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Abstract—In this paper, we address the problem of blind
compensation of nonlinear distortions. Our approach relies on
the assumption that the input signals are bandlimited. We then
make use of the classical result that the output of a nonlinear
memoryless system has a wider spectrum than the one of the in-
put signal. However, different from previous works, our approach
does not assume the knowledge of the input signal’s bandwidth.
The proposed approached is considered in the development of
a two-stage method for blind source separation (BSS) in post-
nonlinear (PNL) models. Indeed, once the functions present in the
nonlinear stage of a PNL model are compensated, one can apply
the well-established linear BSS algorithms to complete the task
of separating the sources. Numerical experiments performed in
different scenarios attest the viability of the proposal. Moreover,
the proposed method is tested in a real situation where the data
are acquired by smart chemical sensor arrays.

Index Terms—onlinear memoryless systemsonlinear memory-
less systemsN, blind source separation, post-nonlinear model,
bandlimited signals, smart chemical sensor arrays.

I. INTRODUCTION

IN many applications, the observed signal corresponds to
a nonlinearly distorted version of the desired one. For

instance, this problem arises in satellite communications [2]
due to the presence of amplifier stages and in chemical
sensors [3] due to the nature of the transducer mechanism.
Usually, the compensation of these nonlinear distortions is
conducted by considering a supervised framework, in which
one has access either to a set of training samples [4] or to a
complete characterization of the nonlinear function [5].

When no information about the input signal and the nonlin-
ear distortion are available, a blind (or unsupervised) frame-
work must be considered. The main difficulty in this case
is that the resulting problem is ill-posed and, thus, cannot
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be solved without taking into account a minimum of prior
information. In this context, the seminal work of Landau
and Miranker [6] on sampling of nonlinearly distorted signals
eventually provided a very interesting strategy to perform blind
compensation of nonlinear distortions. The prior information
assumed in their approach is that the signal of interest is
bandlimited. By exploiting the fact that a nonlinear function
tend to spread the spectrum support of the input signal, [6]
suggested that the original signal could be recovered by
restoring a bandlimited signal.

The idea initially introduced in [6] has been exploited
in the context of single-input single-output (SISO) models
by several works [7], [8], [9]. So far, however, all these
works assume that the input signal’s bandwidth is known
in advance. This assumption may be realistic, for instance,
in applications in telecommunications and audio processing.
On the other hand, in applications such as the one we are
interested in this work — the development of smart chemical
sensor arrays [3] — although the signals of interest can be
approximately modeled as bandlimited ones, no information
about these signals’ bandwidth are available.

In order to obtain a more general framework of blind
compensation of nonlinear functions, we propose in this work
a novel strategy to restore bandlimited signals from nonlinearly
distorted observations that is able to operate without the input
signal’s bandwidth knowledge. Although our proposal can be
applied in any problem involving compensation of nonlinear
functions, the main motivation of our work is to develop
a novel blind source separation (BSS) [10], [11] approach
for the case in which the mixing model can be modeled
as a post-nonlinear (PNL) system [12]. Indeed, since this
kind of model comprises a linear mixing stage followed by
a set of component-wise nonlinear functions, if one is able
to blindly compensate these nonlinear functions, then one
ends up with a linear BSS problem, for which there are very
efficient techniques [10], [13]. In other words, compensation
of nonlinear functions is at the very core of source separation
in PNL mixtures.

Concerning the paper’s organization, we introduce in Sec-
tion II the problem of blind compensation of nonlinear memo-
ryless systems and define the notation that will be considered
throughout the work. We then present, in Section III, the
proposed approach to deal with nonlinear distortions in an
unsupervised fashion. In Section IV, we briefly introduce the
problem of blind source separation in PNL mixing models
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and show how the method proposed in Section III can be con-
sidered to provide a sound PNL source separation technique.
Section V presents simulations with the aim of assessing
the validity of the proposed method. Experiments with both
synthetic data and actual data acquired by smart chemical
sensor arrays are presented. Finally, in Section VI, conclusions
and perspectives for future works are presented.

II. BLIND COMPENSATION OF NONLINEAR FUNCTIONS

In the problem of blind compensation of a nonlinear dis-
tortion, which is illustrated in Figure 1, the observed signal1,
xi(t), is modeled as a nonlinear function of the input signal,
zi(t), as follows

xi(t) = fi(zi(t)), (1)

where fi(·) denotes the distorting function. The goal here is
thus to provide a good estimation of the input signal zi(t) by
only considering the observations xi(t) and a few assumptions
on the desired signal and on the distorting function. This task
can be accomplished by adjusting a nonlinear compensating
function gi(·) so that the estimated signal, given by

qi(t) = gi(xi(t)), (2)

be as close as possible to the input signal zi(t). In this work,
we assume that both fi(·) and gi(·) are monotonic functions.

Fig. 1. Overview of the problem of blind compensation of a nonlinear
function.

The problem of blind compensation of nonlinear distortion
is ill-posed, and, thus, can be solved only when additional
prior information are available. In the following, we discuss
how an unsupervised framework can be built by considering
the information that the input signal is bandlimited.

III. STRATEGIES TO DEAL WITH NONLINEAR DISTORTIONS

A. Spectral spreading caused by nonlinear functions
In certain applications, such as chemical sensing, the signals

of interest present a slow temporal variation, thus presenting
a spectral content concentrated on low-frequency bands. Mo-
tivated by this observation, we shall assume that zi(t) is a
bandlimited signal with unknown maximum frequency given
by Bzi . Due to the action of the nonlinear functions fi(·),
the spectrum content of the output xi(t) = f(zi(t)) tends
to be wider than the spectra of the original signals zi(t) (cf.
Appendix A). It is thus expected that the maximum frequency
of Xi(ω), the Fourier transform of xi(t), be larger than Bzi .
This phenomenon, which can also be observed is discrete
signals, is illustrated in Figure 2, which shows the effects of a
nonlinear memoryless system in the discrete cosine transform
(DCT) representation.

1The index i is used here to keep a coherent notation with the one used
for describing PNL systems in Section IV.
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(b) DCT of xi(t) = tanh(zi(t)).

Fig. 2. Spectral spreading caused by a nonlinear distortion: the DCTs of a
bandlimited signal zi(t) and of the distorted signal xi(t) = tanh(zi(t)).

The spectral spreading phenomenon can be used to for-
mulate a criterion for adapting the nonlinear function gi(·).
Indeed, this function can be adjusted so that it provides a signal
qi(t) = gi(xi(t)) that is bandlimited to the original bandwidth
of the input signal zi(t) [7]. This condition is satisfied when
qi(t) = gi(fi(zi(t))) = αzi(t) + β, where α, β ∈ R, that
is, when the composition of the two functions is an affine
function, which is exactly the desired solution. The practical
implementation of the idea of restoring a bandlimited signal
is discussed in the sequel.

B. Semi-Blind Cost Function

Henceforth, the function used for inverting fi(·) will be
denoted by gi(·,bi), being parameterized by the vector bi.
According to the out-of-band minimization idea mentioned
before, gi(·,bi) can be adjusted so that the energy of qi(t)
beyond the frequency Bzi be as low as possible. In mathemat-
ical terms, this can be expressed by the following optimization
problem

b̂i = argmin
bi

J1(bi), with J1(bi) =
E
{f>Bzi

}
qi

Eqi
. (3)

In the notation adopted in this paper, Eqi denotes the total
energy of qi(t) and E

{f>Bzi
}

qi the energy associated with the
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frequency components beyond Bzi :

E
{f>Bzi

}
qi =

∫ 1

Bzi

γqi(f)df

where γqi(f) is the power spectral density2 of qi(t). Note that
the normalization of (3) by Eqi is necessary to avoid a trivial
solution in which the signal qi(t) has null energy.

The formulation expressed in (3) was considered, for in-
stance, in [7]. However, the main drawback of (3) is that it
works with the strong assumption that Bzi is known, which
is quite unrealistic in an unsupervised context. Yet, it is
possible to define an extension of J1(bi) to a scenario with
unknown Bzi , by replacing Bzi in (3) with a value B̂zi that
satisfies the condition B̂zi > Bzi . To be sure that such a
requirement is satisfied, one can define B̂zi(t) close to one.
In this case, the spectral spreading in the interval [B̂zi(t), 1],
where B̂zi(t) > Bzi(t) is minimized. Evidently, since this is
only a necessary condition, there is no guarantee that such
a procedure will lead to a proper compensation of fi(·),
even though this procedure usually performs well in noiseless
scenarios.

When the observed signal is corrupted by noise or when
the assumption of bandlimited signal is only approximated,
the strategy described in the last paragraph may become rather
suboptimal. For example, suppose that B̂zi definitively overes-
timates the actual bandwidth Bzi of zi(t) (i.e. B̂zi >> Bzi ). In
this case, criterion (3) will consider only a few high-frequency
components, discarding all the information available in the
band [Bzi , B̂zi ]. As a consequence, the resulting estimator in
this case will be much less robust to noise than the estimator
considering the actual value Bzi . This is particularly undesir-
able in the present problem, given that even a low-power noise
can become significant after a nonlinear distortion.

C. Blind Cost Function

The limitations associated with the blind extension of (3)
can be overcome if, in addition to the vector of parameters
bi, Bzi is also seen as an unknown parameter. Having this
observation in mind, the proposed approach is thus based on
the following optimization problem:

(b̂i,
̂̂
Bzi) = arg min

bi,B̂zi

J2(bi, B̂zi), (4)

with

J2(bi, B̂zi) =
E
{f>B̂zi

}
qi

E
{f>B̂zi

−φ}
qi

, (5)

where the parameter φ lies in interval ]0, 1[ and should be
assigned in advance; some guidelines about this respect are
discussed in Section V.

The optimization problem described in Equation (4) must
be constrained with respect to the parameter B̂zi . This can
be readily verified by observing that (5) approaches zero as
B̂zi tends to one, which may lead to a global solution that is

2In this work, we consider discrete-time signals. So, we always refer to the
normalized frequency, where B = 1 corresponds, in the analog domain, to
Fs/2, where Fs is the sampling frequency.

not the desired one. Moreover, the cost function (4) cannot be
evaluated for B̂zi < φ, since the denominator of (4) would not
be defined in this case — this is actually a border effect. To
overcome these problems, we assume in our approach that B̂zi
is constrained to the interval [φ, 1− φ]. This choice is further
detailed in Appendix B, which discuss this point through an
illustrative example.

Concerning the parameters bi, they must be constrained
to avoid compensating functions that are not monotonic. The
type of constraint will depend on the parametric function
considered to compensate fi(·). For instance, if a polynomial
function having only odd terms is considered, then a mono-
tonic compensating function is obtained by imposing non-
negative polynomial coefficients.

Let us now discuss the rationale behind (5). Given that (5) is
the ratio between the energies of qi(t) in the bands [B̂zi , 1] and
[B̂zi − φ, 1], this cost function attains a small value whenever
the energy in the band [B̂zi , 1] is much smaller than the energy
in the band [B̂zi − φ, 1]. The key point here is that such a
situation is expected for the desired solution to our problem,
i.e. for the situation in which (b = bd, B̂zi = Bzi), where
bd represents the parameters that provide the inversion of
fi(·). Indeed, consider now the following formulation, which
is equivalent to (5)

J2(bi, B̂zi) =
1

1 +
E
{B̂zi

−φ<f<B̂zi
}

qi

E
{f>B̂zi

}
qi

. (6)

If gi ◦ fi is approximately linear, then qi(t) is bandlimited to
Bzi by assumption. Therefore, in this situation, a very low
energy E

{f>Bzi
}

qi is expected. On the other hand, the term
E
{Bzi

−φ<f<Bzi
}

qi in (6) lies within the bandwidth of zi(t).
As a consequence, this latter term is expected to be much
larger than E

{f>Bzi
}

qi . This explains the rationale behind the
minimization of (6).

An important practical point here is the role of φ in
J2(bi, B̂zi). This parameter acts as a sort of frequency res-
olution in the sense that the difference between the terms in
the ratio present in J2(bi, B̂zi) is the energy in a frequency
interval of size φ. For instance, if the input signal is periodic,
then the parameter φ should be small as the energy variations
are high concentrated in the spectrum. Conversely, for aperi-
odic signals, the energy is less concentrated in the spectrum
and, thus, a greater value for φ can be defined.

D. Optimization of the Cost Function (5)

It should be noted that, if the spectrum of qi(t) presents
strong energy variations due, for instance, to an attenu-
ated band, then there will be significant variations between
E
{f>B̂zi

}
qi and E

{f>B̂zi
−φ}

qi . As a consequence, cost func-
tion (5) tends to present local modes around the points B̂zi
where these variations occur, that is, J2(bi, B̂zi) may be
multimodal. Moreover, as discussed in Appendix B, there may
be a local minimum at the point B̂zi = 1 − φ. Hence, the
application of methods based on local search mechanisms,
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such as pure gradient-based techniques, may lead to sub-
optimal convergence.

In our proposal, in order to to circumvent the problem
mentioned above, we consider an artificial immune system
(AIS) conceived to deal with multimodal optimization tasks,
the artificial immune network for optimization (opt-aiNet),
firstly proposed in [14]). This metaheuristic, which has been
applied to solve a number of signal processing tasks [15], [16],
possesses the required balance between local and global search
mechanisms to deal with multimodal cost functions. Besides,
this method does not operate with any kind of estimation
of the gradient and/or the Hessian matrix. This feature is
quite interesting in our context, since the calculation of the
derivatives of (5) with respect to the parameter B̂zi is tricky.
Finally, in the opt-aiNet, the constraints on B̂zi , and possibly
on bi, can be handled in a straightforward fashion. This is
discussed in Appendix C, in which a detailed description of
the opt-aiNet is provided.

The robustness of the opt-aiNet to sub-optimal convergence
comes at the expense of an increase in the computational
burden in comparison to gradient-based methods. This aspect
is particularly important when the search space is large and
the cost function is difficult to evaluate. Fortunately, in the
context of smart chemical sensor arrays, the application that
has motivated the present work, the number of unknown
variables is usually small. Moreover, the evaluation of the cost
function (5) is a straightforward task, since it corresponds to a
ratio of energies in a given band. In our work, these energies
are calculated by the Euclidean norm of the discrete cosine
transform (DCT) coefficients associated with the desired band.
The discrete Fourier transform (DFT) could also be used,
however the DCT has the advantage of being a real-valued
transform.

IV. BLIND SOURCE SEPARATION IN PNL MIXTURES

The strategy to deal with nonlinear distortions described
in Section III can be applied in the context of Blind Source
Separation (BSS). The goal in this problem is to retrieve a
set of unknown signals (sources) based on observations that
correspond to mixed versions of these original sources. The
term blind is employed since only a few assumptions are
made about the sources and the mixing process. The problem
of BSS has been mostly tackled by methods of independent
component analysis (ICA) [17], [10], which work under the
hypothesis that the sources correspond to mutually statistically
independent random processes. Moreover, most of the works
in BSS assume a linear mixing process, which simplifies the
problem to a great extent.

However, while many practical problems can be safely
described by linear models, there are some applications in
which the mixing process is clearly nonlinear. This is the
case, for instance, in the problem that motivated the present
work: the development of smart chemical sensors arrays for
analyzing ionic solutions [3]. In addition to that, nonlinear BSS
methods have been used in applications such as separation of
scanned images [18], quantum computing [19] and particle
detectors [20].

In nonlinear BSS, one should deal with problems that are
absent in the linear case. For instance, it can be shown that
ICA does not necessarily lead to source separation in a general
nonlinear framework [21], [22]. Such limitations have been
driving researchers to consider constrained classes of nonlinear
models that can be useful in practice and for which ICA still
allows source separation. The most studied case in this context
is the class of Post-Nonlinear (PNL) models [12]. As show
in Figure 3, this kind of model comprises a linear mixing
stage followed by a second stage composed of component-
wise nonlinear functions. The PNL model provides a good
description of systems presenting amplifier stages [12] and of
ISEs arrays [3].
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Fig. 3. The PNL problem structure.

In mathematical terms, if the ns sources are represented
by the vector s(t) = [s1(t), s2(t), . . . , sns

(t)]T and the nm
mixtures by the vector x(t) = [x1(t), x2(t), . . . , xnm(t)]T , the
outputs (mixtures) provided by a PNL model are given by

x(t) = f(z(t)) = f(As(t)), (7)

where f(·) = [f1(·), f2(·), . . . , fns
(·)]T represents a set of

component-wise functions that are applied to the set of linear
mixtures, z(t), of the sources; the nm × ns matrix A models
this linear mixing stage.

In order to retrieve the sources mixed by a PNL model,
one can consider the separating system depicted in the right
side of Figure 3. This system, which is basically a mirrored
version of the mixing system, is composed of a set of nonlin-
ear component-wise compensating functions, represented by
g(·) = [g1(·), g2(·), . . . , gnm(·)]T , followed by a separating
matrix W. Therefore, the estimated sources are given by

y(t) = Wg(x(t)) = Wq(t), (8)

where q(t) = g(x(t)).
Typically, the separation of PNL mixtures is accomplished

by direct ICA methods, i.e. the two stages of the separating
system are simultaneously adjusted. For instance, [12], [23],
[24] consider a learning strategy based on the minimization
of the mutual information between the elements of y(t). This
task can be formulated as the following optimization problem

min
W,g(·)

I (y(t)) , (9)

where I (y(t)) denotes the mutual information [25] between
the elements of y(t). Assuming that ns = nm and that the
functions represented by g(·) are invertible, Equation (9) can
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be written as follows [12]

min
W,g(·)

ns∑
i=1

H(yi(t))− log |detW| −E

{
log

ns∏
i=1

|g′i(xi(t))|

}
,

(10)
where H(·) denotes the Shannon’s differential entropy [25].
The main drawback of direct methods is that they are de-
pendent on a good estimation marginal entropies, which is
usually a complex task. Moreover, it is difficult to formulate
a multiple-input single-output (MISO) contrast based on the
mutual information, rendering difficult the derivation of source
extraction methods.

As an alternative to the joint or direct learning approach
of (9), some works considered the so-called two-stage meth-
ods. In this approach, additional prior information on the
sources is considered so the nonlinear and linear stages can
be adjusted separately. Examples of two-stage methods in-
clude [26], in which one assumes that the sources are bounded,
and [27], [28], which works under the hypothesis that the
linear mixtures follow a Gaussian distribution.

In two-stage PNL source separation methods, the learning
strategy can be formulated as the following two sequential
optimization problems:

min
g(·)

Cg (y(t))

min
W

CW (y(t)) ,
(11)

where Cg(·) and CW(·) correspond to the cost functions as-
sociated with the nonlinear and linear stages, respectively. The
first optimization problem concerns the compensation of the
set of nonlinear functions f(·) = [f1(·), f2(·), . . . , fns(·)]T ,
while the second one is related to a linear blind source sepa-
ration problem, which can be tackled by the well-established
linear BSS algorithms [10].

A. A Two-stage Approach for PNL Mixtures

By considering the proposed approach to deal with nonlin-
ear distortions, described in Section III, it is possible to define
a complete two-stage PNL source separation method. Indeed,
if the sources are bandlimited signals with bandwidths given
by Bs1 , · · · , Bsns

, then the signal that is submitted to the
nonlinear distortions, zi(t), will have a bandwidth bounded
by Bzi = max(Bs1 , · · · , Bsns

), thus satisfying the main
assumption required by the approach introduced in Section III.
As a result, the following two-stage PNL source separation
method can be defined:

1) First stage: for each mixture xi(t), find gi(xi(t),bi)
by minimizing the cost function J2(bi, B̂zi), expressed
in (5), through the opt-aiNet algorithm;

2) Second stage: the estimated sources yi(t) are obtained
by applying a linear source separation or extraction
method to the signals qi(t) = gi(xi(t)),∀i = 1, · · · , nm.

It is important to note in this procedure that the first step
can be carried out even when the number of sources is smaller
than the number of mixtures. In this case, however, one should
consider in the second stage linear BSS strategies (e.g. priors
like source sparsity) that are able to deal with underdetermined

mixing models. Moreover, since the first step does not assume
statistical independence between the sources, the estimation
of the nonlinear functions can be carried out even when the
sources are correlated. Finally, it is interesting to remark
that the complexity of the first stage grows linearly with
the number of mixtures, as the estimations of each nonlinear
function is done in an independent fashion. Therefore, there
is no curse of dimensionality in the first stage.

V. EXPERIMENTAL RESULTS

In this section, we present a set of experiments to assess the
performance of the proposed method to compensate nonlinear
functions. In particular, we shall focus on the strategy for PNL
source separation described in Section IV-A, giving special
attention to the strategy developed for dealing with the first
stage. At first, we consider the case in which the nonlinear
stage of the PNL model is composed of logarithmic functions.
This situation arises in the context of smart chemical sensor
arrays. In this case, we test our method with synthetic data
(Section V-A) but also with actual data (Section V-B). We
also conduct simulations with a nonlinear stage composed of
polynomial functions (Section V-C).

A. Experiments with Logarithmic Functions: the Nicolsky-
Eisenman Model

1) Modeling ISE Arrays though PNL Systems: An ion-
selective electrode (ISE) is a device used to estimate the
ionic activity, which can be seen as a measure of effective
concentration of an ion in aqueous solution [29]. Due to its
simplicity, ISEs have been by far the most successful chemical
sensor in commercial terms. However, this kind of sensor
usually has weak selectivity, i.e. it may respond to interfering
ions other than the target one.

A possible solution to deal with the interference problem in
ISEs is to exploit the diversity brought by an array of ISEs. Re-
cently, it was shown [3] that the demanding calibration stages
that are typically conducted when using ISE arrays can be
simplified by BSS methods. In this case, the sources represent
the time series associated with the activity of each ion under
analysis. Due to the interference problem, the outputs of the
array correspond to mixed versions of the sources. The mixing
process in this case can be modeled according to the classical
formalism of the Nicolsky-Eisenman (NE) equation [29]. If the
ions under analysis have the same valences, which is indeed
very common in practice, then, according to the NE equation,
the response of the i-th ISE within the array is given by:

xi(t) = ei + di log10

( ns∑
j=1

aijsj(t)
)
, (12)

where ei is an unknown offset and aij denotes the selectivity
coefficients. The parameter di, which is usually refereed to
as the Nersntian slope, is approximately 0.059V for a room
temperature. However, some factors such as aging and manu-
facturing variability may result in strong deviations from this
theoretical value.

From Equation (12), one can note that the NE model is
a particular case of the PNL model in which the nonlinear
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mixing functions correspond to logarithms. The compensation
of these functions can be achieved by means of the following
parametric functions

qi(t) = gi(xi(t), d̂i) = 10
xi(t)

d̂i = 10
ei
d̂i zi(t)

di
d̂i . (13)

When d̂i = di, the composition gi ◦fi is linear, corresponding
thus to the desired solution. Note that the offset ei of (12)
cannot be estimated in a blind context, since it only introduces
a scale gain in qi(t). Indeed, BSS methods are not able to
retrieve the correct amplitude of the sources [10]). Therefore,
in our experiments, we shall assume, without lost of generality,
that ei = 0.

2) Cost Function (5) in a synthetic example: To illustrate
the effectiveness of our proposal for adjusting (13), we first
consider a toy example with ns = 2 sources and nm = 2
mixtures. The synthetic sources, whose bandwidths are given
by Bs1 = 0.2 and Bs2 = 0.5, were obtained from low-pass
(finite impulse response) FIR filters (100 taps) driven by white
Gaussian noise of zero mean and unit variance. The linear part
of the PNL mixing system was given by the matrix

A =

[
1 0.5
0.6 1

]
,

and the following Nernstian slopes were assumed: d1 = 0.059
and d2 = 0.040. Finally, we selected φ = 0.1 in the
cost function (4). This value was empirically found (after
performing a series of simulations, we observed that a good
rule of thumb is to select φ = 0.01 for periodic signals and
φ = 0.1 for aperiodic signals).

Given that each separating function gi(xi(t), d̂i) is
parametrized by just a single parameter (d̂i), it is possible
to visualize the cost function (5) in this case. For instance,
considering a noiseless situation, the logarithm of the cost
functions for both g1(·) and g2(·) are shown in Figure 4.
Note that the values d̂i that minimize (5) coincide with the
actual values of di (the optimal solutions are indicated by
dashed lines) in both cases. Moreover, the proposed criterion
is minimized for both cases when B̂zi = 0.54, which is close
to the bandwidth of the linear mixtures (Bzi = 0.5).

As discussed in Section III-D, local modes may appear
in (5) in the presence of energy variations in the spectrum
of zi(t). This is clear in Figure 4(a) where one can observe
a local mode around the frequency B̂zi = 0.2. In this case,
the energy variation around this frequency takes place because
zi(t) is a linear combination of two bandlimited signals, one
of them having a bandwidth equal to Bs1 = 0.2.

3) Comparison between the cost functions (5) and (3):
We here aim at assessing the performance of the following
approaches in the task of estimating di: 1) the proposed cost
function (5), 2) the cost function (3) assuming the knowledge
of the bandwidth Bzi(t) (semi-blind case), which was proposed
in [7], 3) the same cost function (3) but now in a complete
blind situation, in which Bzi is defined beforehand (we set
B̂zi = 0.8). The same scenario presented in the last experiment
is considered.

In Table I, which represents the average of 100 experiments
being each solution calculated through exhaustive search, one
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Fig. 4. Cost functions J2(d̂i, B̂zi ) for the NE model (synthetic sources).

TABLE I
COMPARISON BETWEEN THE ESTIMATORS ASSOCIATED WITH THE COST

FUNCTIONS (5) AND (3).

d̂1 d̂2 d̂1 d̂2
(noiseless) (noiseless) (SNR= 20 dB) (SNR= 20 dB)

J1(d̂i)
(semi-blind) 0.0586 0.0395 0.0975 0.0455

J1(d̂i, B̂zi(t)
)

(blind) 0.0545 0.0398 0.9661 0.1085

J2(d̂i, B̂zi(t)
) 0.0589 0.0396 0.0885 0.0457

can note that, in a noiseless scenario, the three estimators give
values closer to the actual ones (d1 = 0.059 and d2 = 0.040).
However, in the presence of additive white Gaussian (AWG)
noise, the blind version of (3) gives poor estimations for both
d1 and d2 when the signal-to-noise ratio (SNR) is 20 dB,
whereas the semi-blind version of (3) and our proposal (5) still
give satisfactory estimation. However, it is worth mentioning
that while (3) assumes the knowledge of the actual bandwidth
of the input signal, our cost function (5) operates in a blind
fashion.

4) Example of source separation: We now present an exam-
ple in which the complete procedure described in Section IV-A
is applied to the NE model. We consider a scenario with
ns = 3 sources (a sine wave of frequency Bs1 = 0.01 and two
aperiodic signals with bandwidth Bs2 = 0.5 and Bs3 = 0.8)
and nm = 3 mixtures. The sources are depicted in Figure 5(a)
and the resulting mixtures in Figure 5(b). The PNL linear stage
is given by the matrix

A =

 1 0.5 0.5
0.4 1 0.6
0.3 0.6 1

 ,
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and the Nernstian slopes by d1 = 0.050, d2 = 0.060 and
d3 = 0.045. The number of available samples in this situation
was 1000, and each sensor was corrupted by AWG noise of
SNR = 20dB.
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(c) Recovered sources.

Fig. 5. Application of the complete PNL method (the SOBI algorithm was
considered in the linear stage).

According to the procedure described in Section IV-A, the
first step is to apply the opt-aiNet algorithm (see Appendix C
for more details) to perform the optimization of (5). After per-
forming some preliminary tests, we considered the following
set of parameters for the algorithm: N = 9 (initial population
size), Nc = 10 (number of clones per individual), β = 60
and σs = 3 (these last two parameters are related to the
mutation operator). We observed that the performance of the
opt-aiNet was very robust with respect to changes in these
parameters; this can be attributed to the fact that the search
space in our problem is relatively small. As stopping criterion,

we considered a maximum number of 1000 iterations.
The optimization of (5) via opt-aiNet algorithm led to the

following estimates: d̂1 = 0.048, d̂2 = 0.070 and d̂3 = 0.044.
Since in this toy example we have access to the outputs of PNL
linear stage (qi(t)) — this is unrealistic in an actual scenario
— we can plot the resulting mappings between zi(t) and qi(t).
As can be seen in Figure 6, these mappings are close to linear
functions, indicating that the task of inverting the nonlinearities
was satisfactorily accomplished. Yet, one can observed in this
figure that the noise is amplified especially for high input
values of zi(t). To understand why this amplification effect
occurs, let us rewrite the output of the i-th sensor within the
array when an AWG noise term ni(t) is present

xi(t) = di log10(zi(t)) + ni(t). (14)

One can easily obtain the mapping between zi(t) and qi(t) by
applying (13) on (14), that is

qi(t) = 10
di log(zi(t))+ni(t)

d̂i = zi(t)
di
d̂i 10

ni(t)

d̂i . (15)

Therefore, due to the nonlinearities present in the global
distorting/compensating functions, the original additive noise
in xi(t) becomes a multiplicative noise with respect to the
mapping between zi(t) and qi(t), which explains the noise
amplification.

After estimating the separating nonlinear functions, we
applied the Second Order Blind Identification (SOBI) algo-
rithm [30] to the signals qi(t). This algorithm has been inten-
sively applied to perform source separation in linear mixtures
of colored sources. As shown in Figure 5(c), the SOBI algo-
rithm provided good estimations of the actual sources. This is
confirmed by the resulting signal-to-interference ratios3 (SIR)
for each pair actual source/estimated source: SIR1 = 17.75 dB
for the sine wave, and SIR2 = 16.58 dB SIR3 = 13.18 dB
for the aperiodic signals. For matter of comparison, the SIRs
obtained considering the mixtures as estimated sources are
given by SIR1 = 6.94 dB, SIR2 = 1.90 dB, and SIR2 =
3.45 dB. We also tested a blind extraction algorithm, the
second-order frequency identification (SOFI) algorithm [31],
that is specially adapted to extract the smoothest signal, which,
in our example, corresponds to the sine wave. As shown in
Figure 7, a good estimation of the sine wave was obtained;
the performance index was SIR1 = 19.39 dB. Note that, due
to effect of noise amplification introduced by the nonlinear
functions, the estimation error is more evident when the signal
attains high values. The performance indices obtained when
the original coefficients di and the original mixing matrix A
are considered were SIR1 = 15.43 dB for the sine wave, and
SIR2 = 10.01 dB SIR3 = 11.69 dB for the aperiodic signals,
revealing that, due to the noise, the solutions provided by the
original parameters become suboptimal.

3The signal-to-interference ratio is given by:

SIRi = 10 log

(
E{ŝi(t)2}

E{(ŝi(t)− ŷi(t))
2}

)
,

where ŷi(t) and ŝi(t) denote, respectively, the retrieved signal and the actual
source after mean and variance normalization.
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Fig. 6. Mappings between zi(t) and qi(t) for each channel.
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Fig. 7. Extraction of the smoothest source through the SOFI algorithm.
Actual source s1(t) (black) and estimated source y1(t) (gray).

B. Experiments with Real Data

We now test our proposal in a real scenario. More pre-
cisely, we considered the experiments S1K10−1NH4 and
S1K10−4NH4 of the Ion-Selective Electrode Array (ISEA)
dataset [32]. This scenario corresponds to the one having the
strongest interference level. In this case, there are ns = 2
sources, which are related to ions ammonium (NH+

4 ) and

potassium (K+), and nm = 2 sensors within the array, being
each one target to a different ion. These mixtures are depicted
in Figure 8(a). The number of available samples in this case
was 170.
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(a) ISE array responses (mixtures).
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(b) Retrieved signals (black) and actual sources (gray)

Fig. 8. Experiments with actual data

Since we also have access to the actual sources, which are
shown in Figure 8(b) (gray signals), it is possible to analyze
if the spectral spreading phenomenon is taking place in this
situation. To that end, we show in Figure 9 the DCTs of
the sources and mixtures. A first point to be made is that
the sources are not bandlimited in the strict sense; there are
high-frequency terms of very low energy. These terms arise
because the sources, although smooth most of the time, are
discontinuous around the instant t = 40 minutes. Yet, it
is clear from Figure 9(a) that the sources’ spectral content
is concentrated on low-frequency bands. Another important
aspect illustrated in Figure 9(b) is that the mixtures have
indeed a DCT representation that is wider when compared to
the sources. This is a clear indicator that the mixing process
is of nonlinear nature, as predicted by the NE equation.

After applying the first stage of the method described in
Section IV-A (the parameters of the opt-aiNet in this case
were N = 7, Nc = 5, β = 30 and σs = 3), we obtained
the following Nernstian slopes: d̂1 = 0.031 and d̂2 = 0.054.
By considering the actual sources available in the dataset, we
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(b) DCTs of mixtures

Fig. 9. DCTs of the sources and mixtures obtained in an experiments with
actual data

compared the obtained results with the ones provided by a
supervised MSE regression, which has led to the following
values d̂1 = 0.039 and d̂2 = 0.050. Note that these values
are close to those obtained by our approach. Finally, the
bandwidths estimated by our method were Bs1 = 0.020 and
Bs2 = 0.032, which are consistent with Figure 9(a), as most
of the energy of the sources are found in frequency bands that
are below these frequencies.

For estimating each function, the proposed method per-
formed 5000 iterations, which took approximately 25s4. How-
ever, we observed that, very often, the method required much
less than 5000 iterations to converge. For instance, after con-
ducting 10 realizations of our method, we observed that, in the
worst simulation, the algorithm converged after approximately
1000 iterations in the case of d1 and after approximately
2000 iterations in the case of d2. Therefore, good estimations
were obtained after approximately 5 seconds (for d1) and after
approximately 12 seconds (for d2).

Concerning the second stage, there is in this case an
additional difficulty that limits the application of the SOBI
and SOFI algorithms. Actually, the sources (gray signals in

4We implemented our method in Matlab (Windows XP) and the simulations
were performed in a Intel Core 2 duo T6400 2 GHz, 3 GB RAM

8(b)) are highly correlated, thus violating the fundamental
assumption of almost all BSS methods. To mitigate this
problem, we consider the linear Bayesian source separation
method proposed in [33]. Our choice is motivated by the
fact that Bayesian methods may provide fair estimations even
when the sources have a certain degree of correlation. Actually,
differently from ICA methods, Bayesian methods do not have
the independence as a central assumption.

The application of the method [33] led to the estimated
sources shown in Figure 8(b) (black signals). The performance
indices in this case were: SIR1 = 17.74 dB and SIR2 =
22.13 dB. For a matter of comparison, the estimates provided
by considering the SOBI algorithm in the second stage led to:
SIR1 = 18.45 dB and SIR2 = 9.73 dB.

We also applied the direct PNL ICA-based method proposed
in [16]. We observed that this method achieve a poor perfor-
mance in this scenario with real data. The performance indices
in this case were: SIR1 = 7.61 dB and SIR2 = −0.32 dB. This
bad performance can also be attributed to the fact the sources
are correlated in this situation.

C. Compensation through Polynomial Functions

Our proposal can also be applied for compensating other
types of nonlinear functions. To illustrate that, we consider
in this subsection the situation in which the compensating
function is given by an odd polynomial, that is:

qi(t) = gi(xi(t),wi) =

Np∑
k=1

wkx
2k−1(t), (16)

where 2Np− 1 is the degree of the polynomial. In the sequel,
we present some results considering two situations, in which
we simply tackle the problem of compensating a nonlinear
function. Then, in a third scenario, we considered the problem
of PNL source separation in which the compensating functions
are given by polynomials.

1) Case in which perfect inversion is possible: In a first
moment we consider that the nonlinear distorting function is
given by fi(zi(t)) = 3

√
zi(t). Therefore, in this case, (16)

can perfectly invert the the distorting function. To check if
our approach can be applied in this case, we considered a
synthetic input signal generated by a low-pass FIR filter (100
taps) driven by white Gaussian noise of zero mean and unit
variance; the number of samples in this case were 500. Finally,
we defined φ = 0.1 and Np = 3.

The optimization of (5) through the opt-aiNet led to a
perfect inversion in all of 20 realizations executed. This is
illustrated in Figure 10, which shows the joint plot between
the input signal zi(t) and the observed signal xi(t) and
the joint plot between the input signal zi(t) and the signal
provided by the compensating function qi(t) obtained in one
of the realizations. Note that this last joint plot is linear, thus
indicating that a perfect compensation was achieved in this
case

2) Case in which perfect inversion is not possible: The
parametric form of the distorting function may not be available
in some applications. As consequence, in these cases, it may
not be possible to achieve a perfect inversion. In view of this
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Fig. 10. Compensation of a nonlinear function when perfect inversion is
possible.

limitation, it is important that a flexible enough compensating
function, such as the polynomial function (16), be available.
With the aim of verifying if the proposed framework is able to
provide a satisfactory compensation in this case, we performed
an experiment in which the nonlinear distorting function is
given by fi(zi(t)) = tanh(2zi(t)). We set Np = 4 while the
other parameters were the same as the ones considered in our
last experiment.

In Figure 11, we provide the joint plot between the input
signal zi(t) and the observed signal xi(t) (Figure 11(a)), and
the joint plot between the input signal zi(t) the signal qi(t)
estimated by the proposed method ((Figure 11(b))). These
results were obtained after 5000 iterations of the opti-aiNet.
As expected, it is not possible to perfectly compensate the
nonlinear distortion in this case, since a polynomial cannot
invert a hyperbolic tangent function. Yet, the input-output
relationship shown in Figure 11(b) reveals that at least the
nonlinear distortion was clearly weakened. For matter of
comparison, we also show in Figure 11(c) the joint plot
between the input signal zi(t) and the signal qi(t) estimated
by a supervised approach, in which the polynomial coefficients
were adjusted to minimize the mean square error between the
input signal zi(t) and the estimated one qi(t). It is interesting
to note that, even in a supervised approach, there is still a
remaining nonlinear distortion, which is slightly smaller than
the one observed in Figure 11(b).
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blind method.
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square error.

Fig. 11. Compensation of a nonlinear function when perfect inversion is not
possible.

3) Source Separation in PNL mixtures: Let us now consider
the problem of separating ns = 9 signals in the context of PNL
mixtures. In these experiments, the nonlinear compensating
functions were given by the polynomials (16) where Np = 4.
The sources were generated by low-pass FIR filters (100
taps) driven by white Gaussian noise of zero mean and unit
variance. The bandwidths of theses signals were obtained
from realizations of a random variable uniformly distributed
in [0.1, 0.5]. The number of samples were 2000. The mixing
matrix was obtained from realizations of a random variable
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uniformly distributed in [0.1, 0.8], while the elements of the
main diagonal were given by 1. The distorting functions were
given by fi(zi(t)) = tanh(zi(t)). Finally, we set φ = 0.05.

In Figure 12, we show the joint plot between each linear
mixture zi(t) and its corresponding nonlinear distorted signal
xi(t) (observed mixtures). The application of our proposal,
considering 10000 iterations of the opt-aiNet algorithm for
each function (which took approximately 135 seconds), led
to the joint plots zi(t) × qi(t) shown in Figure 13. As
can be seen by comparing Figures 12 and 13, although the
hyperbolic tangent functions were not perfectly compensated
by the polynomial functions, the nonlinear distortions were
considerably attenuated.
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Fig. 12. Joint plots between linear mixtures zi(t) and observed signals xi(t).
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Fig. 13. Joint plots between linear mixtures zi(t) and signals qi(t), obtained
after the compensation of the nonlinear function.

Having conducted the proposed method for compensating

the nonlinear functions, we applied the SOBI algorithm con-
sidering as inputs the signals qi(t), which correspond to the
outputs of the compensating functions. The proposed two-
stage method provided good estimations of the sources, since
the corresponding SIRs were given by SIR1 = 17.81 dB,
SIR2 = 12.74 dB, SIR3 = 10.85 dB, SIR4 = 14.73 dB,
SIR5 = 11.34 dB, SIR6 = 14.33 dB, SIR7 = 12.78 dB,
SIR8 = 13.31 dB, and SIR9 = 14.52 dB. In order to illustrate
this result, we plot in Figure 14 the pair source-retrieved source
corresponding to the SIR7 = 12.78 dB. In this figure, the scale
of the estimated source was corrected and, for the sake of
visualization, only 200 samples were plotted. Note that the
estimated source was indeed very close to the actual one. There
is a small high frequency distortion that is mainly due to the
residual nonlinear distortion.
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Fig. 14. Obtained signal after the application of the SOBI algorithm: actual
source (black) and retrieved one (gray).

VI. CONCLUSIONS

In this work, we tackled the problem of inverting a nonlinear
distortion. Our main motivation was to develop a two-stage
PNL source separation method, and to accomplish that aim
we assumed that the desired sources can be modeled as ban-
dlimited signals. Based on the spectral spreading introduced
by the nonlinear distorting function, a framework able to
operate in a blind scenario was proposed. Experiments with
synthetic data pointed out that the proposal performs well even
when the nonlinear distorted signals are corrupted by noise.
Moreover, the proposed approach was tested considering an
actual situation in which the data come from an ion-selective
electrode array. Despite the reduced number of samples, our
method provided good estimations of the nonlinear stage.
Future works will concern the extensions of the proposed
method to more general classes of signals, such as broadband
signals.

APPENDIX A
EFFECT OF NON-LINEARITY ON SIGNALS BANDWIDTH

Spectral spreading due to nonlinear functions is a classical
result in signal processing theory [6], [7]. In order to under-
stand why this phenomenon takes place, let us assume that
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fi(·) admits a power series expansion, i.e.,

xi(t) = fi (zi(t)) =

∞∑
k=1

f
(k)
i [zi(t)]

k. (17)

Denoting by Zi(ω) the Fourier transform of zi(t), the Fourier
transform of (17) is given by

Xi(ω) = f
(1)
i Zi(ω) + f

(2)
i Zi(ω) ∗ Zi(ω)+

f
(3)
i Zi(ω) ∗ Zi(ω) ∗ Zi(ω) + · · · ,

(18)

where the symbol ‘∗’ stands for the convolution operator. A
basic property of the convolution states that if R1(ω) and
R2(ω) denote the Fourier transform of two signals bandlimited
to B1 and B2, respectively, then R1(ω)∗R2(ω) is bandlimited
to B1 + B2. Thus, in (18), since Zi(ω) is bandlimited to
Bzi(t), then Zi(ω) ∗ Zi(ω) will be bandlimited to 2Bzi(t),
Zi(ω) ∗ Zi(ω) ∗ Zi(ω) to 3Bzi(t), and so forth. As a conse-
quence, the maximum frequency of Xi(ω) tends to become
larger than Bzi .

APPENDIX B
ANALYSIS OF THE COST FUNCTION (5) IN A SIMPLE CASE

We here analyze the cost function (5) in a simple context.
Our main goal is to illustrate why it is important to constrain
the parameter B̂zi in the optimization problem expressed in (4)
to the interval [φ, 1 − φ]. In our analysis, we will consider a
situation in which: 1) the input signal zi(t) is bandlimited with
maximum frequency given by Bzi ; 2) the frequency transform
of zi(t), denoted by Zi(ω), takes a constant value A1 within
the interval [0, Bzi ]; 3) the nonlinear distorting function can be
perfectly compensated; 4) the presence of a residual nonlinear
distortion only generates, in the spectrum of the compensated
signal, qi(t), a constant value A2 within the interval [Bzi , 1].

In the scenario described in the last paragraph, the frequency
transform of the signal qi(t), here denoted by Qi(ω), is
illustrated in two different situation: Figure 15(a) corresponds
to the case in which the nonlinear distorting function is
perfectly compensated — we are assuming that there is no
scale ambiguity — while Figure 15(b) represents the case in
which there is still nonlinear distortion.

The cost function (5) can be easily obtained in the situations
depicted in Figure 15. For instance, let us consider the case
where there is still a nonlinear distortion and B̂zi > Bzi + φ.
Since (5) corresponds to the ratio between the areas of Qi(ω)
in the intervals [B̂zi−φ, 1] and [B̂zi , 1], respectively, it asserts
that

J2 =
1− B̂zi

1− B̂zi + φ
(19)

in this case. A relevant point important here is that if B̂zi = 1,
then J2 = 0 in this case. In other words, since J2 is always
non-negative, there is a global minimum at the border B̂zi = 1.
To avoid that the algorithm converges to this global minimum,
there are, at least, two possibilities. The first one is to select,
at the end of the opt-aiNet algorithm execution, the global
minimum that is not located at the border B̂zi = 1. This is
possible since the opt-aiNet algorithm provides a population
of solutions instead of a single one (see Appendix C).

(a) Frequency transform of qi(t) when nonlinear dis-
tortion is perfectly compensated.

(b) Frequency transform of qi(t) when nonlinear dis-
tortion is not compensated.

Fig. 15. A simple scenario to analyze the cost function (5).

A second solution, which is the one adopted in this work,
is to constrain the parameter B̂zi to be inferior than 1 − φ.
This procedure, which can be easily done in the opt-aiNet
algorithm (see Appendix C), aims at avoiding the existence
of a global minimum other than the desired one, which takes
place when B̂zi = Bzi and there is no nonlinear distortion
(situation depicted in Figure 15(a)). Indeed, if one considers,
for instance, the situation described in our working example,
than one can easily check that, in the presence of nonlinear
distortion, (19) is always greater than zero and takes 1/2 when
B̂zi = 1 − φ, that is, there is no more a global minimum
at the new border B̂zi = 1 − φ. Yet, one can readily note
that, if Bzi < 1 − 2φ, the solution 1/2 at B̂zi = 1 − φ is
a local minimum. At first sight, this local minimum would
pose a problem to the implementation our proposal, especially
if classical optimization methods based on gradient search
were considered. However, since we are making use of an
optimization method that is robust to local convergence, this
minimum located at the border B̂zi = 1−φ is easily avoided.

APPENDIX C
THE OPT-AINET ALGORITHM

The opt-aiNet is based on two main theoretical pillars: the
synergy between clonal selection and affinity maturation [34],
[35] and the idea of immune network [36]. Each solution to
the problem at hand — in our case, each possible real-valued
vector bi and bandwidth B̂zi — is assumed to correspond to
an antibody (or individual). The cost function to be optimized
is considered to be an index of the matching between antibod-
ies and a given invader (antigen), being referred to as either
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affinity or fitness function5. Finally, in contrast with classical
nonlinear optimization methods, the algorithm works with a
population of solutions (antibodies).

The combination between clonal selection and affinity
maturation corresponds to a threefold stage in which each
individual is subject to cloning, mutation and deterministic
selection. In other words, each solution is replicated Nc times,
being, afterwards, all clones subject to Gaussian mutation.
From the group formed by the original individual and the
mutated clones, only the solution with the best fitness value
is kept. A relevant feature of the mutation operator is that the
variance of the Gaussian perturbation is inversely proportional
to the fitness of the original individual i.e. better individuals
tend to be less modified, which favors a fine local search.

The immune network theory plays a key role in the opt-
aiNet: that of controlling the population size by pruning redun-
dant solutions. This process is implemented in two steps: by
verifying the evolution of the average fitness of the population
and, in case of stagnation, removing antibodies that are too
close (in terms of Euclidean distance) to each other. The
pruning process is complemented by the periodic insertion of
new randomly-generated individuals.

Algorithm 1 is a summary of the opt-aiNet method. The
steps 3− 6 correspond to the local search process inspired in
the aforementioned duo clonal selection/affinity maturation,
whereas steps 7− 9 are responsible for the network character
of the method, which is decisive in terms of global search and
parsimony.

The incorporation of a constraint in the optimization prob-
lem can be done in a simple manner by the opt-aiNet al-
gorithm. For instance, as discussed in Section III-C, in our
problem, B̂zi must lie within [φ, 1− φ]. The incorporation of
this constraint in this case can be done by mapping, before
each fitness evaluation, all values lower than φ to φ, and all
values greater than 1−φ to 1−φ. At the end, the same mapping
must be applied in the obtained solution.
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