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Abstract: We consider the problem of estimating the distance between any two large data streams in small-
space constraint. This problem is of utmost importance in data intensive monitoring applications where input
streams are generated rapidly. These streams need to be processed on the fly and accurately to quickly determine
any deviance from nominal behavior. We present a new metric, the Sketch ⋆-metric, which allows to define a
distance between updatable summaries (or sketches) of large data streams. An important feature of the Sketch
⋆-metric is that, given a measure on the entire initial data streams, the Sketch ⋆-metric preserves the axioms of
the latter measure on the sketch (such as the non-negativity, the identity, the symmetry, the triangle inequality
but also specific properties of the f -divergence or the Bregman one). Extensive experiments conducted on both
synthetic traces and real data sets allow us to validate the robustness and accuracy of the Sketch ⋆-metric.
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2 Emmanuelle Anceaume Yann Busnel

1 Introduction

The main objective of this paper is to propose a novel metric that reflects the relationships between any two
discrete probability distributions in the context of massive data streams. Specifically, this metric designated as
Sketch ⋆-metric in the following allows us to efficiently estimate a broad class of distances measures between any
two large data streams by computing these distances only using compact synopses or sketches of the streams.
The Sketch ⋆-metric is distribution-free and makes no assumption about the underlying data volume. It is thus
capable of comparing any two data streams, identifying their correlation if any, and more generally, it allows us
to acquire a deep understanding of the structure of the input streams. Formalization of this metric is the first
contribution of this paper.

The interest of estimating distances between any two data streams is important in data intensive applications.
Many different domains are concerned by such analyses including machine learning, data mining, databases,
information retrieval, and network monitoring. In all these applications, it is necessary to quickly and precisely
process a huge amount of data [8]. For instance, in IP network management, the analysis of input streams will
allow us to rapidly detect the presence of anomalies or intrusions when changes in the communication patterns
occur [27]. In sensors networks, such an analysis will enable us to determine any correlation between geographical
and environmental informations [12]. Actually, the problem of detecting changes or outliers in a data stream is
similar to the problem of identifying patterns that do not conform to the expected behavior, which has been an
active area of research for many decades. For instance, depending on the specificities of the domain considered and
the type of outliers considered, different methods have been designed, namely classification-based, clustering-based,
nearest neighbor based, statistical, spectral, and information theory. To accurately analyze streams of data, a panel
of information-theoretic measures and distances have been proposed to answer the specificities of the analyses.
Among them, the most commonly used are the Kullback-Leibler (KL) divergence [26], or more generically, the
f -divergences, introduced by Csiszar, Morimoto and Ali & Silvey [19, 29, 1], the Jensen-Shannon divergence
and the Battacharyya distance [10]. More details can be found in the comprehensive survey of Basseville [9].
Unfortunately, computing information theoretic measures of distances in the data stream model is challenging
essentially because one needs to process a huge amount of data sequentially, on the fly, and by using very little
storage with respect to the size of the stream. In addition the analysis must be robust over time to detect any
sudden change in the observed streams (which may be the manifestation of routers deny of service attack or worm
propagation). We tackle this issue by presenting an approximation algorithm that constructs a sketch of the
stream from which the Sketch ⋆-metric is computed. This algorithm is a one-pass algorithm. It uses very basic
computations, little storage space (i.e., O(t(log n+ k logm)) where k and t are precision parameters, and m and
n are respectively the size of the input stream and the number of items in the stream), and does not need any
information on the structure of the input stream. This constitutes the second contribution of the paper.

Finally, the robustness of our approach is validated with a detailed experimentation study based on both
synthetic traces that range from stable streams to highly skewed ones, and real data sets.

The paper is organized as follows. First, Section 2 reviews the related work on classical generalized metrics
and their applications on the data stream model while Section 3 describes this model. Section 4 presents the
necessary background that makes the paper self-contained. Section 5 formalizes the Sketch ⋆-metric. Section 6
presents the algorithm that fairly approximates the Sketch ⋆-metric in one pass and Section 7 presents extensive
experiments (on both synthetic traces and real data sets) of our algorithm. Finally, we conclude in Section 8.

2 Related Work

Work on data stream analysis mainly focuses on efficient methods (data-structures and algorithms) to answer
different kind of queries over massive data streams. Mostly, these methods consist in deriving statistic estimators
over the data stream, in creating summary representations of streams (to build histograms, wavelets, and quan-
tiles), and in comparing data streams. Regarding the construction of estimators, a seminal work is due to Alon
et al. [2]. The authors have proposed estimators of the frequency moments Fk of a stream, which are important
statistical tools that allow to quantify specificities of a data stream. Subsequently, a lot of attention has been
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Sketch ⋆-metric: Comparing Data Streams via Sketching 3

paid to the strongly related notion of the entropy of a stream, and all notions based on entropy (i.e., norm and
relative entropy) [18]. These notions are essentially related to the quantification of the amount of randomness of
a stream (e.g, [14, 23, 13, 28, 5, 24, 33]). The construction of synopses or sketches of the data stream have been
proposed for different applications (e.g, [15, 17, 16]).

Distance and divergence measures are key measures in statistical inference and data processing problems [9].
There exists two largely used broad classes of measures, namely the f -divergences and the Bregman divergences.
Among them, there exists two classical distances, namely the Kullback-Leibler (KL) divergence and the Hellinger
distance, that are very important to quantify the amount of information that separates two distributions. In [7],
the authors have proposed a one pass algorithm for estimating the KL divergence of an observed stream compared
to an expected one. Experimental evaluations have shown that the estimation provided by this algorithm is
accurate for different adversarial settings for which the quality of other methods dramatically decreases. However,
this solution assumes that the expected stream is the uniform one, that is a fully random stream. Actually in [22],
the authors propose a characterization of the information divergences that are not sketchable. They have proven
that any distance that has not “norm-like” properties is not sketchable.

Our goal in this paper is to go one step further by formalizing a metric that allows to efficiently and accurately
estimate a broad class of distances measures between any two large data streams by computing these distances
only on compact synopses or sketches of streams.

3 Data Stream Model

We consider a system in which a node P receives a very large data stream σ = a1, a2, . . . , am of data items that
arrive sequentially. In the following, we describe a single instance of P , but clearly multiple instances of P may
co-exist in a system (e.g., in case P represents a router, or a base station in a sensor network). Each data item
ai of the stream σ is drawn from the universe Ω = {1, 2, . . . , n} where n should be very large. Data items can
be repeated multiple times in the stream. In the following, we suppose that the length m of the stream is not
known. Items in the stream arrive regularly and quickly, and due to memory constraints, need to be processed
sequentially and in an online manner. Therefore, node P can locally store only a small fraction of the items and
perform simple operations on them. The algorithms we consider in this work are characterized by the fact that
they can approximate some function on σ with a very limited amount of memory. We refer the reader to [30] for
a detailed description of data streaming models and algorithms.

4 Information Divergence of Data Streams

We first present notations and background that make this paper self-contained.

4.1 Preliminaries

A natural approach to study a data stream σ is to model it as an empirical data distribution over the universe
Ω, given by (p1, p2, . . . , pn) with pi = xi/m, and xi = |{j : aj = i}| representing the number of times data item i
appears in σ. We have m =

∑
i∈Ω xi.

4.1.1 Entropy

Intuitively, the entropy is a measure of the randomness of a data stream σ. The entropy H(σ) is minimum (i.e.,
equal to zero) when all the items in the stream are the same, and it reaches its maximum (i.e., log2m) when all
the items in the stream are distinct. Specifically, we have H(σ) = −∑

i∈Ω pi log2 pi. In the following, the log is to
the base 2 and thus entropy is expressed in bits. By convention, we have 0 log 0 = 0. Note that the number of
times xi item i appears in a stream is commonly called the frequency of i.
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4 Emmanuelle Anceaume Yann Busnel

4.1.2 2-universal Hash Functions

In the following, we intensively use hash functions randomly picked from a 2-universal hash family. A collection
H of hash functions h : {1, . . . ,M} → {0, . . . ,M ′} is said to be 2-universal if for every h ∈ H and for every two
different items i, j ∈ [M ], P{h(i) = h(j)} ≤ 1

M ′ , which is exactly the probability of collision obtained if the hash
function assigned truly random values to any i ∈ [M ], where notation [M ] means {1, . . . ,M}.

4.2 Metrics and divergences

4.2.1 Metric definitions

The classical definition of a metric is based on a set of four axioms.

Definition 4.1 (Metric) Given a set X, a metric is a function d : X ×X → R such that, for any x, y, z ∈ X,
we have:

Non-negativity: d(x, y) ≥ 0 (1)

Identity of indiscernibles: d(x, y) = 0⇔ x = y (2)

Symmetry: d(x, y) = d(y, x) (3)

Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) (4)

In the context of information divergence, usual distance functions are not precisely metric. Indeed, most of
divergence functions do not verify the 4 axioms, but only a subset of them. We recall hereafter some definitions
of generalized metrics.

Definition 4.2 (Pseudometric) Given a set X, a pseudometric is a function that verifies the axioms of a
metric with the exception of the identity of indiscernible, which is replaced by

∀x ∈ X, d(x, x) = 0.

Note that this definition allows that d(x, y) = 0 for some x 6= y in X.

Definition 4.3 (Quasimetric) Given a set X, a quasimetric is a function that verifies all the axioms of a
metric with the exception of the symmetry ( cf. Relation 3).

Definition 4.4 (Semimetric) Given a set X, a semimetric is a function that verifies all the axioms of a
metric with the exception of the triangle inequality ( cf. Relation 4).

Definition 4.5 (Premetric) Given a set X, a premetric is a pseudometric that relax both the symmetry and
triangle inequality axioms.

Definition 4.6 (Pseudoquasimetric) Given a set X, a pseudoquasimetric is a function that relax both the
identity of indiscernible and the symmetry axioms.

Note that the latter definition simply corresponds to a premetric satisfying the triangle inequality. Remark
also that all the generalized metrics preserve the non-negativity axiom.

4.2.2 Divergences

We now give the definition of two broad classes of generalized metrics, usually denoted as divergences.
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f-divergence Mostly used in the context of statistics and probability theory, a f -divergence Df is a premetric
that guarantees monotonicity and convexity.

Definition 4.7 (f-divergence) Let p and q be two Ω-point distributions. Given a convex function f : (0,∞)→
R such that f(1) = 0, the f-divergence of q from p is:

Df (p||q) =
∑

i∈Ω

qif

(
pi
qi

)
,

where by convention 0f(00) = 0, af( 0
a
) = a limu→0 f(u), and 0f(a0 ) = a limu→∞ f(u)/u if these limits exist.

Following this definition, any f -divergence verifies both monotonicity and convexity.

Property 4.8 (Monotonicity) Given κ an arbitrary transition probability that respectively transforms two Ω-
point distributions p and q into pκ and qκ, we have:

Df (p||q) ≥ Df (pκ||qκ).

Property 4.9 (Convexity) Let p1, p2, q1 and q2 be four Ω-point distributions. Given any λ ∈ [0, 1], we have:

Df (λp1 + (1− λ)p2||λq1 + (1− λ)q2)

≤ λDf (p1||q1) + (1− λ)Df (p2||q2).

This class of divergences has been introduced in independent works by Csiszár, Morimoto and Ali & Silvey [19,
29, 1], in chronological order. All the distance measures in the so-called Ali-Silvey distances are applicable to
quantifying statistical differences between data streams.

Bregman divergence Initially proposed in [11], this class of generalized metrics encloses quasimetrics and
semimetrics, as these divergences do not satisfy the triangle inequality nor symmetry.

Definition 4.10 (Bregman divergence (BD)) Given F a continuously-differentiable and strictly convex func-
tion defined on a closed convex set C, the Bregman divergence associated with F for p, q ∈ C is defined as

BF (p||q) = F (p)− F (q)− 〈∇F (q), (p− q)〉 .

where the operator 〈·, ·〉 denotes the inner product.

In the context of data stream, it is possible to reformulate this definition according to probability theory.
Specifically,

Definition 4.11 (Decomposable BD)
Let p and q be two Ω-point distributions. Given a strictly convex function F : (0, 1]→ R, the Bregman divergence

associated with F of q from p is defined as

BF (p||q) =
∑

i∈Ω

(
F (pi)− F (qi)− (pi − qi)F

′(qi)
)
.

Following these definitions, any Bregman divergence verifies non-negativity and convexity in its first argument,
but not necessarily in the second argument. Another interesting property is given by thinking of the Bregman
divergences as an operator of the function F .

Property 4.12 (Linearity) Let F1 and F2 be two strictly convex and differentiable functions. Given any λ ∈
[0, 1], we have that

BF1+λF2
(p||q) = BF1

(p||q) + λBF2
(p||q).
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6 Emmanuelle Anceaume Yann Busnel

4.2.3 Classical metrics

In this section, we present several commonly used metrics in Ω-point distribution context. These specific metrics
are used in the evaluation part presented in Section 7.

Kullback-Leibler divergence The Kullback-Leibler (KL) divergence [26], also called the relative entropy, is
a robust metric for measuring the statistical difference between two data streams. The KL divergence owns the
special feature that it is both a f -divergence and a Bregman one (with f(t) = F (t) = t log t).

Given p and q two Ω-point distributions, the Kullback-Leibler divergence is then defined as

DKL(p||q) =
∑

i∈Ω

pi log
pi
qi

= H(p, q)−H(p), (5)

where H(p) = −
∑

pi log pi is the (empirical) entropy of p and H(p, q) = −
∑

pi log qi is the cross entropy of p
and q.

Jensen-Shannon divergence The Jensen-Shannon divergence (JS) is a symmetrized and smoothed version of
the Kullback-Leibler divergence. Also known as information radius (IRad) or total divergence to the average, it
is defined as

DJS(p||q) =
1

2
DKL(p||ℓ) +

1

2
DKL(q||ℓ), (6)

where ℓ = 1
2(p+ q). Note that the square root of this divergence is a metric.

Bhattacharyya distance The Bhattacharyya distance is derived from his proposed measure of similarity be-
tween two multinomial distributions, also known as the Bhattacharya coefficient (BC) [10]. It is defined as

DB(p||q) = − log(BC(p, q)) where BC(p, q) =
∑

i∈Ω

√
piqi.

This distance is a semimetric as it does not verify the triangle inequality. Note that the famous Hellinger dis-
tance [25] equal to

√
1−BC(p, q) verifies it.

5 Sketch ⋆-metric

Given this context, we now present a method to sketch two input data streams σ1 and σ2, and to compute any
generalized metric φ between these sketches such that this computation preserves all the properties of φ computed
on σ1 and σ2. Proof of correctness of this method is presented in this section.

Definition 5.1 (Sketch ⋆-metric) Let p and q be any two Ω-point distributions. Given a precision parameter
k, and any generalized metric φ on the set of all Ω-point distributions, there exists a Sketch ⋆-metric φ̂k defined
as follows

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ) with ∀a ∈ ρ, p̂ρ(a) =
∑

i∈a

pi,

where Pk(Ω) is the set of all partitions of Ω into exactly k nonempty and mutually exclusive cells.

Remark 5.2 Note that for k > n, it does not exist a partition of Ω into k nonempty parts. By convention, we
consider that φ̂k(p||q) = φ(p||q) in this specific context.

In this section, we focus on the preservation of axioms and properties of a generalized metric φ by the corre-
sponding Sketch ⋆-metric φ̂k.
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5.1 Axioms preserving

Theorem 5.3 Given any generalized metric φ then, for any k ∈ N, the corresponding Sketch ⋆-metric φ̂k preserves
all the axioms of φ.

Proof 1 The proof derives directly from Lemmata 5.4, 5.5, 5.6 and 5.7. The three first ones say that using sets
operations and sum then, (i) from non-negative number it is impossible to generate negative numbers, (ii) 0 always
remains 0, and (iii) it is impossible to generate asymmetry.

Lemma 5.4 (Non-negativity) Given any generalized metric φ verifying the Non-negativity axiom then, for any
k ∈ N, the corresponding Sketch ⋆-metric φ̂k preserves the Non-negativity axiom.

Proof 2 Let p and q be any two Ω-point distributions. By definition,

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ)

As for any two k-point distributions, φ is positive we have φ̂k(p||q) ≥ 0 that concludes the proof.

Lemma 5.5 (Identity of indiscernible) Given any generalized metric φ verifying the Identity of indiscernible
axiom then, for any k ∈ N, the corresponding Sketch ⋆-metric φ̂k preserves the Identity of indiscernible axiom.

Proof 3 Let p be any Ω-point distribution. We have

φ̂k(p||p) = max
ρ∈Pk(Ω)

φ(p̂ρ||p̂ρ) = 0,

due to φ Identity of indiscernible axiom.
Consider now two Ω-point distributions p and q such that φ̂k(p||q) = 0. Metric φ verifies both the non-negativity

axiom (by construction) and the Identity of indiscernible axiom (by assumption). Thus we have ∀ρ ∈ Pk(Ω), p̂ρ =
q̂ρ, leading to

∀ρ ∈ Pk(Ω), ∀a ∈ ρ,
∑

i∈a

p(i) =
∑

i∈a

q(i). (7)

Moreover, for any i ∈ Ω, there exists a partition ρ ∈ Pk(Ω) such that {i} ∈ ρ. By Equation 7, ∀i ∈ Ω, p(i) = q(i),
and so p = q.

Combining the two parts of the proof leads to φ̂k(p||q) = 0⇐⇒ p = q, which concludes the proof of the Lemma.

Lemma 5.6 (Symmetry) Given any generalized metric φ verifying the Symmetry axiom then, for any k ∈ N,
the corresponding Sketch ⋆-metric φ̂k preserves the Symmetry axiom.

Proof 4 Let p and q be any two Ω-point distributions. We have

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ).

Let ρ ∈ Pk(Ω) be a k-cell partition such that φ(p̂ρ||q̂ρ) = maxρ∈Pk(Ω) φ(p̂ρ||q̂ρ). We get

φ̂k(p||q) = φ(p̂ρ||q̂ρ) = φ(q̂ρ||p̂ρ) ≤ φ̂k(q||p).

By symmetry, considering ρ ∈ Pk(Ω) such that φ(q̂ρ||p̂ρ) = maxρ∈Pk(Ω) φ(q̂ρ||p̂ρ), we also have φ̂k(q||p) ≤ φ̂k(p||q),
which concludes the proof.

Lemma 5.7 (Triangle inequality) Given any generalized metric φ verifying the Triangle inequality axiom then,
for any k ∈ N, the corresponding Sketch ⋆-metric φ̂k preserves the Triangle inequality axiom.
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8 Emmanuelle Anceaume Yann Busnel

Proof 5 Let p, q and r be any three Ω-point distributions. Let ρ ∈ Pk(Ω) be a k-cell partition such that φ(p̂ρ||q̂ρ) =
maxρ∈Pk(Ω) φ(p̂ρ||q̂ρ). We have

φ̂k(p||q) = φ(p̂ρ||q̂ρ)
≤ φ(p̂ρ||r̂ρ) + φ(r̂ρ||q̂ρ)
≤ max

ρ∈Pk(Ω)
φ(p̂ρ||r̂ρ) + max

ρ∈Pk(Ω)
φ(r̂ρ||q̂ρ)

= φ̂k(p||r) + φ̂k(r||q)

that concludes the proof.

5.2 Properties preserving

Theorem 5.8 Given a f -divergence φ then, for any k ∈ N, the corresponding Sketch ⋆-metric φ̂k is also a
f -divergence.

Proof 6 From Theorem 5.3, φ̂k preserves the axioms of the generalized metric. Thus, φ̂k and φ are in the same
equivalence class. Moreover, from Lemma 5.10, φ̂k verifies the monotonicity property. Thus, as the f -divergence
is the only class of decomposable information monotonic divergences ( cf. [20]), φ̂k is also a f -divergence.

Theorem 5.9 Given a Bregman divergence φ then, for any k ∈ N, the corresponding Sketch ⋆-metric φ̂k is also
a Bregman divergence.

Proof 7 From Theorem 5.3, φ̂k preserves the axioms of the generalized metric. Thus, φ̂k and φ are in the same
equivalence class. Moreover, the Bregman divergence is characterized by the property of transitivity ( cf. [21])
defined as follows. Given p, q and r three Ω-point distributions such that q = Π(L|r) and p ∈ L, with Π is a
selection rule according to the definition of Csiszár in [21] and L is a subset of the Ω-point distributions, we have
the Generalized Pythagorean Theorem:

φ(p||q) + φ(q||r) = φ(p||r).
Moreover the authors in [4] show that the set Sn of all discrete probability distributions over n elements ({x1, . . . , xn})
is a Riemannian manifold, and it owns another different dually flat affine structure. They also show that these
dual structures give rise to the generalized Pythagorean theorem. This is verified for the coordinates in Sn and for
the dual coordinates [4]. Combining these results with the projection theorem [21, 4], we obtain that

φ̂k(p||r) = max
ρ∈Pk(n)

φ(p̂ρ||r̂ρ)

= max
ρ∈Pk(n)

(φ(p̂ρ||q̂ρ) + φ(q̂ρ||r̂ρ))

= max
ρ∈Pk(n)

φ(p̂ρ||q̂ρ) + max
ρ∈Pk(n)

φ(q̂ρ||r̂ρ)

= φ̂k(p||q) + φ̂k(q||r)

Finally, by the characterization of Bregman divergence through transitivity [21], and reinforced with Lemma 5.12
statement, φ̂k is also a Bregman divergence.

In the following, we show that the Sketch ⋆-metric preserves the properties of divergences.

Lemma 5.10 (Monotonicity) Given any generalized metric φ verifying the Monotonicity property then, for any
k ∈ N, the corresponding Sketch ⋆-metric φ̂k preserves the Monotonicity property.
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Sketch ⋆-metric: Comparing Data Streams via Sketching 9

Proof 8 Let p and q be any two Ω-point distributions. Given c < n, consider a partition µ ∈ Pc(Ω). As φ is
monotonic, we have φ(p||q) ≥ φ(p̂µ||q̂µ) [3]. We split the proof into two cases:

Case (1). Suppose that c ≥ k. Computing φ̂k(p̂µ||q̂µ) amounts in considering only the k-cell partitions ρ ∈
Pk(Ω) that verify

∀b ∈ µ, ∃a ∈ ρ : b ⊆ a.

These partitions form a subset of Pk(Ω). The maximal value of φ(p̂ρ||q̂ρ) over this subset cannot be greater than
the maximal value over the whole Pk(Ω). Thus we have

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ) ≥ φ̂k(p̂µ||q̂µ).

Case (2). Suppose now that c < k. By definition, we have φ̂k(p̂µ||q̂µ) = φ(p̂µ||q̂µ). Consider ρ′ ∈ Pk(Ω) such
that ∀a ∈ ρ′, ∃b ∈ µ, a ⊆ b. It then exists a transition probability that respectively transforms p̂ρ′ and q̂ρ′ into p̂µ
and q̂µ. As φ is monotonic, we have

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ)

≥ φ(p̂ρ′ ||q̂ρ′)
≥ φ(p̂µ||q̂µ) = φ̂k(p̂µ||q̂µ).

Finally for any value of c, φ̂k guarantees the monotonicity property. This concludes the proof.

Lemma 5.11 (Convexity) Given any generalized metric φ verifying the Convexity property then, for any k ∈ N,
the corresponding Sketch ⋆-metric φ̂k preserves the Convexity property.

Proof 9 Let p1, p2, q1 and q2 be any four Ω-point distributions. Given any λ ∈ [0, 1], we have:

φ̂k (λp1 + (1− λ)p2||λq1 + (1− λ)q2)

= max
ρ∈Pk(Ω)

φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)

Let ρ ∈ Pk(Ω) such that

φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)

= max
ρ∈Pk(Ω)

φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)
.

As φ verifies the Convexity property, we have:

φ̂k (λp1 + (1− λ)p2||λq1 + (1− λ)q2)

= φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)

≤ λφ(p̂1ρ||q̂1ρ) + (1− λ)φ(p̂2ρ||q̂2ρ)

≤ λ

(
max

ρ∈Pk(Ω)
φ(p̂1ρ||q̂1ρ)

)
+ (1− λ)

(
max

ρ∈Pk(Ω)
φ(p̂2ρ||q̂2ρ)

)

= λφ̂k(p1||q1) + (1− λ)φ̂k(p2||q2)

that concludes the proof.

Lemma 5.12 (Linearity) The Sketch ⋆-metric definition preserves the Linearity property.
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Algorithm 1: Sketch ⋆-metric algorithm

Input: Two input streams σ1 and σ2; the distance φ, k and t settings;

Output: The distance φ̂ between σ1 and σ2
1 Choose t functions h : [n]→ [k], each from a 2-universal hash function family;
2 Cσ1

[1...t][1...k]← 0;
3 Cσ2

[1...t][1...k]← 0;
4 for aj ∈ σ1 do
5 v ← aj ;
6 for i = 1 to t do
7 Cσ1

[i][hi(v)]← Cσ1
[i][hi(v)] + 1;

8 for aj ∈ σ2 do
9 w ← aj ;

10 for i = 1 to t do
11 Cσ2

[i][hi(w)]← Cσ2
[i][hi(w)] + 1;

12 On query φ̂k(σ1||σ2) return φ̂ = max1≤i≤tφ(Cσ1
[i][−],Cσ2

[i][−]);

Proof 10 Let F1 and F2 be two strictly convex and differentiable functions, and any λ ∈ [0, 1]. Consider the three
Bregman divergences generated respectively from F1, F2 and F1 + λF2.

Let p and q be two Ω-point distributions. We have:

B̂F1+λF2k
(p||q) = max

ρ∈Pk(Ω)
BF1+λF2

(p̂ρ||q̂ρ)

= max
ρ∈Pk(n)

(BF1
(p̂ρ||q̂ρ) + λBF2

(p̂ρ||q̂ρ))

≤ B̂F1k
(p||q) + λB̂F2k

(p||q)

As F1 and F2 are two strictly convex functions, and taken a leaf out of the Jensen’s inequality, we have:

B̂F1k
(p||q) + λB̂F2k

(p||q)
≤ max

ρ∈Pk(Ω)
(BF1

(p̂ρ||q̂ρ) + λBF2
(p̂ρ||q̂ρ))

= B̂F1+λF2k
(p||q)

that concludes the proof.

To summarize, we have shown that the Sketch ⋆-metric preserves all the axioms of a metric as well as the
properties of f -divergences and Bregman divergences. We now show how to efficiently implement such a metric.

6 Approximation algorithm

In this section, we propose an algorithm that computes the Sketch ⋆-metric in one pass on the stream. By
definition of the metric (cf. Definition 5.1), we need to generate all the possible k-cell partitions. The number of
these partitions follows the Stirling numbers of the second kind, which is equal to S(n, k) = 1

k!

∑k
j=0(−1)k−j

(
k
j

)
jn,

where n is the size of the items universe. Therefore, S(n, k) grows exponentially with n. As the generating
function of S(n, k) is equivalent to xn, it is unreasonable in term of space complexity. We show in the following
that generating t = ⌈log(1/δ)⌉ random k-cell partitions, where δ is the probability of error of our randomized
algorithm, is sufficient to guarantee good overall performance of our metric.

Our algorithm is inspired from the Count-Min Sketch algorithm proposed by Cormode and Muthukrishnan [17].
Specifically, the Count-Min algorithm is an (ε, δ)-approximation algorithm that solves the frequency-estimation
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Data trace # items (m) # distinct (n) max. freq.

NASA (Jul.) 1,891,715 81,983 17,572
NASA (Aug.) 1,569,898 75,058 6,530
ClarkNet (Aug.) 1,654,929 90,516 6,075
ClarkNet (Sep.) 1,673,794 94,787 7,239
Saskatchewan 2,408,625 162,523 52,695

Table 1: Statistics of real data traces.

problem. For any items in the input stream σ, the algorithm outputs an estimation f̂v of the frequency of item
v such that P{|f̂v − fv| > εfv} < δ, where ε, δ > 0 are given as parameters of the algorithm. The estimation is
computed by maintaining a two-dimensional array C of t× k counters, and by using t 2-universal hash functions
hi (1 ≤ i ≤ t), where k = 2/ε and t = ⌈log(1/δ)⌉. Each time an item v is read from the input stream, this causes
one counter of each line to be incremented, i.e., C[hi(v)] is incremented by one for each i ∈ [1..t].

To compute the Sketch ⋆-metric of two streams σ1 and σ2, two sketches σ̂1 and σ̂2 of these streams are
constructed according to the above description. Note that there is no particular assumption on the length of
both streams σ1 and σ2. That is their respective length is finite but unknown. By construction of the 2-universal
hash functions hi (1 ≤ i ≤ t), each line of Cσ1

and Cσ2
corresponds to one partition ρi of the Ω-point empirical

distributions of both σ1 and σ2. Thus when a query is issued to compute the given distance φ between these two
streams, the maximal value over all the t partitions ρi of the distance φ between σ̂1ρi and σ̂2ρi is returned, i.e.,

the distance φ applied to the ith lines of Cσ1
and Cσ2

for 1 ≤ i ≤ t. Figure 1 presents the pseudo-code of our
algorithm.

Lemma 6.1 Given parameters k and t, Algorithm 1 gives an approximation of the Sketch ⋆-metric, using

O (t(log n+ k logm))

bits of space.

Proof 11 The matrices Cσi
, for any i ∈ {1, 2}, are composed of t × k counters, which uses O (logm). On the

other hand, with a suitable choice of hash family, we can store the hash functions above in O(t log n) space.

7 Performance Evaluation

We have implemented our Sketch ⋆-metric and have conducted a series of experiments on different types of streams
and for different parameters settings. We have fed our algorithm with both real-world data sets and synthetic
traces. Real data give a realistic representation of some existing systems, while the latter ones allow to capture
phenomenon which may be difficult to obtain from real-world traces, and thus allow to check the robustness of our
metric. We have varied all the significant parameters of our algorithm, that is, the maximal number of distinct data
items n in each stream, the number of cells k of each generated partition, and the number of generated partitions t.
For each parameters setting, we have conducted and averaged 100 trials of the same experiment, leading to a total
of more than 300, 000 experiments for the evaluation of our metric. Real data have been downloaded from the
repository of Internet network traffic [32]. We have used five large traces among the available ones. Two of them
represent two weeks logs of HTTP requests to the Internet service provider ClarkNet WWW server – ClarkNet
is a full Internet access provider for the Metro Baltimore-Washington DC area – the other two ones contain two
months of HTTP requests to the NASA Kennedy Space Center WWW server, and the last one represents seven
months of HTTP requests to the WWW server of the University of Saskatchewan, Canada. In the following these
data sets will be respectively referred to as ClarkNet, NASA, and Saskatchewan traces. Table 1 presents some
statistics of these data traces, in term of stream size (cf. “# items” in the table), number of distinct items in each
stream (cf. “# distinct”) and the number of occurrences of the most frequent item (cf. “max. freq.”). Figure 1
illustrates the shape of each real data set distribution. Note that all these benchmarks share a Zipfian behavior,
with a lower α parameter for the University of Saskatchwan.
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12 Emmanuelle Anceaume Yann Busnel

Figure 1: Log-log scale distribution of frequencies for each real data trace.

We have evaluated the accuracy of our metric by comparing for each data set (real and synthetic), the results
obtained with our algorithm on the stream sketches (referred to as Sketch in the legend) and the ones obtained
on full streams (referred to as Ref distance in the legend). That is, for each couple of input streams, and for
each generalized metric φ, we have computed both the exact distance between the two streams and the one as
generated by φ̂k. By distance between full streams, we mean that the metric has been applied on the (empirical)
distribution of |Ω| = n points (versus k points used in the sketch ⋆-metric). We now present the main lessons
drawn from these experiments. The reader is invited to look at the full experiments analysis provided in the
companion paper [6].

Figure 2 and 3 show the accuracy of our metric as a function of the different input streams and the different
generalized metrics applied on these streams. All the histograms shown in Figures 2(a)–3(b) share the same
legend, but for readability reasons, this legend is only indicated on histogram 2(b). Three generalized metrics
have been used, namely the Bhattacharyya distance, the Kullback-Leibler and the Jensen-Shannon divergences,
and five distribution families denoted by p and q have been compared with these metrics.

Let us focus on synthetic traces. The first noticeable remark is that our metric behaves perfectly well when
the two compared streams follow the same distribution, whatever the generalized metric φ used (cf., Figure 2(a)
with the uniform distribution, Figures 2(c), 2(e) and 2(g) with Zipfian distributions, Figure 2(b) with the Pascal
distribution, Figure 2(d) with the Binomial distribution, and Figure 2(f) with the Poisson one). This tendency can
be observed when the distributions of input streams are close (e.g, Zipfian distributions with different parameter α,
or Pascal and Zipf with α = 4), which makes the Sketch ⋆-metric a very good candidate as a parametric method
for making inference about the parameters of the distribution that follow input streams. A more interesting
result is shown when the two input distributions exhibit a totally different shape. Specifically, let us consider as
input distributions the Uniform and the Pascal distributions (see Figure 2(a) and 2(b)). Sketching the Uniform
distribution leads to k-cell partitions whose value is well distributed, that is, for a given partition all the k cell
values have with high probability the same value. Now, when sketching the Pascal distribution, the repartition
of the data items in the cells of any given partitions is such that a few number of data items (those with high
frequency) populate a very few number of cells. However, the values of these cells is very large compared to the
other cells, which are populated by a large number of data items whose frequency is small. Thus, the contribution
of data items exhibiting a small frequency and sharing the cells of highly frequent items is biased compared to
the contribution of the other items. Thus although the input streams show a totally different shape, the accuracy
of φ̂k is only slightly lowered in these scenarios which makes it a very powerful tool to compare any two different
data streams.

We can also observe the strong impact of the non-symmetry of the Kullback-Leibler divergence on the com-
putation of the distance (computed on full streams or on sketches) with a clear influence when the input streams
follow a Pascal and Zipf with α = 1 distributions (see Figure 2(b) and 2(c)).
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(a) p = Uniform distribution
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(b) p = Pascal distribution with r = 3 and p = n
2r+n
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(c) p = Zipf distribution with α = 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

U
niform

Zipf - α=1

Zipf - α=2

Zipf - α=4

Pascal

Binom
ial

Poisson

M
et

ri
c 

va
lu

e

q =

(d) p = Binomial distribution with p = 0.5
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(e) p = Zipf distribution with α = 2
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(f) p = Poisson distribution with p = n
2
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(g) p = Zipf distribution with α = 4

Figure 2: Sketch ⋆-metric accuracy as a function of p and q (or r for 4). Parameters setting is as follows:
m = 200, 000; n = 4, 000; k = 200; t = 4 where m represents the size of the stream, n the number of distinct data
items in the stream, t the number of generated partitions and k the number of cells per generated partition.
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(a) p = NASA webserver (August)
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(b) p = Saskatchewan University webserver

Figure 3: Sketch ⋆-metric accuracy as a function of real data traces. Parameters setting: k = 2, 000; t = 4.
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Figure 4: p = Uniform distribution and q = Pascal distribution, as a function of its parameter r(
such that its second parameter p = n

2r+n

)
.

Finally, Figure 4 summarizes the good properties of our metric by illustrating how for any generalized metric
φ, and for any variations in the shape of the two input distributions our metric φ̂k remains close to φ. Recall that
increasing values of the Pascal distribution parameter r – while maintaining the mean value – makes the shape of
the Pascal distribution flatter.

The same general remarks hold when considering real data sets. Indeed, Figure 3 shows that when the input
streams are close to each other, which is the case for both NASA (July and August) and ClarkNet (August and
September) traces (cf. Figure 1), then applying the generalized metrics φ on sketches gives good results with
respect to full streams. When the shapes of the input streams are different (which is the case for Saskatchewan
with respect to the 4 other input streams), the accuracy of the sketch ⋆-metric decreases a little bit but in a very
small proportion. Notice that the scales on the y-axis differ significantly in Figure 2 and in Figure 3.

Figure 5 presents the impact of the number of cells per generated partition on the accuracy of our metric on
both synthetic traces and real data. It clearly shows that, by increasing k, the number of data items per cell in
the generated partition shrinks and thus the absolute error on the computation of the distance decreases. The
same feature appears when the number n of distinct data items in the stream increases. Indeed, when n increases
(for a given k), the number data items per cell augments and thus the precision of our metric decreases. This
gives rise to a shift of the inflection point, as illustrated in Figure 5(b), due to the fact that data sets have almost
twenty times more distinct data items than the synthetic ones. As aforementioned, the input streams exhibit very
different shapes which explain the strong impact of k. Note also that k has the same influence on the Sketch
⋆-metric for all the generalized distances φ.
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m = 200, 000; n = 4, 000; t = 4; r = 3
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Figure 5: Sketch ⋆-metric between the Uniform distribution and Pascal with parameter p = n
2r+n

(Figures 5(a)),
and between data trace extracted from ClarkNetwork (August) and Saskatchewan University (Figures 5(b)).
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Figure 6: Sketch ⋆-metric estimation between Uniform distribution and Pascal with parameter p = n
2r+n

, as a
function of t and r.

It is interesting to note that the number t of generated partitions has a slight influence on the accuracy of our
metric [6]. The reason comes from the use of 2-universal hash functions, which guarantee for each of them and
with high probability that data items are uniformly distributed over the cells of any partition. As a consequence,
augmenting the number of such hash functions has a weak influence on the accuracy of the metric. Finally,
Figure 6 presents the error made by the Sketch ⋆-metric for five different values of t as a function of parameter
r of the Pascal distribution. Figures 6(b) depicts for each value of t the difference between the reference and the
sketch values which makes more visible the impact of t. The same main lesson drawn from these figures is the
moderate impact of t on the precision of our algorithm.

8 Conclusion and open issues

In this paper, we have introduced a new metric, the Sketch ⋆-metric, that allows to compute any generalized metric
φ on the summaries of two large input streams. We have presented a simple and efficient algorithm to sketch
streams and compute this metric, and we have shown that it behaves pretty well whatever the considered input
streams. We are convinced of the undisputable interest of such a metric in various domains including machine
learning, data mining, databases, information retrieval and network monitoring.

Collection des Publications Internes de l’Irisa c©IRISA



16 Emmanuelle Anceaume Yann Busnel

Regarding future works, we plan to characterize our metric among Rényi divergences [31], also known as α-
divergences, which generalize different divergence classes. We also plan to consider a distributed setting, where
each site would be in charge of analyzing its own streams and then would propagate its results to the other sites
of the system for comparison or merging. An immediate application of such a tool would be to detect massive
attacks in a decentralized manner (e.g., by identifying specific connection profiles as with worms propagation, and
massive port scan attacks or by detecting sudden variations in the volume of received data).
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