm is initialized using primary estimates βj
(0) of each βj . The latter can be either

obtained from univariate regression coe�cients or from penalized approaches like the LASSO or

the ridge regression.

Model (2) is then �tted using β(0) =
(
β

(0)
1 , . . . , β

(0)
p

)
as observed data, to produce starting values

for b, π and γ2. An initial partition Z(0) is also naturally derived from the previous �t. β0 and

σ2 are then initialized using β(0) as following:

β
(0)
0 =

1

n

n∑

i=1



yi −

p∑

j=1

β
(0)
j xij



 and σ2(0)
=

1

n

n∑

i=1



yi − β
(0)
0 −

p∑

j=1

β
(0)
j xij




2

.
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3.1.2 (Stochastic) Expectation step

During iteration (d) of the algorithm, the log-likelihood of the full data log p(y, β,Z|X; θ(d)) has

the following expression

log p(y, β,Z|X; θ(d)) = log p(y|β,X;β
(d)
0 , σ2(d)

) + log p(β,Z|X;b(d), π(d), γ2(d)
)

= −
n

2
log
(
2πσ2(d)

)
−

1

2σ2(d)

n∑

i=1



yi − β
(d)
0 −

p∑

j=1

βjxij




2

−
p

2
log
(
2πγ2(d)

)
+

p∑

j=1

g∑

k=1

zjk


log π

(d)
k −

(
βj − b

(d)
k

)2

2γ2(d)


.

In classical EM algorithm, the E -step requires, at each iteration, the calculation of the expecta-

tion of the log-likelihood of the full data log p
(
y, β,Z|X; θ(d)

)
, with respect to the conditional dis-

tribution of unobserved data given observed data. This quantity generally denoted as Q
(
θ|θ(d)

)
,

does not have a closed form in model (3). We therefore approximate Q
(
θ|θ(d)

)
using Monte

Carlo simulations. This stochastic version of the EM algorithm was introduced in [6] under the

name of Monte Carlo EM (MCEM) algorithm. A Gibbs sampling scheme is proposed to gen-

erate draws from the probability distribution p
(
β,Z|y,X; θ(d)

)
. In model (3), Gibbs sampling

requires the de�nition of the conditional distributions p
(
β|Z,y,X; θ(d)

)
and p

(
Z|β,y,X; θ(d)

)
.

The latter distributions are given below in Equations (6) and (7):






β|Z,y; θ(d) ∼ N
(
µ(d),Σ(d)

)

µ(d) =
[
X′X + σ2(d)

γ2(d) Ip

]−1
X′y + σ2(d)

γ2(d)

[
X′X + σ2(d)

γ2(d) Ip

]−1
Zb(d)

Σ(d) = σ2(d)
[
X′X + σ2(d)

γ2(d) Ip

]−1

(6)

and

p
(
zjk = 1|β; θ(d)

)
∝ π

(d)
k exp


−

(
βj − b

(d)
k

)2

2γ2(d)


 . (7)

Now suppose we have sampled
[(

β(1,d),Z(1,d)
)
, . . . ,

(
β(Md,d),Z(Md,d)

)]
from p

(
β,Z|y,X; θ(d)

)

and verifying the condition (4). The approximated E -step can then be written as follows:

Q
(
θ|θ(d)

)
= E

[
log p(y, β,Z|X; θ(d))|y,X; θ(d)

]
≈

1

Md

Md∑

m=1

log p(y, β(m,d),Z(m,d)|X; θ(d)). (8)

The computational time and the convergence of the algorithm is governed by the choice of Md.

In [6], the authors suggested using small values for Md (around 20) when starting the algorithm

and increases this value along with number of iterations. In this paper however Md was set to a
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constant large value.

3.1.3 Maximization step

The M -step consists in maximizing Q
(
θ|θ(d)

)
with respect to θ. We get the following update

equations:

π
(d+1)
k =

1

Mdp

Md∑

m=1

p∑

j=1

z
(m,d)
jk , (9)

b
(d+1)
k =

1

Mdpπ
(d+1)
k

Md∑

m=1

p∑

j=1

z
(m,d)
jk β

(m,d)
j , (10)

γ2(d+1)
=

1

Mdp

Md∑

m=1

p∑

j=1

g∑

k=1

z
(m,d)
jk

(
β

(m,d)
j − b

(d+1)
k

)2
, (11)

β
(d+1)
0 =

1

n

n∑

i=1



yi −

p∑

j=1

(
1

Md

Md∑

m=1

β
(m,d)
j

)
xij



, (12)

σ2(d+1)
=

1

nMd

Md∑

m=1

n∑

i=1



yi − β
(d+1)
0 −

p∑

j=1

β
(m,d)
j xij




2

. (13)

3.1.4 Stopping rule

Choosing a stopping rule for MCEM is far to be obvious. When �rst introduced in [6], only

visual criteria were proposed. Ca�o and co-workers [12] proposed to stop the algorithm when

Q
(
θ(d+1)|θ(d)

)
−Q

(
θ(d)|θ(d)

)
is stochastically small. When Md is large enough, the central limit

theorem, gives us the following asymptotic equation:

P

(
√

Md

Q
(
θ(d+1)|θ(d)

)
− Q

(
θ(d)|θ(d)

)

σ
[
Q
(
θ(d)|θ(d)

)] ≥ t

)
= 1 − φ (t) , (14)

where φ is the cumulative probability function of a scaled and center normal distribution and

σ
[
Q
(
θ(d)|θ(d)

)]
is de�ned as

σ
[
Q
(
θ(d)|θ(d)

)]
=

1

Md

Md∑

m=1

[
log p(y, β(m,d),Z(m,d)|X; θ(d)) − Q

(
θ(d)|θ(d)

)]2
. (15)

The algorithm can then be stopped when the probability de�ned in Equation (14) belows a
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user-speci�ed threshold. In the present article we terminated the algorithm after a prede�ned

large number of EM iterations.

3.2 Prediction

If Xv denotes a new design matrix for which we want to predict the response yv, then we can

de�ne the predicted response ŷ as

ŷ = Xv
E

[
β|y,X; θ̂

]
(16)

where θ̂ is the maximum likelihood estimate of θ.

3.3 Model selection

Model (3) depends on a tuning parameter g, which is the assumed number of groups of covariates.

In few situations, this number can be chosen a priori, however in a more general setting a strategy

should be proposed to make such a choice. We propose the Bayesian information criterion [5]

(BIC) as a means to select g. This criterion was prefered to other criteria based on estimates

of the out-of-sample prediction error like cross-validation (CV) because of its low computational

cost. Moreover, the number of parameters of model (3) which is 2(g +1) is often small compared

to the sample size. Therefore we may expect such asymptotic criterion to yield good results in

this context. In model (3) the BIC when g is �xed has the following expression:

BIC = −2 log p(y|X; θ̂) + 2(g + 1) log(n). (17)

As the calculation of the likelihood is still untractable, we can derive from Equation (5), an ap-

proximation of the BIC criterion using Monte Carlo simulations similar to the previous stochastic

E -step.

4 Numerical experiments

In this section we compare in terms of prediction error, our approach CLERE with standard

dimension reduction approaches. The methods selected for comparison are the variables selection

using LARS algorithm [1], the ridge regression [4], the elastic net [8] and the LASSO [11]. All

these methods are implemented in freely available R packages lars and glmnet (for ridge, LASSO

and elastic net). Those packages were used with default options. When running CLERE, the

maximum number of EM iterations was set 1000 and the number Md of Monte Carlo samples

was set to 500.
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4.1 Simulated data

4.1.1 Description

The simulated data are presented under three scenarios. For each scenario, 100 training data sets

were simulated from the standard linear regression model (1). All training data sets consist of

n = 50 simulated individuals with p = 100 variables. In each scenario a validation set consisting

of 500 individuals was used to calculate the scaled mean squared prediction error.

If
(
yt,Xt

)
and (yv,Xv) are respectively the training and validation data sets, then the scaled

mean squared prediction error MSE is calculated as:

MSE =
‖yv − ŷ

(
Xv,yt,Xt

)
‖2

‖yv‖2
(18)

where ŷ
(
Xv,yt,Xt

)
is the predicted response and ‖.‖2 stands for the L2 norm. For CLERE,

predictions are obtained using Equation (16). Each of the methods selected for comparison

provide a �tted value β̂ for β. A predicted response under the design Xv is then calculated as

Xvβ̂. In all simulations, design matrices Xt and Xv were simulated as independently normally

distributed:

xi ∼ N (0,R) (19)

where R =
(
rjj′
)
is a p × p de�ned by rjj′ = 0.5|j−j′|. In all scenarios, parameters β0 and σ2

equal respectively 0 and 100.

The three scenarios are presented below.

1. In scenario 1, the vector β of regression coe�cients is given by:

β = (0, . . . , 0︸ ︷︷ ︸
36

, 1, . . . , 1︸ ︷︷ ︸
28

, 3, . . . , 3︸ ︷︷ ︸
20

, 7, . . . , 7︸ ︷︷ ︸
12

, 15, . . . , 15︸ ︷︷ ︸
4

)′.

2. In scenario 2, the vector β of regression coe�cients is given by:

β = (0, . . . , 0︸ ︷︷ ︸
36

, 4, . . . , 4︸ ︷︷ ︸
28

, 24, . . . , 24︸ ︷︷ ︸
20

, 124, . . . , 124︸ ︷︷ ︸
12

, 624, . . . , 624︸ ︷︷ ︸
4

)′.

3. In scenario 3, the regression coe�cients are chosen uniformally between -10 and +10. This

can be mathematically written with the following equation:

∀j, βj = −10 + (j − 1) ×
20

99
.

Scenarios 1 and 2 were chosen to favor variables selection approaches like the LASSO. In those
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scenarios indeed 36 out of 100 covariates do not in�uence the response. Moreover the number

of e�ective variables decreases with their e�ect size. Scenario 3 was proposed to illustrate the

relative predictive performances of CLERE under the assumption that almost all covariates

contributes to the response.

4.1.2 Results

Table 1 summarizes the MSE calculated under each scenario. We also considered a measure

of model complexity being either the number of non-zero parameters or simply the number of

parameters for CLERE. Using the latter measure, the present simulation study illustrates that

CLERE selects the simplest model in all the considered scenarios.

100× averaged MSE Averaged number
Scenario (Std. Err) of parameters

1 Lars 52.3 (1.59) 49
LASSO 16.3 (0.39) 41
Ridge 59.4 (0.45) 100
Elastic Net 14.3 (0.34) 49
CLERE (g=5) 21.3 (0.65) 12
CLERE 18.8 (0.73) 17

2 Lars 9.86 (0.93) 49
LASSO 1.14 (0.04) 33
Ridge 65.7 (0.37) 100
Elastic Net 1.06 (0.04) 33
CLERE (g=5) 0.42 (0.14) 12
CLERE 0.32 (0.12) 15

3 Lars 71.0 (1.72) 49
LASSO 35.6 (0.82) 45
Ridge 53.4 (0.59) 100
Elastic Net 23.8 (0.69) 65
CLERE 26.8 (0.69) 20

Table 1: Averaged MSE for simulated data under the three scenarios. The average number of
non-zero parameters estimated for each method was also reported. Where not speci�ed, the
number of groups g is chosen using BIC criterion.

Although scenarios 1 and 2 are directly derived from model (3), they di�er in terms of clus-

ter separation. In accordance with standard clustering approaches, predicting performances of

CLERE increases with cluster separation. This is illustrated by the dramatic improvement of

CLERE from scenario 1 to scenario 2. In scenario 2 indeed the regression coe�cients were seper-

ated enough. CLERE therefore outperformed all other methods. Moreover, even if the cluster

separation was small in scenario 1, the BIC criterion suprisingly led in average to choose a larger
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number of groups. However, CLERE had better performances when the number of groups was

tuned for each simulated data set. In Scenario 3, the regression coe�cients were not separated

at all. However, CLERE managed to yield competitive performances.

4.2 Real data

4.2.1 Description

The real data used in this section was published in [7]. This data set consists of n = 60 mice

for which the expression of 83 gene transcripts from liver tissues was measured and p = 145

microsatellite markers were genotyped. One challenging issue of Genetics consists in connecting

gene expression levels with variations in the genomic sequence. Microsatellite markers are such

variations. The latter markers are discrete quantitative variables taking values in {1, 2, 3}, while

gene expression levels are real quantitative variables. Instead of considering each transcript as

a response, we performed a principal component analysis over the gene expression data to come

up with a reduced number of outcomes. The �rst nine principal components (PC) accounted for

more than 97% of the total inertia. We then proposed a linear regression model for each of those

selected PCs using the microsatellites markers as covariates. The selected PCs are subsequently

denoted PC1, . . . , PC9. Since no proper validation data sets were available, all methods were

compared in terms of out-of-sample prediction error estimated via 5-fold cross-validation (CV).

4.2.2 Overall results

Table 2 summarizes the MSE for each selected PC and each method. Similarly to numerical

experiments on simulated data, variables selection using Lars algorithm yielded, for each PC,

very large prediction error. All other methods had however comparable prediction error. For 5

PCs, CLERE showed the best performances in terms of prediction error. The LASSO tended to

select very simple models even compared to CLERE. For PC8 for instance, the LASSO yielded

a prediction error slightly larger than CLERE with only 2 non-zero parameters. Nevertheless,

CLERE selected simpler models in average. When averaging the MSE over all PCs, CLERE

showed very competitive performances since it was the second best method right after ridge

regression.

4.2.3 Focus on PC1

We have illustrated above that CLERE is a very competitive method for prediction. In this sub-

section we now present how CLERE can be used for interpretation purpose. A focus is therefore

laid on PC1 as a single response variable. The data were no longer partitioned as previously did

for cross-validation.

Using the whole data set, 3 groups were chosen using the BIC criterion (see Figure 1).
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Figure 1: Selection procedure for the number of groups. Here g = 3 was selected as it minimizes
the BIC. The BIC is approximated using Monte Carlo simulations.

The estimated parameters are given in Table 3. Two groups with moderated positive e�ects and

one group with strong negative e�ect were identi�ed. In Section 3.2, we presented how to make

predictions with CLERE using the vector E

[
β|y,X; θ̂

]
. The latter vector of expectations can

be interpreted as a vector of regression coe�cients. Consequently, the small estimated value for

parameter γ2 (γ̂2 = 3.0× 10−6) leads those expectations to be strongly concentrated around the

b̂k's. CLERE yielded thus a very parsimonious regression model.

The second group, associated with b̂2 = −0.931, was of interest since it gathers the 11 variables

showing the strongest impact on the response. In Table 4, we compared for those variables

the regression coe�cients obtained with Lars, the LASSO, the ridge regression and the elastic

net. The �ve methods yielded sign and size consistent regression coe�cients for almost all

the markers highlighted in Table 4. One exception was however noticed for D13Mit16. On

the other hand CLERE showed that some variables dropped by the other methods may still

be of interest. Overall this analysis emphasized the ability of CLERE to consistently identify

in�uencial covariates using a very parsimonious model. Moreover, this analysis identi�ed the

clusters of markers that may be relevantly investigated for a biological characterization.
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5 Discussion

We proposed in this paper a new method for simultaneous variables clustering and regression.

This work comes in the aftermath of a series of recently published approaches aiming at reducing

the dimension in linear regression models by collapsing the covariates into groups. Contrarily to

those previous works, our approach is not based on penalized least squares problem. However

we assumed the existence of a latent structure within the variables that depends only on their

unobserved regression coe�cients. In such framework, no distributional assumption regarding

the covariates is necessary for achieving the clustering. The latent structure is modeled using

a Gaussian mixture model whose parameters are estimated via an EM algorithm. A stochastic

version, namely the MCEM, of the latter algorithm was proposed since the E-step was un-

tractable. Even if MCEM has become a standard in many applications, it is noteworthy that

its computational cost is not neglectable. Indeed, running the estimation with 3 groups on the

data set presented in Section 4.2.3 took 30 seconds for CLERE but less than 1 second for the

other approaches. Although CLERE seemed to be relatively slow, the estimation time remained

however manageable. Improvements in speeding up the estimation through parallel computating

consist in a natural perspective for this work, especially since we are aiming at tackling ultra-high

dimensional regression problems in forthcoming researches. We proposed in this paper the BIC

criterion for choosing the number of latent groups. This criterion was prefered over di�erent

existing criteria such as the out-of-sample prediction error because of its small computational

cost. Other information-based criteria will be explored in further works.

Our approach showed good predictive performances both on simulated and real data compared

to the LASSO, the ridge regression, the elastic net and Lars. These good performances were

accompanied by a lower complexity in terms of number of �tted parameters. CLERE also brought

improvements in terms of interpretability since each �t provides a clustering of the covariates.

Variables selection may be considered as a special case of clustering, unuseful covariates being

clustered together. As a consequence, if a constraint is imposed on the parameter space, then

CLERE can also be used as a variable selection tool. Such constraint may for instance lead

to assume one group k to have its mean bk and its associated variance equal to zero. This

is a new model which however may be easily derived from the approach presented here. Many

applications deal with response variable that may not be continous. Another promising extension

of our model is therefore towards generalized linear models. This extension may be achieved

straightforwardly.
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averaged 5-fold CV statistic Averaged number
PC (Std. Err) of parameters

1 Lars 112 ( 30.9 ) 47
LASSO 1.13 ( 0.05 ) 3
Ridge 1.11 ( 0.04 ) 145
Elastic Net 1.31 ( 0.09 ) 15
CLERE 1.07 ( 0.09 ) 5

2 Lars 18.8 ( 5.84 ) 47
LASSO 1.32 ( 0.22 ) 15
Ridge 0.92 ( 0.04 ) 145
Elastic Net 1.17 ( 0.20 ) 33
CLERE 1.06 ( 0.12 ) 10

3 Lars 19.43 ( 5.61 ) 47
LASSO 0.99 ( 0.09 ) 12
Ridge 0.98 ( 0.06 ) 145
Elastic Net 1.08 ( 0.10 ) 26
CLERE 1.15 ( 0.18 ) 9

4 Lars 48.8 ( 9.20 ) 47
LASSO 1.10 ( 0.02 ) 3
Ridge 1.05 ( 0.01 ) 145
Elastic Net 1.13 ( 0.04 ) 8
CLERE 1.03 ( 0.01 ) 4

5 Lars 29.4 ( 11.6 ) 47
LASSO 1.22 ( 0.08 ) 5
Ridge 1.13 ( 0.02 ) 145
Elastic Net 1.31 ( 0.08 ) 9
CLERE 1.09 ( 0.02 ) 5

6 Lars 28.7 ( 9.80 ) 47
LASSO 1.17 ( 0.08 ) 13
Ridge 0.94 ( 0.04 ) 145
Elastic Net 1.10 ( 0.08 ) 30
CLERE 1.27 ( 0.15 ) 7

7 Lars 28.5 ( 11.3 ) 47
LASSO 1.23 ( 0.08 ) 17
Ridge 0.94 ( 0.04 ) 145
Elastic Net 1.21 ( 0.09 ) 37
CLERE 1.28 ( 0.1 ) 10

8 Lars 26.4 ( 4.00 ) 47
LASSO 1.06 ( 0.02 ) 2
Ridge 1.08 ( 0.03 ) 145
Elastic Net 1.11 ( 0.02 ) 8
CLERE 0.99 ( 0.05 ) 5

9 Lars 33.4 ( 12.7 ) 47
LASSO 1.12 ( 0.06 ) 6
Ridge 1.07 ( 0.04 ) 145
Elastic Net 1.14 ( 0.07 ) 14
CLERE 1.01 ( 0.03 ) 5

Table 2: Out-of-sample prediction error estimated using 5-fold CV for each method and each
PC for mice data from [7]. The averaged number of �tted parameters, as a measure of model
complexity, is also reported.
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β̂0 b̂1 b̂2 b̂3 π̂1 π̂2 π̂3 γ̂2 σ̂2

2.32 × 10−2 7.87 × 10−2 −9.32 × 10−1 7.63 × 10−2 0.870 0.076 0.054 3.0 × 10−6 7.35

Table 3: Maximum likelihood estimate obtained for CLERE when �tting mice data using PC1
as response variable.

Markers Chromosome Lars LASSO Ridge Elastic net CLERE

D1Mit87 1 . . -0.0265 . -0.9318
D3Mit19 3 -0.2347 -0.8962 -0.1940 -0.5670 -0.9316
D4Mit149 4 . . -0.0855 . -0.9316
D4Mit237 4 -2.7478 -0.8661 -0.1714 -0.4767 -0.9318
D7Mit56 7 -0.2011 -0.0484 -0.1026 -0.1516 -0.9318
D7Mit76 7 . -0.0116 -0.1026 -0.1514 -0.9317
D8Mit42 8 0.0119 . -0.0430 . -0.9319
D9Mit15 9 -3.1530 -1.6102 -0.2826 -1.0474 -0.9318
D13Mit16 13 1.2867 . 0.0530 0.0823 -0.9318
D15Mit174 15 -1.7012 -0.9335 -0.1149 -0.4312 -0.9319
D19Mit34 19 . . -0.0449 -0.0303 -0.9317

Table 4: Microsatellite markers having the strongest impact on PC1. Regression coe�cients for
those variables are reported for all compared methods. For CLERE regression coe�cients are

obtained using E

[
β|y,X; θ̂

]
. "." means 0.
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