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Abstract: Scheduling tasks on a radar system can be modeled as a multi-
operation scheduling problem where tasks are composed of two operations sep-
arated by a fixed duration. Tasks have to be scheduled on a single machine and
the aim is to minimize the makespan. The complexity status of this problem has
been settled for various cases but the one where all tasks are identical remains
open. This paper aims at showing that this case raises original and difficult
problems and is highly unlikely to be polynomial.
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1 Introduction

A radar system usually has a single antenna which is both used to send and
receive radio waves. Moreover, after the emission, a wave has to travel some
distance, be reflected, and then travel back to the radar before it can be received
and processed. Other operations can be scheduled on the radar system during
the wave travel time.

In 1980, Shapiro [1] introduced coupled tasks to model radar operations.
A coupled task i is a two-operations task. The operation lengths are ai (emit
wave) and bi (receive wave) and these operations are separated by a fixed du-
ration Li (travel time). A coupled task is illustrated Figure 1. The objective
is to find a schedule that minimizes the makespan on a single machine (the
radar). Shapiro [1] proved the NP−completeness of this problem and proposed
3 heuristics.

ai bi
Li

Fig. 1. A single coupled task

Orman and Potts [2] studied this problem and settled its complexity for
various cases (Table 1). However, they claim that the identical coupled task
scheduling problem where ∀i, ai = a, Li = L, bi = b remains open. This special
case differs from the other cases since the input consists of 4 integers: a, b, L,
and the number of tasks n (w.l.o.g. assume a > b and a + b ≤ L). Hence the
input length is O(log(L) + log(n)) and an algorithm that is polynomial in n

would then be exponential. Therefore, the schedule is not a valid certificate.



Strongly NP-Hard aj ; Lj ; bj
aj = Lj = bj

aj = bj = p; Lj

aj = a; Lj = L; bj
Open aj = a; Lj = L; bj = b

Polynomial aj = Lj = p; bj
aj = bj = p; Lj = L

Table 1. Complexity of coupled task scheduling problems

Such a problem is called a high multiplicity scheduling problem. Those problems
discussed in [3–6] for instance.

Ahr et al. [7] proposed an exact algorithm using graphs for the identical
coupled task scheduling problem. Its complexity is O(nr2L) where r ≤ a−1

√
a

holds. Baptiste [8] improved this result by proving that, for fixed a, b and L, the
problem can be solved in O(log(n)) time. However, the constant is exponential
in L and therefore this algorithm remains exponential.

Lehoux-Lebacque et al. [9] solved the cyclic case. In this case, the aim is to
maximize the throughput rate.

We worked on the finite case (n tasks) and showed that it is significantly
different from the cyclic case. Especially, none of the properties crucial for the
cyclic case hold. More details about the results exposed in this paper and proofs
can be found in [10].

2 The Cyclic Case

Lehoux-Lebacque et al. [9] proposed a polynomial time algorithm (complexity
O(log(L)2)) to solve the cyclic case. They use a pattern to describe cycles and
return a concise certificate. In order to prove their results, they point out and
use the following properties that hold in the cyclic case:

1. We always place as many operations as possible on the separation time L;

2. The order of operations in a cycle does not matter;

3. The pattern of operations within each coupled task is an invariant;

These properties allow to create a polynomial certificate in the length of the
instance. This certificate is composed of 3 integers and its length is O(log(L)).
An example of cycle is shown Figure 2.

a1 a2 b0 a3 b1 b2 a4 b3 a5 a6 b4 a7 b5 b6 a0 b7

Fig. 2. a = 5, b = 4, L = 15, an optimal cycle



3 The Finite Case

3.1 From the Cyclic to the Finite Case

We started to work on the finite case with the idea that an optimal solution in
this case may look like a cyclic solution surrounded by an extension to the left
(to start the schedule) and an extension to the right (to finish it). We defined
a pure strategy using the optimal cyclic pattern as the solution consisting to
repeat this pattern (omitting the first b’s as their a’s were not scheduled) until
n operations a have been scheduled and finish the last tasks. We proved the
following theorem.

Theorem 1 (Asymptotic guarantee). The pure strategy using the optimal

cyclic pattern is asymptotically optimal.

In fact, we proved that this strategy is a 1 + 2

k
approximation where k is the

number of times the cycle is repeated. Moreover, computing the makespan of
this schedule can be done in polynomial time.

This raised the following question: is this pure-strategy-solution optimal for

an n large enough ? We have shown that this is not the case: for some instances,
for each value of n, there exists a larger n′ such that the optimal makespan is
strictly smaller than the pure-strategy solution.

3.2 Issues Raised

We have implemented the problem as an integer program and solved instances
using the commercial solver CPLEX. Running extensive tests allowed to find coun-
terexamples for all properties of the cyclic case. Moreover, some optimal solutions
are really combinatorial and the optimal solutions of different instances are usu-
ally quite different. Because of these differences, we have not been able to identify
patterns (which would have been a way to create a certificate) for solutions in
the finite case. Moreover, even with fixed characteristics (same a, b and L), the
optimal solutions may change a lot for different values of n. In concrete terms,
none of the properties 1, 2, 3 in the cyclic case, section 2, remains valid. We
constructed counterexamples for those three properties in the finite case.

Eventually, in some special cases we have been able to prove that weaker ver-
sions of some properties remain true (for instance: for some classes of instances,
we always place as many operations as possible during the first idle time).

3.3 A Polynomial Case

We have worked on some special cases of this problem. When L

a
+ 1 ≥ n,

the greedy schedule is obviously optimal. We also found the optimal solutions
for very specific values of n when a = b + 1. The result can be obtained and
checked in polynomial time. In those cases, the optimal solutions are non trivial
and require to use different patterns, connected by some irregular transitions as
represented Figure 3.

Yet, all the other cases remain unsolved. There is in a way a lack of recursive
properties for the optimal solution patterns (given a, b, L and increasing n).



Fig. 3. a = 10, b = 9, L = 53, n = 13, an optimal solution.

4 Conclusion

We have shown that the finite case is significantly different from the cyclic case
and that cyclic results and properties cannot be extended to the finite case. We
demonstrated that a small subcase of the problem is polynomial but its solutions
are very specific and elaborate. This strengthened the idea that the identical
coupled task scheduling problem may not be polynomial and that we may not
be able to find a valid certificate in the general case. The problem remains open
but our results encourage us to think that it may not be in NP . It remains to
prove this conjecture, for instance by reducing an EXPSPACE-complete problem
to this one.
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