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Following a paper by Athanasios Angelakis and Peter Stevenhagen on the determination of imaginary quadratic fields having the same absolute Abelian Galois group A, we study this property for arbitrary number fields. We show that such a property is probably not easily generalizable, apart from imaginary quadratic fields, because of some p-adic obstructions coming from the global units. By restriction to the p-Sylow subgroups of A, we show that the corresponding study is related to a generalization of the classical notion of p-rational fields. However, we obtain some non-trivial information about the structure of the profinite group A, for every number field, by application of results published in our book on class field theory.

Résumé. -A partir d'un article de Athanasios Angelakis et Peter Stevenhagen sur la détermination de corps quadratiques imaginaires ayant le même groupe de Galois Abélien absolu A, nous étudions cette propriété pour les corps de nombres quelconques. Nous montrons qu'une telle propriété n'est probablement pas facilement généralisable, en dehors des corps quadratiques imaginaires, en raison d'obstructions p-adiques provenant des unités globales. En se restreignant aux p-sous-groupes de Sylow de A, nous montrons que l'étude correspondante est liée à une généralisation de la notion classique de corps p-rationnels. Cependant, nous obtenons des informations non triviales sur la structure du groupe profini A, pour tout corps de nombres, par application de résultats publiés dans notre livre sur la théorie du corps de classes.

Introduction -Notations

Let K be a number field of signature (r 1 , r 2 ) for which r 1 + 2 r 2 = [K : Q], and let A K be the Galois group Gal(K ab /K) where K ab is the maximal Abelian pro-extension of K. The question that was asked was the following: in what circumstances the groups A K 1 and A K 2 are isomorphic groups when K 1 and K 2 are two non-conjugate number fields ? A first paper on this subject was published in [O] by M. Onabe. In [AS], A. Angelakis and P. Stevenhagen show that A K ≃ Z 2 × n≥1 Z/n Z for a specific family of imaginary quadratic fields.

In this paper, we prove (under the Leopoldt conjecture) that, for any number field K, the group A K contains a subgroup isomorphic to Z r 2 +1 × n≥1 (Z/2 Z) δ × Z/w n Z , where δ = 1

if K ∩ Q(µ 2 ∞
) is a non-trivial extension of Q distinct from Q(µ 4 ), δ = 0 otherwise, and where w = p w p is an integer whose local factors w p depend simply on the intersections K ∩Q(µ p ∞ ); then we give a class field theory interpretation of the quotient of A K by this subgroup, quotient which measures the defect of p-rationality for all p.

Such isomorphisms are only isomorphisms of Abelian profinite groups for which Galois theory and, a fortiori, arithmetical objects (decomposition and inertia groups) are not effective. When an isomorphism is canonical (for instance if it is induced by the reciprocity map of class field theory), we shall write can ≃ contrary to the non-canonical case denoted nc ≃ if necessary. Let p be a fixed prime number and let H, H p , H ta , K p , be the p-Hilbert class field (in ordinary sense), the maximal p-ramified (i.e., unramified outside p) Abelian pro-p-extension of K (in ordinary sense), the maximal tamely ramified Abelian pro-p-extension of K (in restricted sense), the compositum of the Z p -extensions of K, respectively. Then let T p := Gal(H p / K p ) and Cℓ p := Gal(H/K) canonically isomorphic to the p-class group of K. The groups T p and Cℓ p are finite groups.

For any finite place v of K, we denote by K v the corresponding completion (1) of K, then by

U v := {u ∈ K v , | u | v = 1} and U 1 v := {u ∈ U v , | u -1 | v < 1}
, the unit group and principal unit group of K v , respectively. So, U v /U 1 v is isomorphic to the multiplicative group of the residue field F v of K at v. We shall denote by ℓ the characteristic of [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]I.3.1.2,II.7.1.3]. The structure of Gal(H p /K) can be summarized by the following diagram, from [Gr1, III.2.6.1, Fig. 2.2] under the Leopoldt conjecture for p in K:

F v ; then U 1 v is a Z ℓ -module. If v is a real infinite place, we put K v = R, U v = R × , U 1 v = R ×+ , hence F × v = {±1}, according to [
Tp Z r 2 +1 p Cℓp v | p U 1 v E⊗Zp H p K p H K p H K p ∩H K
where E is the group of global units of K and where E ⊗ Z p is diagonally embedded with the obvious map i

p := (i v ) v | p .
To characterize the notion of p-rationality (see Definition 2.1 and Remarks 2.2), we shall make use of some p-adic logarithms as follows: (i) We consider the p-adic logarithm log p :

K × -→ v|p K v defined by log p = log • i p on K × ,
where log : C × p -→ C p is the Iwasawa extension of the usual p-adic logarithm. (ii) We then define the quotient Q p -vector space L p := v|p K v Q p log p (E). We have, under the Leopoldt conjecture for p in K, dim Qp (L p ) = r 2 + 1.

(iii) Finally, we denote by Log p the map, from the group I p of ideals of K prime to p, to L p , sending a ∈ I p to Log p (a) defined as follows. If m is such that a m = (α) with α ∈ K × , we set Log p (a) := 1 m log p (α) + Q p log p (E); this does not depend on the choices of m and α.

2. Structure of the Galois group of the Abelian closure of a number field 2.1. Class field theory -Fundamental diagram -p-rationality. -Let K ab (p) be the maximal Abelian pro-p-extension of K. In [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]III.4.4.1], we have given (assuming the Leopoldt conjecture for p in K) the following diagram for the structure of Gal(K ab (p)/K ), isomorphic to the p-Sylow subgroup of A K :

v ∤ p (F × v )p v | p U 1 v E⊗Zp K ab (p) M p H p H ta H K where (F × v )
p is the p-Sylow subgroup of the multiplicative group of the residue field F v of K at v. This also concerns the real infinite places for which F × v = {±1}. In this diagram, M p is the direct compositum, over H, of H p and H ta .

The diagonal embeddings i ta := (i v ) v ∤ p and i p :

= (i v ) v | p of E ⊗ Z p in v ∤ p (F × v ) p and v | p
U 1 v , respectively, are injective (under the Leopoldt conjecture for the second one).

Let U p := v ∤ p (F × v ) p × v | p U 1 v be the p-Sylow subgroup of the group of unit idèles U := v U v
of K, and let ρ be the reciprocity map on U p .

The kernel of ρ is i(E ⊗ Z p ), where i = (i ta , i p ); this yields Gal(K

ab (p)/H ) ≃ U p /i(E ⊗ Z p ), Gal(K ab (p)/H p ) = ρ v ∤ p (F × v ) p × {1} ≃ v ∤ p (F × v ) p since v ∤ p (F × v ) p × {1} ∩ i (E ⊗ Z p ) = 1,
and similarly Gal(K [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]III.4.4.5.1]). This will be useful in Section 3.

ab (p)/H ta ) = ρ {1} × v | p U 1 v ≃ v | p U 1 v (see
Definition 2.1. -The number field K is said to be p-rational (see [MN], [GJ], [JN], and [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]IV,§ b,3.4.4 ]) if it satisfies the Leopoldt conjecture for p and if T p = 1.

Remarks 2.2. -Assuming the Leopoldt conjecture for p in K, we have: (i) From [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]IV.3.4.5], the p-rationality of K is equivalent to the following three conditions:

• v|p µ p (K v ) = i p (µ p (K))
, where µ p (k) denotes, for any field k, the group of roots of unity of k of p-power order,

• the p-Hilbert class field H is contained in the compositum K p of the Z p -extensions of K;

this is equivalent to Cℓ p can ≃ Z p Log p (I p ) v|p log(U 1 v ) + Q p log p (E)
, which can be non-trivial,

• Z p log p (E) is a direct summand in the Z p -module v|p log(U 1 v )
, which expresses the minimality of the valuation of the p-adic regulator.

(ii) For a p-rational field K, we have Gal(K

ab (p)/K ) nc ≃ Z r 2 +1 p × v ∤ p (F × v ) p , with (canonically) Gal(K ab (p)/ K p ) can ≃ v ∤ p (F × v ) p . (iii) Let K ∞ be the compositum of the K p . By assumption, it is the maximal Z-extension of K for which Gal( K ∞ /K) nc ≃ Z r 2 +1 . A sufficient condition to get Gal(K ab /K) nc ≃ Z r 2 +1 × v F ×
v is that K be p-rational for all p. The stronger condition H p = K p for all p (i.e., p-rationality of K for all p) is equivalent to the class field theory isomorphism Gal(

K ab / K ∞ ) can ≃ v F × v . 2.2. Structure of v F × v .
-Let (F v ) v be the family of residue fields of K for its finite or real infinite places v. We intend to give, for all prime numbers p, the structure of the p-Sylow

subgroup of v F × v . If v | p, then (F × v ) p = 1; so we can restrict ourselves to v ∤ p (F × v ) p . We shall prove that there exist integers δ ∈ {0, 1} and w ≥ 1 such that v ∤ p (F × v ) p nc ≃ n≥1 (Z/2 Z) δ × Z/w n Z p .
The property giving such an isomorphism is that for any given p-power p k , k ≥ 1, the two p-Sylow subgroups have 0 or infinitely many (countable) cyclic direct components of order p k .

It is obvious that for any p,

n≥1 (Z/2 Z) δ × Z/w n Z p has 0 or infinitely many cyclic direct components of order p k for any k ≥ 1; moreover, in n≥1 Z/w n Z p there is no direct component of order p k , k ≥ 1, if and only if p k+1 | w. Remark 2.3. -Write w = q prime
q λq and put w 1 := λq≥2 q λq so that w 0 := w/w 1 and w 1 are coprime integers. Then in the above expressions we can replace w by w 1 . Indeed, in the two writings n≥1 Z/w 0 .w 1 n Z and n≥1 Z/w 1 n Z, for all q | w 0 the direct summands of order q are infinite in number. Then we can ensure that w will be defined in such a way that w 0 = 1.

Definitions 2.4. -(i) We denote by µ(K) (resp. µ p (K)) the group of roots of unity of K (resp. of p-power order) and for any e ≥ 1 we denote by µ e the group (of order e) of eth roots of unity in a field of characteristic 0 or ℓ prime to e.

(ii) Let Q ν , ν ≥ 1, be for any p the unique subfield, of degree p ν over Q, of the cyclotomic

Z p -extension of Q. Then let Q ′ ν , ν ≥ 1, be for p = 2 the unique non-real subfield of Q(µ 2 ∞ ) of degree 2 ν over Q. We put Q ′ 0 = Q 0 = Q in any case. 2.2.1. Analysis of the case p = 2. -In the study of v ∤ p (F × v ) p , we can assume that |F × v | ≡ 0 (mod p), which is equivalent to the splitting of v in K(µ p )/K (this includes the case where K contains µ p ). a) If K contains µ p , then µ p (K) = µ p ν+1
where ν ≥ 0 is the maximal integer such that Q ν ⊆ K, and we get necessarily |F × v | ≡ 0 (mod p ν+1 ) for all these places. We obtain the following tower of extensions (where ⊂ means a stric inclusion)

K = K(µ p ν+1 ) ⊂ K(µ p ν+2 ) ⊂ • • •
From Chebotarev's theorem, for any m ≥ ν + 1 there exist infinitely many places v of K, whose inertia group in K(µ p m+1 )/K is Gal(K(µ p m+1 )/K(µ p m )), cyclic of order p; so we get

|F × v | ≡ 0 (mod p m ) and |F × v | ≡ 0 (mod p m+1 ) for these places. b) If K does not contain µ p and if K ∩ Q(µ p ∞ ) = Q ν , ν ≥ 0, we have the tower of extensions K ⊂ K(µ p ) = • • • = K(µ p ν+1 ) ⊂ K(µ p ν+2 ) ⊂ • • •
Since by assumption the places v considered are split in K(µ p )/K, we still have |F × v | ≡ 0 (mod p ν+1 ). From Chebotarev's theorem, for any m ≥ ν + 1 there exist infinitely many places v, whose inertia group in K(µ p m+1 )/K is Gal(K(µ p m+1 )/K(µ p m )), cyclic of order p; thus, |F × v | ≡ 0 (mod p m ) and |F × v | ≡ 0 (mod p m+1 ) for these places. In conclusion, the case p = 2 leads to identical results from the knowledge of the integer ν.

2.2.2. Analysis of the case p = 2. -In that case, we always have

|F × v | ≡ 0 (mod 2) in the study of v ∤ 2 (F × v ) 2 (v finite or real infinite). So we consider K(µ 4 )/K. a) If K contains µ 4 and if K ∩ Q(µ 2 ∞ ) =: Q(µ 4.2 ν ), ν ≥ 0, we have |F × v | ≡ 0 (mod 4.2 ν
) for all places, and the tower of extensions

K = K(µ 4.2 ν ) ⊂ K(µ 4.2 ν+1 ) ⊂ • • • From Chebotarev's theorem, for any m ≥ ν there exist infinitely many places v whose in- ertia group, in K(µ 4.2 m+1 )/K, is Gal(K(µ 4.2 m+1 )/K(µ 4.2 m )), cyclic of order 2; so |F × v | ≡ 0 (mod 4.2 m ) and |F × v | ≡ 0 (mod 4.2 m+1
) for these places. b) If K does not contain µ 4 , we have two possible towers depending on K ∩ Q(µ 2 ∞ ):

• K ∩ Q(µ 2 ∞ ) = Q : K ⊂ K(µ 4 ) ⊂ K(µ 8 ) ⊂ • • • • K ∩ Q(µ 2 ∞ ) ∈ {Q ν , Q ′ ν }, ν ≥ 1 : K ⊂ K(µ 4 ) = • • • = K(µ 4.2 ν ) ⊂ K(µ 4.2 ν+1 ) ⊂ • • • (i)
In the first case (ν = 0), for any m ≥ 1 Chebotarev's theorem gives infinitely many places v whose inertia group in

K(µ 2 m+1 )/K is Gal(K(µ 2 m+1 )/K(µ 2 m ))
, cyclic of order 2; so we get

|F × v | ≡ 0 (mod 2 m ) and |F × v | ≡ 0 (mod 2 m+1
) for these places (the real infinite places are solution, taking m = 1).

(ii) In the second case (ν ≥ 1), we will have two disjoint sets of places of K for the structure of the product v ∤ 2 (F × v ) 2 : -There exist infinitely many places v inert in K(µ 4 )/K. Then |F × v | ≡ 0 (mod 2) and |F × v | ≡ 0 (mod 4) for these places (this includes the real infinite places, if any).

-For any m ≥ ν (ν ≥ 1), Chebotarev's theorem gives infinitely many places v whose inertia group in K(µ 4.2 m+1 )/K is Gal(K(µ 4.2 m+1 )/K(µ 4.2 m )), cyclic of order 2; a fortiori, these places are split in K(µ 4 )/K. So we get

|F × v | ≡ 0 (mod 4.2 m ) and |F × v | ≡ 0 (mod 4.2 m+1 ). We see that in the exceptional case K ∩ Q(µ 2 ∞ ) ∈ {Q ν , Q ′ ν } with ν ≥ 1, we have a group isomorphism of the form v ∤ 2 (F × v ) 2 ≃ Z/2 Z N × m≥ν Z/4.2 m Z.
Definition 2.5. -From the above discussion about the number field K, we define the integers δ ∈ {0, 1} and w := p w p , where w p , depending on K ∩ Q(µ p ∞ ), is given as follows: (i) Case p = 2. Let ν ≥ 0 be the maximal integer such that Q ν ⊆ K (thus µ p ν+1 is the maximal group of roots of unity of p-power order contained in K(µ p ) whether K contains µ p or not); we put w p = p ν+1 if ν ≥ 1 and w p = 1 otherwise (from the use of Remark 2.3).

(ii) If, in the case p = 2, K contains µ 4 , we put w 2 = 4.2 ν , where ν ≥ 0 is the maximal integer such that Q ν ⊆ K (in this case, the reasonning with Q ′ ν gives the same integer ν). (iii) If, in the case p = 2, K does not contain µ 4 , let ν ≥ 0 be the maximal integer such that

Q ν ⊆ K or Q ′ ν ⊆ K (thus µ 4.2 ν
is the maximal group of roots of unity of 2-power order of K(µ 4 )); we put w 2 = 4.2 ν if ν ≥ 1 and w 2 = 1 otherwise (from the use of Remark 2.3).

(iv) We put δ = 1 in the case (iii) when ν ≥ 1, and δ = 0 otherwise. We can state the following result correcting an error discovered by Peter Stevenhagen in the first draft of [AS,Lemma 3.2] as well as in [O] and in the previous versions of our paper reproducing this Lemma; this will also be corrected in the final paper [AS] in the proceedings volume of ANTS-X, San Diego 2012. We refer to Definitions 2.4 and 2.5 giving δ and w.

Proposition 2.6. -Let K be a number field. We have a group isomorphism of the form

v F × v nc ≃ n≥1 (Z/2 Z) δ × Z/w n Z .
We have δ = 1 if and only if K does not contain µ 4 and 8 | w. When w = 1 (the most usual case), then δ = 0 and

v F × v nc ≃ n≥1 Z/n Z.

Examples. -(i)

Example with p = 3. Let K be the maximal real subfield of Q(µ 9 ); we have w = 9. The prime ℓ = 5 is totally inert in Q(µ 9 ); then for v | ℓ, F v does not contain µ 3 since ℓ 3 = 125 ≡ 1 (mod 3). But for ℓ = 7, inert in K and split in Q(µ 3 ), we get

F × v = F × 343
which contains µ 9 as expected.

(ii) Examples with p = 2. For K = Q( √ 2 ), we have δ = 1 and w = 8. The prime ℓ = 7 splits in K and is inert in Q(µ 4 ); so for v | ℓ, F v = F 7 does not contain µ 4 . But for the prime ℓ = 5 ≡ 1 (mod 4), inert in K and split in Q(µ 4 ), we get

F v = F 25 which contains µ 8 . For K = Q( √ 2 )
, we get the extra factor (Z/2 Z) N and there do not exist any cyclic direct component of order 4. 

For K = Q(µ 4 ), we have w = 4 and F v = F ℓ (ℓ ≡ 1 (mod 4)) or F v = F ℓ 2 (ℓ ≡ -1 (mod 4)); so the 2-Sylow subgroup of F × v is
/H ∞ ) nc ≃ n≥1 (Z/2 Z) δ × Z/w n Z . If w = 1, then Gal(K ab /H ∞ ) nc ≃ n≥1 Z/n Z.
We have obtained the following globalized diagram (under the Leopoldt conjecture for all p), where H ta (compositum of the H ta ) is the maximal Abelian tamely ramified extension of K and M ∞ = H ∞ H ta (direct compositum over the Hilbert class field H):

n≥1 ((Z/2 Z) δ ×Z/w n Z) v U 1 v E⊗ Z K ab M ∞ H ∞ H ta H K Let F ∞
be the compositum of some finite extensions F p of K such that H p = K p F p (direct compositum over K). When they are non-trivial, the extensions F p /K are non-unique pramified extensions. We then have Gal(F p /K) ≃ T p and Gal(

F ∞ /K) ≃ p T p .
The extension F ∞ /K is in general non-canonical and conjecturally infinite; its Galois group measures a mysterious degree of complexity of Gal(K ab /K); it is trivial if and only if K is p-rational for all p (Remark 2.2 (ii)). But we have Gal(

H ∞ / K ∞ ) can ≃ p T p and Gal(H ∞ /K) nc ≃ Z r 2 +1 × p T p .
Theorem 2.8. -Let K be a number field and let K ab be the maximal Abelian pro-extension of K. We assume that the p-adic Leopoldt conjecture is verified in K for all prime number p.

Then there exists an Abelian extension

F ∞ of K, with Gal(F ∞ /K) can ≃ p T p , such that H ∞
is the direct compositum of F ∞ and the maximal Z-extension K ∞ of K, and such that

Gal(K ab /F ∞ ) nc ≃ Z r 2 +1 × n≥1 (Z/2 Z) δ × Z/w n Z , with Gal(K ab /H ∞ ) nc ≃ n≥1 (Z/2 Z) δ × Z/w n Z
, where δ, w are defined in Definition 2.5.

If w = 1, we have a group isomorphism of the form

Gal(K ab /F ∞ ) nc ≃ Z r 2 +1 × n≥1 Z/n Z, with Gal(K ab /H ∞ ) nc ≃ n≥1 Z/n Z.
Corollary 2.9. -The Galois groups Gal(K ab /F ∞ ) (up to non-canonical isomorphisms) are independent of the number fields K as soon as these fields satisfy the Leopoldt conjecture for all p, have the same number r 2 of complex places and the same parameters δ, w.

Thus, for all totally real number fields K (satisfying the Leopoldt conjecture for all p) which do not contain √ 2 , we have

Gal(K ab /F ∞ ) nc ≃ Z × n≥1 Z/n Z.
Of course, the groups Gal(F ∞ /K) strongly depend on K, even if the parameters r 2 , δ, w are constant. From Remark 2.2 (i), we see that the first two conditions of p-rationality involve a finite number of primes p, but that the third condition is the most ugly.

(2) So, we are mainly concerned with the imaginary quadratic fields, studied in [AS], for which the third condition is empty; the first and second ones can be verified (for all p) probably for infinitely many imaginary quadratic fields as suggested in [AS,Conjecture 7.1].

A generalization of p-rationality

As we shall see now, we can strengthen a few the previous results about the first condition involved in the definition of p-rationality, condition which can be removed for all number fields. This concerns the finite p-groups v | p µ p (K v ) i p (µ p (K)) whose globalization measures the gap between the regular and Hilbert kernels in K 2 (K) (see [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]II.7.6.1]). For all finite place v of K we have µ

(K v ) ≃ F × v × µ 1 v , where µ 1 v is the torsion subgroup of U 1
v (it is a finite ℓ-group where ℓ is the residue characteristic); if v is real infinite, we have

F × v = {±1} and µ 1 v = 1.
The places (finite in number) such that µ 1 v = 1 are called the irregular places of K.

(2) For instance, for K = Q( √ 2 ), the third condition is not satisfied for p = 13, 31, 1546463, . . . and perhaps for infinitely many primes p depending on Fermat quotients of the fundamental unit [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]III.4.14]. Note that from [START_REF] Gras | Remarks on K 2 of number fields[END_REF]III] or [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]IV.3.5.1], for p = 2, the 2-rational Abelian 2-extensions of Q are the subfields of the

fields Q(µ 2 ∞ )Q( √ -ℓ ), -ℓ ≡ 5 (mod 8), or of the fields Q(µ 2 ∞ )Q √ ℓ a- √ ℓ 2 , ℓ = a 2 + 4b 2 ≡ 5 (mod 8).
The problem for the non-imaginary quadratic fields is unchanged since in the following global exact sequence, where T 1 p := Gal(H 1 p / K p ) for all p,

0 → n≥1 (Z/2 Z) δ × Z/w n Z -→ Gal(K ab / K ∞ ) -→ p T 1 p → 1,
we do not know if the structure of Gal(K ab / K ∞ ) can be the same for various number fields K because of the unknown groups p T 1 p (which non-trivially depend on the p-adic properties of the classes and units of the fields K) and the nature of the corresponding group extension.

We have

Gal(K

ab /K) nc ≃ Z r 2 +1 × n≥1 (Z/2 Z) δ × Z/w n Z
as soon as the second and third condition of p-rationality (Remark 2.2 (i)) are satisfied for all p, which defines a weaker version of p-rationality which may have some interest.

For imaginary quadratic fields

K = Q( √ -1 ), Q( √ - 2 
), we find again (since δ = 0 and w = 1) that Gal(K

ab /K) nc ≃ Z 2 × n≥1
Z/n Z, as soon as, for all p dividing the class number, the p-

Hilbert class field is contained in the compositum of the Z p -extensions (3) of K, which is equivalent to Cℓ p can ≃ Z p Log p (I p ) v | p log(U 1 v ).
Note that the arithmetical invariant p T p (or p T 1 p ) is one of the deepest invariant of class field theory over K; the duality properties of each component T p are related to p-class groups, p-regular kernels, . . . via reflection theorems and Galois cohomology; in the totally real case, T p is connected with the p-adic ζ-function of K (see [Se] and [Gr1, III.2.6.5]).

Remark 3.2. -Let F 1 p be any extension of K such that H 1 p is the direct compositum over K of K p and F 1 p . From [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]III.4.15.8], we know that when F 1 p = K, all non-trivial cyclic extensions F 1 p,i ⊆ F 1 p of K can be embedded in a cyclic p-extension of arbitrarily large degree (except perhaps in the special case p

= 2, K ∩ Q(µ 2 ∞ ) = Q ν , ν ≥ 2).
Recall that the subgroup corresponding to the compositum of the p-cyclically embeddable fields (compositum which of course contains K p ) is equal to the group v | p µ 1 v µ p (K), except perhaps in the special case where v | p µ 1 v µ p (K) may be of index 2 in this group. The quotient of T p by this group is called the Bertrandias-Payan module. So this property shows, when

F 1 p = K, that Gal(K ab (p)/H 1 p ) cannot be a direct summand in Gal(K ab (p)/ K p ), since T 1
p is finite. In other words, for any power p k , taking a suitable set of cyclic extensions F 1 p,i ⊆ F 1 p , there exists a field

L k ⊂ K ab (p), such that K p ⊆ H 1 p ⊆ L k , with Gal(L k / K p ) of exponent p k .
We can even assume that Gal(L k / K p ) ≃ (Z/p k Z) r , where r is the p-rank of T 1 p . However, for distinct values of k, the fields L k may not follow any specific rule. So it is possible that only numerical computations may help to precise the structure of Gal(K ab (p)/ K p ).

(3) From [Gr1, III.2.6.6] or [START_REF] Gras | Sur les Z 2 -extensions d'un corps quadratique imaginaire[END_REF]Theorem 2.3], for an imaginary quadratic field K, the 2-Hilbert class field is contained in the compositum of its Z2-extensions if and only if K is one of the following fields: Q( √ -1 ), Q( √ -2 ), Q( √ -ℓ ) (ℓ prime ≡ 3, 5, 7 (mod 8)), Q( √ -2ℓ ) (ℓ prime ≡ 3, 5 (mod 8), Q( √ -ℓq ) (ℓ, q primes, ℓ ≡ -q ≡ 3 (mod 8)). For numerical studies on the groups Tp, see [Cha] and [AS,§ 7].

An interesting case is that of K = Q( √ 2 ) for p = 13; in this case, H 13 = H 1 13 is cyclic of degree 13 over K 13 since ε = 1 + √ 2 is such that -ε 14 is, modulo 13 3 , of the form 1 + 13 2 a √ 2 with a ≡ 0 (mod 13), which gives T 13 ≃ Z/13 Z; indeed, use the reasonning of [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]III.4.14] for real quadratic fields, or the formula given in [Gr1, III.2.6.1 (ii 2 )] with Cℓ 13 = 1,

v | 13 U 1 v = U 1 13 = 1 + 13 (Z 13 ⊕ Z 13 √ 2 ).
With such similar numerical data for a real quadratic field Q( √ d ) (p = 2, class number prime to p, H 1 p = H p of degree p over K p , ±ε p+1 (p inert) or ±ε p-1 (p split) is, modulo p 3 , of the form 1 + p 2 a √ d with a rational a ≡ 0 (mod p)), we get the following diagram:

K F 1 p H ta F 1 p H ta K p H 1 p K p H ta M p K ab (p) v ∤ p (F × v )p≃ n≥1 Z/n Z p p Zp v | p U 1 v tor( U 1 v / ε ⊗Zp) ε ⊗Zp
For K = Q( √ 2 ), p = 13, we have no more information likely to give a result on the structure of the profinite group Gal(K If not (more probable), a description of the profinite group Gal(K ab /K) may be very tricky. Any information will be welcome.

  ab (p)/ K p ) containing a subgroup, of index p, isomorphic (nonclass field theory study, it remains possible that Gal(K ab /K) be always non-canonically isomorphic to Z r 2 +1 × n≥1 (Z/2 Z) δ × Z/w n Z , independently of additional arithmetic considerations about the group p T 1 p .

(1) As in[START_REF] Gras | Class Field Theory: from theory to practice[END_REF] I, § 2], we consider that Kv = iv(K) Q ℓ ⊂ C ℓ for a suitable embedding iv of the number field K in C ℓ , where ℓ is the residue characteristic.
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We have µ

To study the influence of the cyclic factors

) p , we refer to Definition 2.5 for the definitions of ν, δ, w p , and to Proposition 2.6.

(i) Case p = 2. If K contains µ p , then w p = p ν+1 = |µ p (K)| divides |µ p (K v )|; so the cyclic factor µ p (K v ) does not modify the structure.

If K does not contain µ p , we have only to look at the case ν ≥ 1 for which w p = p ν+1 . If

Let H 1 p be the subfield of H p fixed by ρ(Γ p ), where ρ is the reciprocity map on the p-Sylow

Then from the local-global characterization of the Leopoldt conjecture at p (see [START_REF] Jaulent | Théorie ℓ-adique globale du corps de classes[END_REF]§ 2.3] or [Gr1, III.3.6.6]), we get (omitting the embedding

Taking, as in [AS,Lemmas 3.3,3.4], v 0 such that the residue image of µ p (K) is equal to [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]III.4.15.3]).

Of course, if H 1 ∞ ⊆ H ∞ is the compositum of the H 1 p , the globalization gives

In other words we have obtained (to be compared with Theorem 2.8 using the extension F ∞ ):

Theorem 3.1. -Let K be a number field and let K ab be the maximal Abelian pro-extension of K. We assume that the Leopoldt conjecture is verified in K for all prime numbers. Then there exists an Abelian extension

∞ and the maximal Z-extension K ∞ of K, and such that