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NUMBER FIELDS WHOSE ABELIAN CLOSURES HAVE

ISOMORPHIC GALOIS GROUPS

by

Georges Gras

Abstract. — Following a paper by Athanasios Angelakis and Peter Stevenhagen on the
determination of imaginary quadratic fields having the same absolute Abelian Galois group
(arXiv:1209.6005), we study this property for arbitrary number fields. We show that such a
property is probably not easily generalizable to non-imaginary quadratic fields, because of some
p-adic obstructions coming from the global units. By restriction to the p-Sylow subgroups of
the Galois groups, we show that the corresponding study is related to the classical notion of
p-rational fields. All this is an application of results published in our Springer book on class
field theory.

Résumé. — A partir d’un article de Athanasios Angelakis et Peter Stevenhagen sur la déter-
mination de corps quadratiques imaginaires ayant le même groupe de Galois Abélien absolu
(arXiv:1209.6005), nous étudions cette propriété pour les corps de nombres quelconques. Nous
montrons qu’une telle propriété n’est probablement pas facilement généralisable aux corps non
quadratiques imaginaires en raison d’obstructions p-adiques provenant des unités globales. En
se restreignant aux p-sous-groupes de Sylow des groupes de Galois, nous montrons que l’étude
correspondante est liée à la notion classique de corps p-rationnels. Tout ceci est une application
de résultats publiés dans notre livre chez Springer sur la théorie du corps de classes.

1. Introduction – Notations

Let K be a number field of degree n =: r1+2 r2, and let AK be the Galois group Gal(K
ab
/K)

where K
ab

is the maximal Abelian pro-extension of K. The question is the following: in
what circumstances the groups AK1 and AK2 are isomorphic groups when K1 and K2 are
two distinct number fields ? Of course such isomorphisms are only isomorphisms of Abelian
profinite groups in which the arithmetical invariants (decomposition groups, inertia groups)
are not respected. A first work on this subject was published in [O] by Midori Onabe.

Let p be a fixed prime number and let H, Hp, Hta, K̃p, be the p-Hilbert class field (in ordinary
sense), the maximal p-ramified (i.e. unramified outside p) Abelian pro-p-extension of K (in
ordinary sense), the maximal tamely ramified Abelian pro-p-extension of K (in restricted
sense), the compositum of the Zp-extensions of K, respectively.

Then let Tp := Gal(Hp/K̃p) and Cℓp := Gal(H/K) isomorphic to the p-class group of K. The
groups Tp and Cℓp are finite groups.
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For any finite place v of K, we denote by Kv the corresponding completion of K, then by
Uv := {u ∈ Kv, |u |v = 1} and U1

v := {u ∈ Uv, |u − 1 |v < 1}, the unit group and principal
unit group of Kv, respectively.

These definitions can be summarized by the following diagram [Gr1, III.2.6.1, Fig. 2.2]:

Tp

Cℓp

⊕
v | p

U1
v

/
E ⊗ Zp

HpK̃pHK̃p

HK̃p ∩H

K

where E is the group of global units of K and where E ⊗ Zp is diagonally embedded with
obvious maps ip = (iv)v | p.

We shall make use of some p-adic logarithms as follows:

(i) We consider the p-adic logarithm logp : K× −→
⊕
v|p

Kv defined by logp(x) = (logv(x))v|p

where logv(x) := log(iv(x)) for all v|p, and where log : C×
p −→ Cp is the Iwasawa extension

of the usual p-adic logarithm. We have logp = log ◦ ip on K×.

(ii) We then define the quotient Qp-vector space Lp :=
(⊕

v|p
Kv

)/
Qplogp(E). We have, under

the Leopoldt conjecture for p in K, dimQp
(Lp) = r2 + 1.

(iii) Finally, we denote by Logp the map, from the group Ip of ideals of K prime to p, to Lp,

sending a ∈ Ip to Logp(a) defined as follows. If m is such that am = (α) with α ∈ K×, we set

Logp(a) :=
1
m
logp(α) mod Qplogp(E); this does not depend on the choice of m.

2. Class field theory study of the Abelian closures of number fields

Let K
ab

(p) be the maximal Abelian pro-p-extension of K. In [Gr1, III.4.4.1], we have given
(assuming the Leopoldt conjecture for p) the following fundamental diagram for the structure

of Gal(K
ab

(p)/K), isomorphic to the p-Sylow subgroup of AK :

∏
v ∤ p

(F×
v )p

⊕
v | p

U1
v

Ep:=E⊗Zp

K
ab

(p)MpHp

HtaH

K
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where Fv is the residue field of v in K and (F×
v )p ≃ F×

v ⊗ Zp the p-Sylow subgroup of its
multiplicative group. This also concerns the real infinite places for which F×

v = {±1} [Gr1,
I.3.1.2]. In this diagram, Mp is the direct compositum over H of Hp and Hta.

For some comments on the diagonal embeddings of Ep := E ⊗ Zp in
∏
v ∤ p

(F×
v )p and in

⊕
v | p

U1
v ,

respectively, see [Gr1, III.4.4.5.1].

Definition 2.1. — The number field K is said to be p-rational (see [MN], [GJ], [JN], and
[Gr1, IV, § b, 3.4.4 ]) if it satisfies the Leopoldt conjecture for p and if Tp = 1.

Remarks 2.2. — (i) By [Gr1,IV.3.4.5], assuming the Leopoldt conjecture for p, the p-
rationality of K is equivalent to the following three conditions:

•
⊕
v|p

µp(Kv) = µp(K) (diagonal embedding), where µp(k) denotes, for any field k, the group

of roots of unity of k of p-power order,

• the p-Hilbert class field H is contained in the compositum K̃p of the Zp-extensions of K;

this is equivalent to Cℓp ≃ ZpLogp(Ip)
/(⊕

v|p
log(U1

v ) +Qplogp(E)
)
, which can be non-trivial,

• Zplogp(E) is a direct summand in
⊕
v|p

log(U1
v ), which expresses the minimality of the valu-

ation of the p-adic regulator.

(ii) If K is p-rational, then all its subfields are p-rational.

(iii) For a p-rational field K, we have (non-canonically):

Gal(K
ab

(p)/K) ≃ Zr2+1
p ×

∏
v ∤ p

(F×
v )p, with Gal(K

ab
(p)/K̃p)

can≃
∏
v ∤ p

(F×
v )p.

(iv) Let K̃∞ be the compositum of the K̃p; K̃∞ is also the maximal Ẑ-extension of K;

then a necessary and sufficient condition to get Gal(K
ab
/K) ≃ Ẑr2+1 ×

∏
v
F×
v , with

Gal(K
ab
/K̃∞)

can≃
∏
v
F×
v , is that K be p-rational for all p.

We have, following [AS, Lemma 3.2], the following result valid for any number field K.

Proposition 2.3. — Let K be a number field. We denote by µK the group of roots of unity
of K and by w its order. Let Fv be the residue field of the place v (finite or real infinite)
of K. Then we have the group isomorphism

∏
v
F×
v ≃

∏
n≥1

Z/w nZ.

Proof. — Since Q(µK) ⊆ K, we know that |F×
v | ≡ 0 (mod w) for all v ∤ w. Then we

consider, in the two groups
∏

v ∤w F×
v and

∏
n≥1 Z/w nZ, the ℓ-Sylow subgroups for fixed

prime ℓ. The property giving an isomorphism is that for any given ℓ-power ℓk, k ≥ 1, the two
ℓ-Sylow subgroups have 0 or infinitely many cyclic direct components of order ℓk. This fact
is obvious for

∏
n≥1 Z/w nZ in which there is no direct component of order ℓk, k ≥ 1, if and

only if ℓk+1 |w. We have to prove that in
∏

v ∤w F×
v there exist infinitely many places v of K

for which |F×
v | is congruent to 0 modulo ℓm but not modulo ℓm+1, vhere m ≥ 0 is any integer

greater than or equal to the ℓ-valuation λℓ of w.
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Let ζm+1 be a primitive ℓm+1th root of unity and ζm := ζℓm+1; then K(ζm+1)/K(ζm) is a
non-trivial extension. There exist infinitely many prime numbers q with a suitable place v | q
whose inertia group is the cyclic group Gal(K(ζm+1)/K(ζm)); so we get Fv = Fq which is
such that |F×

v | ≡ 0 (mod ℓm) and |F×
v | 6≡ 0 (mod ℓm+1).

Consider the term
∏

v |w F×
v ; if v | q |w (q prime), then |F×

v | ≡ 0 (mod w

qλq
), where λq is the

q-valuation of w; for all ℓ 6= q, the ℓ-Sylow subgroup of F×
v is of order ℓm, m ≥ λℓ (the

ℓ-valuation of w), so we do not modify the structure of the product
∏

n≥1 Z/w nZ.

Corollary 2.4. — Let H∞ be the compositum of the fields Hp (maximal p-ramified Abelian
pro-p-extensions of K) for all prime numbers p. Then, under the Leopoldt conjecture for all p,
we have the group isomorphism

Gal(K
ab
/H∞) ≃

∏
n≥1

Z/w nZ.

So we have obtained the following diagram (under the Leopoldt conjecture for all p):
∏

n≥1 Z/w nZ

∏
v U

1
v

E:=E⊗Ẑ

K
abM∞H∞

HtaH

K

where Hta is the compositum of the Hta and M∞ = H∞Hta (direct compositum over the
Hilbert class field H).

Let F∞ be the compositum of some finite extensions Fp of K such that Hp = K̃p Fp; we
then have Gal(Fp/K) ≃ Tp and Gal(F∞/K) ≃ ∏

p Tp. The extension F∞/K is in general
non-canonical and conjecturally infinite; it measures a mysterious degree of complexity of

Gal(K
ab
/K). But we have

Gal(H∞/K̃∞)
can≃

∏
p
Tp and Gal(H∞/K) ≃ Ẑr2+1 ×

∏
p
Tp.

Theorem 2.5. — Let K be a number field and K
ab

the maximal Abelian pro-extension of K.
We suppose that the p-adic Leopoldt conjecture is verified in K for all prime number p.

Then there exists an Abelian extension F∞ of K such that H∞ (the compositum of the Hp)

is the direct compositum of F∞ and the maximal Ẑ-extension K̃∞ of K, and such that

Gal(K
ab
/F∞) ≃ Ẑr2+1 ×

∏
n≥1

Z/w nZ, with Gal(K
ab
/H∞) ≃

∏
n≥1

Z/w nZ,

where w is the number of roots of unity of K.

Remark 2.6. — Write w =
∏

q prime
qλq and put w1 :=

∏
λq≥2

qλq , so that w
0 := w/w1 and w

1

are coprime integers. Then we can replace w by w
1 in the above formulas.
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If w1 = 1 (w square-free), we have the isomorphism

Gal(K
ab
/F∞) ≃ Ẑr2+1 ×

∏
n≥1

Z/nZ.

Corollary 2.7. — The Galois groups Gal(K
ab
/F∞) (up to non-canonical isomorphisms) are

independent of the number fields K as soon as these fields satisfy the Leopoldt conjecture for
all p, have the same number of complex places and the same w

1.

Thus, for all totally real number fields K (satisfying the Leopoldt conjecture for all p) we have

Gal(K
ab
/F∞) ≃ Ẑ×

∏
n≥1

Z/nZ.

We have F∞ = K if and only if K is p-rational for all p.

From Remarks 2.2 (i), we see that the first two conditions of p-rationality involve a finite
number of primes p, but that the third condition is the most ugly. (1) So, we are mainly
concerned with the imaginary quadratic fields studied in [AS] for which the third condition
is empty; the first and second ones can be verified (for all p) probably for infinitely many
imaginary quadratic fields as suggested in [AS, Conjecture 7.1].

As we shall see now, we can strengthen a few the previous results about the first condition
involved in the definition of p-rationality, which can be removed for any number field.

This concerns the globalization of the finite groups
⊕
v | p

µp(Kv)
/
µp(K). This group measures

the gap between the regular and Hilbert kernels in K2(K) [Gr1, II.7.6.1].

Consider the subgroup

T 1
p =

⊕
v | p

µ1
v ⊂

⊕
v | p

U1
v ≃ Gal(K

ab
(p)/Hta),

where we have put µ(Kv) ≃ F×
v

⊕
µ1
v [Gr1, II.7.1.3]; we also have µ1

v = µp(Kv) for all v | p,
but with this notation the globalisation is more obvious. The places (finite in number) such
that µ1

v 6= 1 are called irregular places.

Let Γp :=
∏

v ∤ p(F
×
v )p × T 1

p ≃ ∏
v µ(Kv); we have Γp ≃

(∏
n≥1 Z/w

1 nZ
)
p

since, in T 1
p , each

µ1
v is cyclic of order multiple of |µp(K) |, giving for Γp the same group as for

∏
v ∤ p(F

×
v )p.

Let H1
p be the subfield of Hp fixed by ρ(Γp), where ρ is the reciprocity map on the idèle group

Γp. Then from the local-global characterization of the Leopoldt conjecture at p (see [Gr1,
III.3.6.6] or [Ja, § 2.3]), we get ρ(Γp) ≃ Γp/Ep ∩ Γp = Γp/µp(K).

Taking, as in [AS, Corollary 3.3, Lemma 3.4], v0 ∤ w such that the residue image of µp(K) is

a direct summand in (F×
v0
)p, we still get Gal(K

ab
(p)/H1

p ) ≃ Γp/µp(K) ≃
(∏

n≥1 Z/w
1 nZ

)
p
.

We note that Gal(Hp/H
1
p ) ≃

⊕
v | p µ

1
v

/
µK .

Of course, the globalization gives Gal(K
ab
/H1

∞) ≃ ∏
n≥1 Z/w

1 nZ, where H1
∞ is the com-

positum of the H1
p (we have K̃∞ ⊆ H1

∞ ⊆ H∞).

(1)For instance, for K = Q(
√
2), the third condition is not satisfied for p = 13, 31, 1546463, . . . and perhaps for

infinitely many primes p depending on Fermat quotients of the fundamental unit [Gr1, III.4.14]. Note that
from [Gr2, III] or [Gr1, IV.3.5.1], for p = 2, the 2-rational Abelian 2-extensions of Q are the subfields of the

fields Q(µ2∞)Q(
√
−ℓ ), −ℓ ≡ 5 (mod 8), or of the fields Q(µ2∞)Q

(

√√
ℓ a−

√

ℓ

2

)

, ℓ = a2 + 4b2 ≡ 5 (mod 8).
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We have an analog of Corollary 2.7 with smaller extensions F∞, but the problem for the
non-imaginary quadratic fields is unchanged since in the global exact sequence

1 →
∏
v
F×
v ≃

∏
n≥1

Z/w1 nZ −→ Gal(K
ab
/K̃∞) −→

∏
p
Tp → 1,

where K̃∞ is the maximal Ẑ-extension of K, we do not know if the structure of Gal(K
ab
/K̃∞)

can be the same for various number fields K because of the unknown group
∏

p Tp (which

non-trivially depends on the p-adic properties of the classes and units of K), and the nature
of the corresponding group extension. We have

Gal(K
ab
/K) ≃ Ẑr2+1 ×

∏
n≥1

Z/w1 nZ

as soon as the second and third condition of p-rationality (Remarks 2.2 (i)) are satisfied for
all p, which defines a weaker version of p-rationality which may have some interest.

For imaginary quadratic fields K 6= Q(
√
−1), we find again that Gal(K

ab
/K) ≃ Ẑ2×

∏
n≥1

Z/nZ

as soon as, for all p dividing the class number, the p-Hilbert class field is contained in the com-

positum of the Zp-extensions of K, which is equivalent to Cℓp ≃ Zp logp(Ip)
/⊕
v | p

logp(U
1
v ).

(2)
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−2ℓ ) (ℓ prime ≡ 3, 5 (mod 8), Q(

√
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