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ON THE STRUCTURE OF THE GALOIS GROUP

OF THE ABELIAN CLOSURE OF A NUMBER FIELD

by

Georges Gras

Abstract. — Following a paper by Athanasios Angelakis and Peter Stevenhagen on the de-
termination of imaginary quadratic fields having the same absolute Abelian Galois group A, we
study this property for arbitrary number fields. We show that such a property is probably not
easily generalizable, apart from imaginary quadratic fields, because of some p-adic obstructions
coming from the global units. By restriction to the p-Sylow subgroups of A, we show that the
corresponding study is related to a generalization of the classical notion of p-rational fields.
However, we obtain some non-trivial information about the structure of the profinite group A,
for every number field, by application of results published in our book on class field theory.

Résumé. — A partir d’un article de Athanasios Angelakis et Peter Stevenhagen sur la déter-
mination de corps quadratiques imaginaires ayant le même groupe de Galois Abélien absolu A,
nous étudions cette propriété pour les corps de nombres quelconques. Nous montrons qu’une
telle propriété n’est probablement pas facilement généralisable, en dehors des corps quadra-
tiques imaginaires, en raison d’obstructions p-adiques provenant des unités globales. En se
restreignant aux p-sous-groupes de Sylow de A, nous montrons que l’étude correspondante est
liée à une généralisation de la notion classique de corps p-rationnels. Cependant, nous obtenons
des informations non triviales sur la structure du groupe profini A, pour tout corps de nombres,
par application de résultats publiés dans notre livre sur la théorie du corps de classes.

1. Introduction – Notations

Let K be a number field of signature (r1, r2) for which r1 + 2 r2 = [K : Q], and let AK be

the Galois group Gal(K
ab
/K) where K

ab
is the maximal Abelian pro-extension of K. The

question that was asked was the following: in what circumstances the groups AK1 and AK2

are isomorphic groups when K1 and K2 are two non-conjugate number fields ?

A first paper on this subject was published in [O] by M. Onabe. In [AS], A. Angelakis and P.

Stevenhagen show that AK ≃ Ẑ2×
∏
n≥1

Z/nZ for a specific family of imaginary quadratic fields.

In this paper, we prove (under the Leopoldt conjecture) that, for any number field K, the

group AK contains a subgroup isomorphic to Ẑr2+1×
∏
n≥1

(
(Z/2Z)δ × Z/w nZ

)
, where δ = 1

if K ∩Q(µ2∞) is a non-trivial extension of Q distinct from Q(µ4), δ = 0 otherwise, and where

w =
∏
p
wp is an integer whose local factors wp depend simply on the intersections K∩Q(µp∞);

then we give a class field theory interpretation of the quotient of AK by this subgroup, quotient
which measures the defect of p-rationality for all p.
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On the structure of the Galois group of the Abelian closure of a number field

Such isomorphisms are only isomorphisms of Abelian profinite groups for which Galois theory
and, a fortiori, arithmetical objects (decomposition and inertia groups) are not effective.

When an isomorphism is canonical (for instance if it is induced by the reciprocity map of class

field theory), we shall write
can≃ contrary to the non-canonical case denoted

nc≃ if necessary.

Let p be a fixed prime number and let

H, Hp, Hta, K̃p,

be the p-Hilbert class field (in ordinary sense), the maximal p-ramified (i.e., unramified out-
side p) Abelian pro-p-extension of K (in ordinary sense), the maximal tamely ramified Abelian
pro-p-extension of K (in restricted sense), the compositum of the Zp-extensions of K, respec-
tively. Then let

Tp := Gal(Hp/K̃p) and Cℓp := Gal(H/K)

canonically isomorphic to the p-class group of K. The groups Tp and Cℓp are finite groups.

For any finite place v of K, we denote by Kv the corresponding completion (1) of K, then by

Uv := {u ∈ Kv, |u |v = 1} and U1
v := {u ∈ Uv, |u− 1 |v < 1},

the unit group and principal unit group of Kv, respectively. So, Uv/U
1
v is isomorphic to the

multiplicative group of the residue field Fv of K at v. We shall denote by ℓ the characteristic
of Fv ; then U1

v is a Zℓ-module. If v is a real infinite place, we put Kv = R, Uv = R×,
U1
v = R×+, hence F×

v = {±1}, according to [Gr1, I.3.1.2, II.7.1.3].

The structure of Gal(Hp/K) can be summarized by the following diagram, from [Gr1, III.2.6.1,
Fig. 2.2] under the Leopoldt conjecture for p in K:

Tp

Z
r2+1
p

Cℓp

(∏
v | p U1

v

)/
E⊗Zp

HpK̃pHK̃p

HK̃p∩H

K

where E is the group of global units of K and where E⊗Zp is diagonally embedded with the
obvious map ip := (iv)v | p.

To characterize the notion of p-rationality (see Definition 2.1 and Remarks 2.2), we shall make
use of some p-adic logarithms as follows:

(i) We consider the p-adic logarithm logp : K× −→
∏
v|p

Kv defined by logp = log ◦ ip on K×,

where log : C×
p −→ Cp is the Iwasawa extension of the usual p-adic logarithm.

(ii) We then define the quotient Qp-vector space Lp :=
(∏

v|p
Kv

)/
Qplogp(E). We have, under

the Leopoldt conjecture for p in K, dimQp
(Lp) = r2 + 1.

(iii) Finally, we denote by Logp the map, from the group Ip of ideals of K prime to p, to Lp,

sending a ∈ Ip to Logp(a) defined as follows. If m is such that am = (α) with α ∈ K×, we set

Logp(a) :=
1
m logp(α) +Qplogp(E); this does not depend on the choices of m and α.

(1)As in [Gr1, I, § 2], we consider that Kv = iv(K)Qℓ ⊂ Cℓ for a suitable embedding iv of the number field K

in Cℓ, where ℓ is the residue characteristic.
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2. Structure of the Galois group of the Abelian closure of a number field

2.1. Class field theory – Fundamental diagram – p-rationality. — Let K
ab

(p) be
the maximal Abelian pro-p-extension of K. In [Gr1, III.4.4.1], we have given (assuming the

Leopoldt conjecture for p in K) the following diagram for the structure of Gal(K
ab

(p)/K),
isomorphic to the p-Sylow subgroup of AK :

∏
v ∤ p (F×

v )p

∏
v | p U1

v

E⊗Zp

K
ab

(p)MpHp

HtaH

K

where (F×
v )p is the p-Sylow subgroup of the multiplicative group of the residue field Fv of K

at v. This also concerns the real infinite places for which F×
v = {±1}. In this diagram, Mp is

the direct compositum, over H, of Hp and Hta.

The diagonal embeddings ita := (iv)v ∤ p and ip := (iv)v | p of E ⊗ Zp in
∏
v ∤ p

(F×
v )p and

∏
v | p

U1
v ,

respectively, are injective (under the Leopoldt conjecture for the second one).

Let Up :=
∏
v ∤ p

(F×
v )p ×

∏
v | p

U1
v be the p-Sylow subgroup of the group of unit idèles U :=

∏
v
Uv

of K, and let ρ be the reciprocity map on Up.

The kernel of ρ is i(E ⊗ Zp), where i = (ita, ip); this yields Gal(K
ab

(p)/H) ≃ Up/i(E ⊗ Zp),

Gal(K
ab

(p)/Hp) = ρ
(∏
v ∤ p

(F×
v )p×{1}

)
≃

∏
v ∤ p

(F×
v )p since

(∏
v ∤ p

(F×
v )p×{1}

)
∩ i (E⊗Zp) = 1,

and similarly Gal(K
ab

(p)/Hta) = ρ
(
{1} ×

∏
v | p

U1
v

)
≃

∏
v | p

U1
v (see [Gr1, III.4.4.5.1]).

This will be useful in Section 3.

Definition 2.1. — The number field K is said to be p-rational (see [MN], [GJ], [JN], and
[Gr1, IV, § b, 3.4.4 ]) if it satisfies the Leopoldt conjecture for p and if Tp = 1.

Remarks 2.2. — Assuming the Leopoldt conjecture for p in K, we have:

(i) From [Gr1, IV.3.4.5], the p-rationality of K is equivalent to the following three conditions:

•
∏
v|p

µp(Kv) = ip(µp(K)), where µp(k) denotes, for any field k, the group of roots of unity

of k of p-power order,

• the p-Hilbert class field H is contained in the compositum K̃p of the Zp-extensions of K;

this is equivalent to Cℓp
can≃ ZpLogp(Ip)

/(∏
v|p

log(U1
v ) +Qplogp(E)

)
, which can be non-trivial,

• Zplogp(E) is a direct summand in the Zp-module
∏
v|p

log(U1
v ), which expresses the mini-

mality of the valuation of the p-adic regulator.

(ii) For a p-rational field K, we have Gal(K
ab

(p)/K)
nc≃Zr2+1

p ×
∏
v ∤ p

(F×
v )p, with (canonically)

Gal(K
ab

(p)/K̃p)
can≃

∏
v ∤ p

(F×
v )p.

3



On the structure of the Galois group of the Abelian closure of a number field

(iii) Let K̃∞ be the compositum of the K̃p. By assumption, it is the maximal Ẑ-extension of K

for which Gal(K̃∞/K)
nc≃ Ẑr2+1. A sufficient condition to get Gal(K

ab
/K)

nc≃ Ẑr2+1 ×
∏
v
F×
v is

that K be p-rational for all p. The stronger condition Hp = K̃p for all p (i.e., p-rationality of

K for all p) is equivalent to the class field theory isomorphism Gal(K
ab
/K̃∞)

can≃
∏
v
F×
v .

2.2. Structure of
∏
v
F×
v . — Let (Fv)v be the family of residue fields of K for its finite or

real infinite places v. We intend to give, for all prime numbers p, the structure of the p-Sylow
subgroup of

∏
v
F×
v . If v | p, then (F×

v )p = 1; so we can restrict ourselves to
∏
v ∤ p

(F×
v )p.

We shall prove that there exist integers δ ∈ {0, 1} and w ≥ 1 such that
∏
v ∤ p

(F×
v )p

nc≃
( ∏

n≥1

(
(Z/2Z)δ × Z/w nZ

))
p
.

The property giving such an isomorphism is that for any given p-power pk, k ≥ 1, the two
p-Sylow subgroups have 0 or infinitely many (countable) cyclic direct components of order pk.

It is obvious that for any p,
( ∏

n≥1

(
(Z/2Z)δ × Z/w nZ

))
p

has 0 or infinitely many cyclic

direct components of order pk for any k ≥ 1; moreover, in
( ∏

n≥1

(
Z/w nZ

))
p

there is no

direct component of order pk, k ≥ 1, if and only if pk+1 |w.

Remark 2.3. — Write w =
∏

q prime
qλq and put w

1 :=
∏

λq≥2
qλq so that w

0 := w/w1 and w
1

are coprime integers. Then in the above expressions we can replace w by w
1. Indeed, in the

two writings
∏
n≥1

Z/w0.w1nZ and
∏
n≥1

Z/w1nZ, for all q |w0 the direct summands of order q

are infinite in number. Then we can ensure that w will be defined in such a way that w0 = 1.

Definitions 2.4. — (i) We denote by µ(K) (resp. µp(K)) the group of roots of unity of K
(resp. of p-power order) and for any e ≥ 1 we denote by µe the group (of order e) of eth roots
of unity in a field of characteristic 0 or ℓ prime to e.

(ii) Let Qν , ν ≥ 1, be for any p the unique subfield, of degree pν over Q, of the cyclotomic
Zp-extension of Q. Then let Q′

ν , ν ≥ 1, be for p = 2 the unique non-real subfield of Q(µ2∞)
of degree 2ν over Q. We put Q′

0 = Q0 = Q in any case.

2.2.1. Analysis of the case p 6= 2. — In the study of
∏

v ∤ p(F
×
v )p, we can assume that |F×

v | ≡ 0

(mod p), which is equivalent to the splitting of v in K(µp)/K (this includes the case where
K contains µp).

a) If K contains µp, then µp(K) = µpν+1 where ν ≥ 0 is the maximal integer such that

Qν ⊆ K, and we get necessarily |F×
v | ≡ 0 (mod pν+1) for all these places. We obtain the

following tower of extensions (where ⊂ means a stric inclusion)

K = K(µpν+1) ⊂ K(µpν+2) ⊂ · · ·
From Chebotarev’s theorem, for any m ≥ ν + 1 there exist infinitely many places v of K,
whose inertia group in K(µpm+1)/K is Gal(K(µpm+1)/K(µpm)), cyclic of order p; so we get

|F×
v | ≡ 0 (mod pm) and |F×

v | 6≡ 0 (mod pm+1) for these places.

b) If K does not contain µp and if K ∩Q(µp∞) = Qν , ν ≥ 0, we have the tower of extensions

K ⊂ K(µp) = · · · = K(µpν+1) ⊂ K(µpν+2) ⊂ · · ·
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Since by assumption the places v considered are split in K(µp)/K, we still have |F×
v | ≡ 0

(mod pν+1). From Chebotarev’s theorem, for any m ≥ ν + 1 there exist infinitely many
places v, whose inertia group in K(µpm+1)/K is Gal(K(µpm+1)/K(µpm)), cyclic of order p;

thus, |F×
v | ≡ 0 (mod pm) and |F×

v | 6≡ 0 (mod pm+1) for these places.

In conclusion, the case p 6= 2 leads to identical results from the knowledge of the integer ν.

2.2.2. Analysis of the case p = 2. — In that case, we always have |F×
v | ≡ 0 (mod 2) in the

study of
∏

v ∤ 2(F
×
v )2 (v finite or real infinite). So we consider K(µ4)/K.

a) If K contains µ4 and if K ∩Q(µ2∞) =: Q(µ4.2ν ), ν ≥ 0, we have |F×
v | ≡ 0 (mod 4.2ν) for

all places, and the tower of extensions

K = K(µ4.2ν ) ⊂ K(µ4.2ν+1) ⊂ · · ·
From Chebotarev’s theorem, for any m ≥ ν there exist infinitely many places v whose in-
ertia group, in K(µ4.2m+1)/K, is Gal(K(µ4.2m+1)/K(µ4.2m)), cyclic of order 2; so |F×

v | ≡ 0
(mod 4.2m) and |F×

v | 6≡ 0 (mod 4.2m+1) for these places.

b) If K does not contain µ4, we have two possible towers depending on K ∩Q(µ2∞):

• K ∩Q(µ2∞) = Q : K ⊂ K(µ4) ⊂ K(µ8) ⊂ · · ·
• K ∩Q(µ2∞) ∈ {Qν , Q

′
ν}, ν ≥ 1 : K ⊂ K(µ4) = · · · = K(µ4.2ν ) ⊂ K(µ4.2ν+1) ⊂ · · ·

(i) In the first case (ν = 0), for any m ≥ 1 Chebotarev’s theorem gives infinitely many places
v whose inertia group in K(µ2m+1)/K is Gal(K(µ2m+1)/K(µ2m)), cyclic of order 2; so we get
|F×

v | ≡ 0 (mod 2m) and |F×
v | 6≡ 0 (mod 2m+1) for these places (the real infinite places are

solution, taking m = 1).

(ii) In the second case (ν ≥ 1), we will have two disjoint sets of places of K for the structure
of the product

∏
v ∤ 2(F

×
v )2:

– There exist infinitely many places v inert in K(µ4)/K. Then |F×
v | ≡ 0 (mod 2) and |F×

v | 6≡ 0
(mod 4) for these places (this includes the real infinite places, if any).

– For any m ≥ ν (ν ≥ 1), Chebotarev’s theorem gives infinitely many places v whose inertia
group in K(µ4.2m+1)/K is Gal(K(µ4.2m+1)/K(µ4.2m)), cyclic of order 2; a fortiori, these places
are split in K(µ4)/K. So we get |F×

v | ≡ 0 (mod 4.2m) and |F×
v | 6≡ 0 (mod 4.2m+1).

We see that in the exceptional case K ∩ Q(µ2∞) ∈ {Qν , Q
′
ν} with ν ≥ 1, we have a group

isomorphism of the form
∏
v ∤ 2

(F×
v )2 ≃

(
Z/2Z

)N ×
∏

m≥ν
Z/4.2m Z.

Definition 2.5. — From the above discussion about the number field K, we define the
integers δ ∈ {0, 1} and w :=

∏
p
wp, where wp, depending on K ∩Q(µp∞), is given as follows:

(i) Case p 6= 2. Let ν ≥ 0 be the maximal integer such that Qν ⊆ K (thus µpν+1 is the
maximal group of roots of unity of p-power order contained in K(µp) whether K contains µp

or not); we put wp = pν+1 if ν ≥ 1 and wp = 1 otherwise (from the use of Remark 2.3).

(ii) If, in the case p = 2, K contains µ4, we put w2 = 4.2ν , where ν ≥ 0 is the maximal integer
such that Qν ⊆ K (in this case, the reasonning with Q′

ν gives the same integer ν).

(iii) If, in the case p = 2, K does not contain µ4, let ν ≥ 0 be the maximal integer such that
Qν ⊆ K or Q′

ν ⊆ K (thus µ4.2ν is the maximal group of roots of unity of 2-power order of
K(µ4)); we put w2 = 4.2ν if ν ≥ 1 and w2 = 1 otherwise (from the use of Remark 2.3).

(iv) We put δ = 1 in the case (iii) when ν ≥ 1, and δ = 0 otherwise.
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We can state the following result correcting an error discovered by Peter Stevenhagen in the
first draft of [AS, Lemma 3.2] as well as in [O] and in the previous versions of our paper
reproducing this Lemma; this will also be corrected in the final paper [AS] in the proceedings
volume of ANTS-X, San Diego 2012. We refer to Definitions 2.4 and 2.5 giving δ and w.

Proposition 2.6. — Let K be a number field. We have a group isomorphism of the form
∏
v
F×
v

nc≃
∏
n≥1

(
(Z/2Z)δ × Z/w nZ

)
.

We have δ = 1 if and only if K does not contain µ4 and 8 |w.

When w = 1 (the most usual case), then δ = 0 and
∏
v
F×
v

nc≃
∏
n≥1

Z/nZ.

2.2.3. Examples. — (i) Example with p = 3. Let K be the maximal real subfield of Q(µ9);
we have w = 9. The prime ℓ = 5 is totally inert in Q(µ9); then for v | ℓ, Fv does not contain µ3

since ℓ3 = 125 6≡ 1 (mod 3). But for ℓ = 7, inert in K and split in Q(µ3), we get F×
v = F×

343
which contains µ9 as expected.

(ii) Examples with p = 2. For K = Q(
√
2 ), we have δ = 1 and w = 8. The prime ℓ = 7

splits in K and is inert in Q(µ4); so for v | ℓ, Fv = F7 does not contain µ4. But for the
prime ℓ = 5 ≡ 1 (mod 4), inert in K and split in Q(µ4), we get Fv = F25 which contains µ8.

For K = Q(
√
2 ), we get the extra factor (Z/2Z)N and there do not exist any cyclic direct

component of order 4.

For K = Q(µ4), we have w = 4 and Fv = Fℓ (ℓ ≡ 1 (mod 4)) or Fv = Fℓ2 (ℓ ≡ −1 (mod 4));
so the 2-Sylow subgroup of F×

v is at least of order 4.

2.3. Consequences for the structure of Gal(K
ab
/K). — From Proposition 2.6 and the

fundamental diagram (Subsection 2.1), we can state:

Proposition 2.7. — Let H∞ be the compositum of the fields Hp (maximal p-ramified Abelian
pro-p-extensions of K) for all prime numbers p. Then, under the Leopoldt conjecture in K for

all p, we have a group isomorphism of the form Gal(K
ab
/H∞)

nc≃
∏
n≥1

(
(Z/2Z)δ × Z/w nZ

)
.

If w = 1, then Gal(K
ab
/H∞)

nc≃
∏
n≥1

Z/nZ.

We have obtained the following globalized diagram (under the Leopoldt conjecture for all p),
where Hta (compositum of the Hta) is the maximal Abelian tamely ramified extension of K
and M∞ = H∞Hta (direct compositum over the Hilbert class field H):

∏
n≥1((Z/2Z)

δ×Z/w nZ)

∏
v U1

v

E⊗Ẑ
K

abM∞H∞

HtaH

K

Let F∞ be the compositum of some finite extensions Fp of K such that Hp = K̃p Fp (direct
compositum over K). When they are non-trivial, the extensions Fp/K are non-unique p-

ramified extensions. We then have Gal(Fp/K) ≃ Tp and Gal(F∞/K) ≃
∏
p
Tp.

6
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The extension F∞/K is in general non-canonical and conjecturally infinite; its Galois

group measures a mysterious degree of complexity of Gal(K
ab
/K); it is trivial if and only

if K is p-rational for all p (Remark 2.2 (ii)). But we have Gal(H∞/K̃∞)
can≃

∏
p
Tp and

Gal(H∞/K)
nc≃ Ẑr2+1 ×

∏
p
Tp.

Theorem 2.8. — Let K be a number field and let K
ab

be the maximal Abelian pro-extension
of K. We assume that the p-adic Leopoldt conjecture is verified in K for all prime number p.

Then there exists an Abelian extension F∞ of K, with Gal(F∞/K)
can≃

∏
p
Tp, such that H∞

is the direct compositum of F∞ and the maximal Ẑ-extension K̃∞ of K, and such that

Gal(K
ab
/F∞)

nc≃ Ẑr2+1 ×
∏
n≥1

(
(Z/2Z)δ × Z/w nZ

)
,

with Gal(K
ab
/H∞)

nc≃
∏
n≥1

(
(Z/2Z)δ × Z/w nZ

)
, where δ, w are defined in Definition 2.5.

If w = 1, we have a group isomorphism of the form Gal(K
ab
/F∞)

nc≃ Ẑr2+1×
∏
n≥1

Z/nZ, with

Gal(K
ab
/H∞)

nc≃
∏
n≥1

Z/nZ.

Corollary 2.9. — The Galois groups Gal(K
ab
/F∞) (up to non-canonical isomorphisms) are

independent of the number fields K as soon as these fields satisfy the Leopoldt conjecture for
all p, have the same number r2 of complex places and the same parameters δ,w.

Thus, for all totally real number fields K (satisfying the Leopoldt conjecture for all p) which

do not contain
√
2 , we have Gal(K

ab
/F∞)

nc≃ Ẑ×
∏
n≥1

Z/nZ.

Of course, the groups Gal(F∞/K) strongly depend on K, even if the parameters r2, δ,w are
constant. From Remark 2.2 (i), we see that the first two conditions of p-rationality involve a

finite number of primes p, but that the third condition is the most ugly. (2)

So, we are mainly concerned with the imaginary quadratic fields, studied in [AS], for which
the third condition is empty; the first and second ones can be verified (for all p) probably for
infinitely many imaginary quadratic fields as suggested in [AS, Conjecture 7.1].

3. A generalization of p-rationality

As we shall see now, we can strengthen a few the previous results about the first condition
involved in the definition of p-rationality, condition which can be removed for all number fields.

This concerns the finite p-groups
(∏

v | p µp(Kv)
)/

ip(µp(K)) whose globalization measures the

gap between the regular and Hilbert kernels in K2(K) (see [Gr1, II.7.6.1]).

For all finite place v of K we have µ(Kv) ≃ F×
v × µ1

v, where µ1
v is the torsion subgroup of

U1
v (it is a finite ℓ-group where ℓ is the residue characteristic); if v is real infinite, we have

F×
v = {±1} and µ1

v = 1.

The places (finite in number) such that µ1
v 6= 1 are called the irregular places of K.

(2)For instance, for K = Q(
√
2 ), the third condition is not satisfied for p = 13, 31, 1546463, . . . and perhaps

for infinitely many primes p depending on Fermat quotients of the fundamental unit [Gr1, III.4.14]. Note that
from [Gr2, III] or [Gr1, IV.3.5.1], for p = 2, the 2-rational Abelian 2-extensions of Q are the subfields of the

fields Q(µ2∞)Q(
√
−ℓ ), −ℓ ≡ 5 (mod 8), or of the fields Q(µ2∞)Q

(

√√
ℓ a−

√
ℓ

2

)

, ℓ = a2 + 4b2 ≡ 5 (mod 8).
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We have µp(Kv) = µ1
v if and only if v | p and µp(Kv) ≃ (F×

v )p if and only if v ∤ p. Let

Γp :=
∏
v ∤ p

(F×
v )p ×

∏
v | p

µ1
v ≃

∏
v
µp(Kv).

To study the influence of the cyclic factors µ1
v = µp(Kv) for v | p, on

∏
v ∤ p

(F×
v )p, we refer to

Definition 2.5 for the definitions of ν, δ, wp, and to Proposition 2.6.

(i) Case p 6= 2. If K contains µp, then wp = pν+1 = |µp(K)| divides |µp(Kv)|; so the cyclic
factor µp(Kv) does not modify the structure.

If K does not contain µp, we have only to look at the case ν ≥ 1 for which wp = pν+1. If
µp(Kv) is non-trivial (v | p is split in K(µp)), |µp(Kv)| is a multiple of pν+1, giving the result.

(ii) Case p = 2. If K contains µ4, w2 = 4.2ν = |µ2(K)| divides |µ2(Kv)|, hence the result.

If K does not contain µ4, we have only to consider the case K ∩Q(µ2∞) ∈ {Qν , Q
′
ν}, ν ≥ 1.

Then δ = 1 and w2 = 4.2ν ; so µ2(Kv) = µ2 (if v | 2 is not split in K(µ4)) or µ4.2m , m ≥ ν (if
v is split in K(µ4)), hence the result.

We then have

Γp
nc≃

( ∏
n≥1

(
(Z/2Z)δ × Z/w nZ

))
p
.

Let H1
p be the subfield of Hp fixed by ρ(Γp), where ρ is the reciprocity map on the p-Sylow

subgroup Up :=
∏
v ∤ p

(F×
v )p ×

∏
v | p

U1
v ⊃ Γp of the group of unit idèles of K. The kernel of ρ is

i(E ⊗ Zp) (see Subsection 2.1).

We consider ρ(Γp) = Gal(K
ab

(p)/H1
p ). Then from the local-global characterization of the

Leopoldt conjecture at p (see [Ja, § 2.3] or [Gr1, III.3.6.6]), we get (omitting the embedding i)

ρ(Γp)
can≃ Γp/(E ⊗ Zp) ∩ Γp = Γp/µp(K).

Taking, as in [AS, Lemmas 3.3, 3.4], v0 such that the residue image of µp(K) is equal to

(F×
v0)p, we still get Gal(K

ab
(p)/H1

p )
can≃ Γp/µp(K)

nc≃
( ∏

n≥1

(
(Z/2Z)δ × Z/w nZ

))
p
.

We note that Gal(Hp/H
1
p )

can≃
(∏

v | p µ
1
v

)/
µp(K) (see also [Gr1, III.4.15.3]).

Of course, if H1
∞ ⊆ H∞ is the compositum of the H1

p , the globalization gives

Gal(K
ab
/H1

∞)
nc≃

∏
n≥1

(
(Z/2Z)δ × Z/w nZ

)
, with Gal(H∞/H1

∞)
can≃

(∏
v
µ1
v

)/
µ(K).

In other words we have obtained (to be compared with Theorem 2.8 using the extension F∞):

Theorem 3.1. — Let K be a number field and let K
ab

be the maximal Abelian pro-extension
of K. We assume that the Leopoldt conjecture is verified in K for all prime numbers.

Then there exists an Abelian extension F1
∞ ⊆ F∞ of K such that H1

∞ is the direct compositum

over K of F1
∞ and the maximal Ẑ-extension K̃∞ of K, and such that

Gal(K
ab
/F1

∞)
nc≃ Ẑr2+1 ×

∏
n≥1

(
(Z/2Z)δ × Z/w nZ

)
,

with Gal(K
ab
/H1

∞)
nc≃

∏
n≥1

(
(Z/2Z)δ × Z/w nZ

)
.

If w = 1, then Gal(K
ab
/F1

∞)
nc≃ Ẑr2+1 ×

∏
n≥1

Z/nZ, with Gal(K
ab
/H1

∞)
nc≃

∏
n≥1

Z/nZ.
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The problem for the non-imaginary quadratic fields is unchanged since in the following global

exact sequence, where T 1
p := Gal(H1

p/K̃p) for all p,

0 →
∏
n≥1

(
(Z/2Z)δ × Z/w nZ

)
−→ Gal(K

ab
/K̃∞) −→

∏
p
T 1
p → 1,

we do not know if the structure of Gal(K
ab
/K̃∞) can be the same for various number fields

K because of the unknown groups
∏
p
T 1
p (which non-trivially depend on the p-adic properties

of the classes and units of the fields K) and the nature of the corresponding group extension.

We have

Gal(K
ab
/K)

nc≃ Ẑr2+1 ×
∏
n≥1

(
(Z/2Z)δ × Z/w nZ

)

as soon as the second and third condition of p-rationality (Remark 2.2 (i)) are satisfied for
all p, which defines a weaker version of p-rationality which may have some interest.

For imaginary quadratic fields K 6= Q(
√
−1 ),Q(

√
−2 ), we find again (since δ = 0 and w = 1)

that Gal(K
ab
/K)

nc≃ Ẑ2 ×
∏
n≥1

Z/nZ, as soon as, for all p dividing the class number, the p-

Hilbert class field is contained in the compositum of the Zp-extensions (3) of K, which is

equivalent to Cℓp
can≃ Zp Logp(Ip)

/∏
v | p

log(U1
v ).

Note that the arithmetical invariant
∏
p
Tp (or

∏
p
T 1
p ) is one of the deepest invariant of class

field theory over K; the duality properties of each component Tp are related to p-class groups,
p-regular kernels, . . . via reflection theorems and Galois cohomology; in the totally real case,
Tp is connected with the p-adic ζ-function of K (see [Se] and [Gr1, III.2.6.5]).

Remark 3.2. — Let F 1
p be any extension of K such that H1

p is the direct compositum over

K of K̃p and F 1
p . From [Gr1, III.4.15.8], we know that when F 1

p 6= K, all non-trivial cyclic

extensions F 1
p,i ⊆ F 1

p of K can be embedded in a cyclic p-extension of arbitrarily large degree

(except perhaps in the special case p = 2, K ∩Q(µ2∞) = Qν , ν ≥ 2).

Recall that the subgroup corresponding to the compositum of the p-cyclically embeddable

fields (compositum which of course contains K̃p) is equal to the group
∏

v | p µ
1
v

/
µp(K), except

perhaps in the special case where
∏

v | p µ
1
v

/
µp(K) may be of index 2 in this group. The

quotient of Tp by this group is called the Bertrandias–Payan module.

So this property shows, when F 1
p 6= K, that Gal(K

ab
(p)/H1

p ) cannot be a direct summand in

Gal(K
ab

(p)/K̃p), since T 1
p is finite. In other words, for any power pk, taking a suitable set of

cyclic extensions F 1
p,i ⊆ F 1

p , there exists a field Lk ⊂ K
ab

(p), such that K̃p ⊆ H1
p ⊆ Lk, with

Gal(Lk/K̃p) of exponent pk. We can even assume that Gal(Lk/K̃p) ≃ (Z/pkZ)r, where r is
the p-rank of T 1

p . However, for distinct values of k, the fields Lk may not follow any specific
rule. So it is possible that only numerical computations may help to precise the structure of

Gal(K
ab

(p)/K̃p).

(3)From [Gr1, III.2.6.6] or [Gr3, Theorem 2.3], for an imaginary quadratic field K, the 2-Hilbert class field
is contained in the compositum of its Z2-extensions if and only if K is one of the following fields: Q(

√
−1 ),

Q(
√
−2 ), Q(

√
−ℓ ) (ℓ prime ≡ 3, 5, 7 (mod 8)), Q(

√
−2ℓ ) (ℓ prime ≡ 3, 5 (mod 8), Q(

√
−ℓq ) (ℓ, q primes,

ℓ ≡ −q ≡ 3 (mod 8)). For numerical studies on the groups Tp, see [Cha] and [AS, § 7].
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An interesting case is that of K = Q(
√
2 ) for p = 13; in this case, H13 = H1

13 is cyclic

of degree 13 over K̃13 since ε = 1 +
√
2 is such that −ε14 is, modulo 133, of the form

1 + 132 a
√
2 with a 6≡ 0 (mod 13), which gives T13 ≃ Z/13Z; indeed, use the reasonning

of [Gr1, III.4.14] for real quadratic fields, or the formula given in [Gr1, III.2.6.1 (ii2)] with

Cℓ13 = 1,
∏
v | 13

U1
v = U1

13 = 1 + 13 (Z13 ⊕ Z13

√
2 ).

With such similar numerical data for a real quadratic field Q(
√
d ) (p 6= 2, class number prime

to p, H1
p = Hp of degree p over K̃p, ±εp+1 (p inert) or ±εp−1 (p split) is, modulo p3, of the

form 1 + p2 a
√
d with a rational a 6≡ 0 (mod p)), we get the following diagram:

K

F 1
p

Hta

F 1
pHta

K̃p

H1
p

K̃pHta

Mp K
ab

(p)

∏
v ∤ p(F

×
v )p≃

(∏
n≥1 Z/nZ

)
p

p

Zp

∏
v | p U1

v

tor(
∏

U1
v/〈ε〉⊗Zp)

〈ε〉⊗Zp

For K = Q(
√
2 ), p = 13, we have no more information likely to give a result on the structure

of the profinite group Gal(K
ab

(p)/K̃p) containing a subgroup, of index p, isomorphic (non-

canonically) to
( ∏

n≥1
Z/nZ

)
p
.

Despite the previous class field theory study, it remains possible that Gal(K
ab
/K) be always

non-canonically isomorphic to Ẑr2+1×
∏
n≥1

(
(Z/2Z)δ ×Z/w nZ

)
, independently of additional

arithmetic considerations about the group
∏

p T 1
p . If not (more probable), a description of

the profinite group Gal(K
ab
/K) may be very tricky. Any information will be welcome.
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