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NUMBER FIELDS WHOSE ABELIAN CLOSURES HAVE

ISOMORPHIC GALOIS GROUPS

by

Georges Gras

Abstract. — Following a paper by Athanasios Angelakis and Peter Stevenhagen on the
determination of imaginary quadratic fields having the same absolute Abelian Galois group
(arXiv:1209.6005), we study this property for arbitrary number fields. We show that such a
property is probably not generalizable to fields not imaginary quadratic, because of some p-
adic obstructions about the units. By restriction to the p-parts of the Galois groups, we show
that the corresponding study is related to the classical notion of p-rational fields. All this is a
consequence of results yet published in our Springer book on class field theory.

Résumé. — A partir d’un article de Athanasios Angelakis et Peter Stevenhagen sur la déter-
mination de corps quadratiques imaginaires ayant le même groupe de Galois Abélien absolu
(arXiv:1209.6005), nous étudions cette propriété pour les corps de nombres quelconques. Nous
montrons qu’une telle propriété est probablement non généralisable aux corps non quadratiques
imaginaires en raison d’obstructions p-adiques au niveau des unités. En se restreignant aux
p-parties des groupes de Galois, nous montrons que l’étude correspondante est liée à la notion
classique de corps p-rationnels. Tout ceci est une conséquence de résultats déjà publiés dans
notre livre chez Springer sur la théorie du corps de classes.

1. Introduction – Notations

Let K be a number field of degree n =: r1+2 r2, and let AK be the Galois group Gal(K
ab
/K)

where K
ab

is the maximal Abelian pro-extension of K. The question is the following: in
what circumstances the groups AK1

and AK2
are isomorphic groups when K1 and K2 are

two distinct number fields ? Of course such isomorphisms are only isomorphisms of Abelian
profinite groups in which the arithmetical invariants (decomposition groups, inertia groups)
are not respected. A first work on this subject was published in [O] by Midori Onabe.

Let p be a fixed prime number and let Hord, Hord
p , Hres

ta , K̃p, be the p-Hilbert class field,
the maximal p-ramified (i.e. unramified outside p) Abelian pro-p-extension of K (in ordinary
senses), the maximal tamely ramified Abelian pro-p-extension of K (in restricted sense), the
compositum of the Zp-extensions of K, respectively.

Then let T ord
p := Gal(Hord

p /K̃p) and Cℓordp := Gal(Hord/K) isomorphic to the p-class group

of K. The groups T ord
p and Cℓordp are finite groups.

For any finite place v of K, we denote by Kv the corresponding completion of K, then by
Uv := {u ∈ Kv, |u |v = 1} and U1

v := {u ∈ Uv, |u − 1 |v < 1}, the unit group and principal
unit group of Kv, respectively.
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These definitions can be summarized by the following diagram [Gr1, III.2.6.1, Fig. 2.2]:

T ord
p

Cℓordp

Bp

Hord
pK̃pH

ordK̃p

HordK̃p ∩Hord

K

where Bp ≃
⊕
v | p

U1
v

/
ip(E ⊗ Zp), where E is the group of global units of K and ip = (iv)v | p

the diagonal embedding.

We shall make use of some p-adic logarithms as follows:

(i) We consider the Qp-vector space
⊕
v|p

Kv, and we denote by logp the p-adic logarithm:

K× −−−→
⊕
v|p

Kv

x 7−→ (logv(x))v|p

where logv(x) := log(iv(x)) for all v|p, and where log : C×
p −→ Cp is the Iwasawa extension

of the usual p-adic logarithm defined on the group of principal units u =: 1 + x of Cp by the

convergent series log(1 + x) :=
∑
i≥1

(−1)i+1 xi

i
, and by log(p) := 0.

We still denote by log the map
⊕
v|p

K×
v −−−→

⊕
v|p

Kv defined by log((xv)v|p) := (log(xv))v|p.

We then have logp = log ◦ ip on K×.

(ii) We then define the quotient Qp-vector space Lp :=
(⊕

v|p
Kv

)/
Qplogp(E). We have, under

the Leopoldt conjecture for p in K, dimQp
(Lp) = r2 + 1.

(iii) Finally, we denote by Logp the map from the group Ip of ideals of K prime to p, to Lp

sending a ∈ Ip to Logp(a) defined as follows. If m is such that am = (α) with α ∈ K×, we set

Logp(a) :=
1
m
logp(α) mod Qplogp(E).

It is clear that if we also have am
′

= (α′) with α′ ∈ K×, then (α)m
′

= (α′)m, hence αm′

= α′mε
with ε ∈ E, so that 1

m
logp(α) =

1
m′ logp(α

′)+ 1
mm′ logp(ε), showing that Logp is defined in Lp.

2. Class field study of the Abelian closure

In [Gr1, III.4.4.1], we have given the following fundamental diagram for the structure of the

p-part of the Galois group AK (assuming the Leopoldt conjecture for p), where K
ab

(p) is the
maximal Abelian pro-p-extension of K:
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∏
v∤p

(F×
v )p

⊕
v | p

U1
v

E:=E⊗Zp

K
ab

(p)M0Hord
p

Hres
taHord

K

where Fv is the residue field of v in K and (F×
v )p ≃ F×

v ⊗ Zp the p-part of its multiplicative
group. This also concerns the real infinite places for which F×

v = {±1} (see [Gr1, I.3.1.2]).

For the definition of the embeddings of E := E ⊗ Zp in
∏
v∤p

(F×
v )p and in

⊕
v | p

U1
v , respectively,

see [Gr1, III.4.4.5.1].

Definition 2.1. — The number field K is said to be p-rational (see [MN], [GJ], [JN]) if it
satisfies the Leopoldt conjecture for p and if T ord

p = 1.

Remarks 2.2. — (i) By [Gr1, III.2.6.1 (ii2)], using [Gr1, III.4.2.4, III.4.2.5], and assuming
the Leopoldt conjecture, the p-rationality of K is equivalent to the following three conditions:

• the p-Hilbert class field Hord is contained in the compositum K̃p of the Zp-extensions of K

(this point is equivalent to the fact that Cℓordp ≃ ZpLogp(Ip)
/⊕

v|p
log(U1

v ) mod Qplogp(E),

which can be nontrivial),

•
⊕
v|p

µp(Kv) = ip(µp(K)), where µp(k) denotes, for any field k, the group of roots of unity

in k of p-power order,

• Zplogp(E) is a direct summand in
⊕
v|p

log(U1
v ), which expresses the minimality of the valu-

ation of the p-adic regulator.

(ii) If K is p-rational, then all its subfields are p-rational. By [Gr1, III.4.1.11], Q is p-rational
for all p.

(iii) For a p-rational field K, we have (noncanonically, see [Gr1, III.4.1.10]):

Gal(K
ab

(p)/K) ≃ Zr2+1
p ×

∏
v∤p

(F×
v )p.

So, a sufficient condition to get Gal(K
ab
/K) ≃ Ẑr2+1×

∏
v
F×
v is that K be p-rational for all p.

We have the following result, valid for any number field K.

Proposition 2.3. — Let K be a number field. We denote by µK the group of roots of unity
in K and by wK its order. Let Fv be the residue field of the place v (finite or real infinite)
in K. Then we have the group isomorphism∏

v
F×
v ≃

∏
n≥1

Z/wKnZ.

Proof. — Since Q(µK) ⊆ K, we know that |F×
v | ≡ 0 (mod wK) for all v. Then, following

[AS, Lemma 3.2], we consider in the two groups the ℓ-parts for fixed prime ℓ. We have to
prove that in the left member there exist infinitely many places v of K for which the norm
Nv := |Fv| is congruent to 1 modulo ℓm but not modulo ℓm+1, vhere m ≥ 0 is the ℓ-valuation
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of wK . Let ζ be a primitive ℓm+1th root of unity; then K(ζ)/K is a nontrivial extension
since Q(ζ) 6⊆ K, and there exist infinitely many finite places v of K totally split in K/Q and
non totally split in K(ζ)/K; so the prime q under v is non totally split in Q(ζ)/K ∩ Q(ζ)
and totally split in Q(ζℓ)/Q. From classical class field theory in cyclotomic fields, we get the
result.

Corollary 2.4. — Let Hord be the compositum of the fields Hord
p (maximal p-ramified Abelian

pro-p-extensions of K) for all prime numbers p. Then we have the group isomorphism

Gal(K
ab
/Hord) ≃

∏
n≥1

Z/wK nZ.

So we can resume with the following diagram:
∏

n≥1 Z/wK nZ

∏
v U

1
v

E:=E⊗Ẑ

K
abM0Hord

Hres
taHord

K

where Hres
ta is the compositum of the tame extensions Hres

ta and M0 = HordHres
ta (direct

compositum over Hord). So we can summarize these results in the following theorem:

Theorem 2.5. — Let K
ab

be the maximal Abelian pro-extension of K. We suppose that the
p-adic Leopoldt conjecture is verified in K for all prime number p. There exists an Abelian ex-

tension FK of K such that Hord is the direct compositum of FK and the maximal Ẑ-extension,

K̃, of K and such that

Gal(K
ab
/FK) ≃ Ẑr2+1 ×

∏
n≥1

Z/wK nZ.

Remark 2.6. — Write wK =
∏

ℓ prime
ℓλℓ and put w1

K :=
∏

λℓ≥2
ℓλℓ . Then we can replace wK

by w1
K in the above formulas.

Corollary 2.7. — The Galois groups Gal(K
ab
/FK) (up to non canonical isomorphisms) are

independant of the number fields K as soon as these fields have the same number of complex
places and the same w1

K .

Thus, for all totally real number fields K (satisfying the Leopoldt conjecture for all p) we have

Gal(K
ab
/FK) ≃ Ẑ×

∏
n≥1

Z/nZ.

Of course the extension FK/K is in general non canonical and infinite. It is the compositum

of finite extensions Fp such that Hord
p = K̃p Fp; we then have Gal(Fp/K) ≃ Tp for each p, and

Gal(FK/K) measures a mysterious degree of complexity of Gal(K
ab
/K).

We have FK = K if and only if K is p-rational for all p, which is a very strong condition.
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From Remark 2.2, we see that the first two conditions involve a finite number of primes p,
but that the third condition is the most ugly. For instance, for K = Q(

√
2), it is not satisfied

for p = 13, 31, 1546463, . . . and perhaps for infinitely many primes p (see [Gr1, III.4.14]).

So, we are only concerned with the imaginary quadratic fields studied in [AS] since in Re-
marks 2.2, the third point is empty; the first and second ones can be verified probably for
infinitely many imaginary quadratic fields as suggested in [AS, Conjecture 7.1].

For example (after [Gr2, III]), for p = 2, the 2-rational Abelian 2-extensions of Q are the
subfields of the fields

Q(µ2∞)Q(
√
−ℓ ), −ℓ ≡ 5 mod (8),

or of the fields

Q(µ2∞)Q

(√√
ℓ

a−
√
ℓ

2

)
, ℓ = a2 + 4b2 ≡ 5 mod (8).

For p = 3, the 3-rational Abelian 3-extensions of Q are the subfields of the fields

Q̃3 kℓ, ℓ ≡ 4, 7 mod (9),

where Q̃3 is the cyclotomic Z3-extension of Q and kℓ the cyclic cubic field of conductor ℓ.
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