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DYNAMICAL PROPERTIES OF SPATIAL DISCRETIZATIONS OF A
GENERIC HOMEOMORPHISM

PIERRE-ANTOINE GUIHÉNEUF

Abstract. This paper concerns the link between the dynamical behaviour of a dynam-
ical system and the dynamical behaviour of its numerical simulations. Here, we model
numerical truncation as a spatial discretization of the system. Some previous works on
well chosen examples (see e.g. citeGamb-dif) show that the dynamical behaviours of
dynamical systems and of their discretizations can be quite different. We are interested
in generic homeomorphisms of compact manifolds. So our aim is to tackle the following
question: can the dynamical properties of a generic homeomorphism be detected on the
spatial discretizations of this homeomorphism?

We will prove that the dynamics of a single discretization of a generic conservative
homeomorphism does not depend on the homeomorphism itself, but rather on the grid
used for the discretization. Therefore, dynamical properties of a given generic conserva-
tive homeomorphism cannot be detected using a single discretization. Nevertheless, we
will also prove that some dynamical features of a generic conservative homeomorphism
(such as the set of the periods of all periodic points) can be read on a sequence of finer
and finer discretizations.
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1. Introduction

When one tries to simulate a discrete time dynamical system with a computer, calcu-
lations are performed with a finite numerical precision. Numerical errors made at each
iteration may add up, so that after a while, the numerically calculated orbit of a point will
have nothing in common with the actual one. Nevertheless, a numerically calculated orbit
is close to an actual orbit at any time, thus one can hope that the collective behaviour of
numerically calculated orbits provides information about the collective behaviour of actual
orbits. Interesting properties of dynamical systems are often asymptotic (i.e. concern the
behaviour of the system in the long term) on the one hand, and collective (i.e. concern the
collective behaviour of orbits or even the action of the system on open sets and probability
measures) on the other. The purpose of our study is to tackle the question: can such
properties be detected on numerical simulations?

We will model numerical truncation as a spatial discretization1. Consider a dynamical
system whose phase space is a manifold X and whose evolution law is given by a map f
from X into itself. Roughly speaking, a numerical simulation of the system with a precision
10−N replaces the continuous phase space X by a discrete space EN made of points of X
whose coordinates are decimal numbers with at most N decimal places, and replaces the
map f by its discretization fN : EN → EN that maps x ∈ EN to the point (or one of
the points) of EN nearest f(x). We can clarify a bit the question raised in the previous
paragraph:

Question. Which dynamical properties of a homeomorphism f can be read on the dynamics
of its discretizations (fN )N≥0?

Questions about discretizations of dynamical systems have mainly been studied empiri-
cally, using numerical simulations of well-chosen examples (see e.g. [Lan98, HYG87, Bin92,
NY88, SB86]). For instance, a particular attention has been paid to the obtaining of phys-
ical measures by numerical calculations: see e.g. [BCG+78, BCG+79], [Boy86, GB88] or
[Mie06]. These papers explain why in some cases absolutely continuous invariant measures
of the initial system can be obtained from numerical simulations, for example when the
system is uniquely ergodic. However there are situations where (serious) problems arise:
in a short article, J.-M. Gambaudo and C. Tresser [GT83] give the examples of two sim-
ple homeomorphisms of [0, 1]2 which both have attractors that attract most of the orbits.
Nevertheless, those attractors are undetectable in practice, simply because the connected
components of their basins are much too small. Thus, the actual dynamics of these homeo-
morphisms does not have much in common with that observed on simulations.

In the early 90s, a significant work has been done by a group of researchers includ-
ing among others P. Diamond, P. Kloeden, V. Kozyakin, J. Mustard and A. Pokrovskii.
Their point of view lies between theory and practice: for instance in [DKP94, DKKP95a,
DKKP95b, DKP96] they define some dynamical properties that are robust under discretiza-
tion. Nevertheless, the precision where one can detect these properties on discretizations
might be huge, so that these notions could be unusable in practice. On the other hand,
in [DKPV95, DSKP96, DKKP96, DKKP97, DP96] the authors empirically remark that
some quantities related to the discretizations of dynamical systems in dimension 1, such
as the proportion of points in the basin attraction of the fixed point 0, the distribution of
the lengths of cycles etc., are similar to same quantities for random applications with an
attractive centre.

From a more theoretical point of view, S. Luzzatto and P. Pilarczyk conducted recently
a quite interesting study of the modeling of a computer discretization by multivalued in
[LP11] (see also [Mro96] and [DKP96]). Note that this modeling is very different from
that used by most authors and which is described above. Their paper includes a discussion
about the relationship between the continuous and the discrete: at first glance properties of
the original system can be deduced from a finite number of discretizations only when these
properties are robust, which is relatively rare. To overcome this difficulty the authors define

1See page 10 about the accuracy of this model.
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what they call finite resolution properties, in particular such properties can be verified in
finite time by computational methods.

In [Ghy94], É. Ghys made a complete study of the dynamical behaviour of discretiza-
tions of the Anosov automorphism of the torus T2 given by (x, y) 7→ (y, x + y) (see also
[DF92]). É. Ghys notes that the dynamics of these discretizations (he shows that they are
permutations with remarkably small orders) has nothing to do with the actual dynamics of
the automorphism, which is a paradigm of chaotic dynamics. The very specific arithmetical
properties of this example let one hope that such a difference between the actual dynamics
of a system and the dynamics of its discretizations might be exceptional. This hope is
supported by more recent results of S. Hayashi in [Hay12], roughly speaking, he shows that
every C1-diffeomorphism of a compact manifold with no positive Lyapunov exponent can
be approximated by another diffeomorphism whose attractors are “observable in practise”.
Furthermore, T. Miernowski made a fairly comprehensive study of discretizations of circle
homeomorphisms [Mie06]. He basically shows that the dynamical properties of a typical
(generic or prevalent) circle homeomorphism/diffeomorphism can be read on the dynamics
of its discretizations. All these results suggest to tackle the above question not for arbitrary
homeomorphisms but rather for typical homeomorphisms; it is the point of view we will
adopt in this article.

In this paper we study dynamical properties of discretizations of generic homeomor-
phisms in the sense of Baire. We establish properties for both dissipative, i.e. arbitrary
homeomorphisms of X, and conservative homeomorphisms, i.e. homeomorphisms of X
that preserve a given good probability measure.

The results we obtained concern generic homeomorphisms of a compact manifold (with
boundary) of dimension n ≥ 2. In this introduction we state the main results for the torus
Tn and for “uniform” discretizations on Tn. The general framework in which the results
are valid is defined in section 2.

Let n ≥ 2. For all N ∈ N, let EN be the finite subset of the torus Tn = Rn/Zn made
of the points whose coordinates are decimal numbers with at most N decimal places:

EN =

{(
i1

10N
, . . . ,

in
10N

)
∈ Tn

∣∣∣ (i1, . . . , in) ∈ Zn
}
.

Let PN be a projection of Tn on EN minimizing the euclidian distance: for x ∈ Tn, PN (x)
is one of the points of EN nearest x. Let fN : EN → EN be the discretization of the
homeomorphism f : Tn → Tn according to EN defined by fN = PN ◦ f .

We will prove many results, concerning various aspects of the dynamics of the discretiza-
tions. In the rest of this introduction, we try to organize those results according to some
“lessons”:

1) The dynamics of a single discretization of a generic homeomorphism has in general nothing
to do with the dynamics of the initial homeomorphism.

Given a finite set E, the dynamics of any finite map σ : E → E is quite simple: given
x ∈ E, the orbit (σk(x))k is preperiodic. Therefore, the union of periodic orbits of σ, which
we will denote by Ω(σ) and called the maximal invariant set of σ, is exactly the union of
the ω-limits sets of points of E. To study the dynamics of σ one can focus on quantities
such as the cardinality of Ω(σ), the stabilization time of σ (i.e. the smallest t ∈ N such
that σt(E) = Ω(σ)), the number of orbits of σ|Ω(σ), their lengths, the period of σ|Ω(σ). . .

Another interesting dynamical quantity for a finite map σ : E → E is the recurrence
rate: it is the ratio between the cardinalities of Ω(σ) and that of E. The starting point of
our article is a question from É. Ghys (see chapter 6 of [Ghy94]): for a generic conserva-
tive homeomorphism of the torus, what is the asymptotical behaviour of the sequence of
recurrence rates of fN? A partial answer to this question was obtained by T. Miernowski
in the second chapter of his thesis.
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Theorem (Miernowski). For a generic conservative homeomorphism2 f , there are infin-
itely many integers N such that the discretization fN is a cyclic permutation.

To prove this theorem, T. Miernowski combines a genericity argument with a quite
classical technique in generic dynamics of homeo(and auto)morphisms: approximation by
permutations (see e.g. [KS70], [Alp78], [Hal56]), and more precisely Lax’s theorem (see
[Lax71], see also [DKP93, KM97] for a generalisation and some simulations in dimension
1), which states that any conservative homeomorphism of the torus can be approximated
by cyclic permutations of the discretization grids. In fact this proof can be generalized to
obtain many results about discretizations. We will establish some variants of Lax theorem;
each of them, combined with a genericity argument, leads to a result for discretizations of
generic homeomorphisms. For instance:

Theorem. For a generic conservative homeomorphism f , tehre exists C > 0 such that
there are infinitely many integers N such that the cardinality of Ω(fN ) is smaller than C.

Note that the combination of these two theorems answer the question of É. Ghys: for a
generic homeomorphism f , the sequence of the recurrence rate of fN accumulates on both
0 and 1, one can even show that it accumulates on the whole segment [0, 1].

Let us move on to the behaviour on the maximal invariant set Ω(fN ). Another variations
of Lax’s theorem lead to a theorem that enlightens the behaviour of the discretizations on
their maximal invariant set:

Theorem. For a generic conservative homeomorphism f , there are infinitely many integers
N such that the discretization fN is a cyclic permutation and for all M ∈ N, there are
infinitely many integers N such that fN is a permutation of EN having at least M periodic
orbits.

To summarize, generically, infinitely many discretizations are cyclic permutations, but
also infinitely many discretizations are highly non injective or else permutations with many
cycles. In particular, it implies that for all x ∈ X, tehre exists infinitely many integers
N such the orbit of xN under fN does not shadow the orbit of x under f : in this sense,
generically, the dynamics of discretizations does not reflect that of the homeomorphism.

2) A dynamical property of a generic homeomorphism can not be deduced from the frequency
it appears on discretizations either.

The previous theorems express that the dynamics of a single discretization does not
reflect the actual dynamics of the homeomorphism. However, one might reasonably expect
that the properties of the homeomorphism are transmitted to many discretizations. More
precisely, one may hope that given a property (P ) about discretizations, if there are many
N such that the discretization fN satisfies (P ), then the homeomorphism satisfies a similar
property. It is not so, for instance:

Theorem. For a generic conservative homeomorphism f , when M goes to infinity, the
proportion of integers N between 1 and M such that fN is a cyclic permutation accumulates
on both 0 and 1.

In fact, for most of the properties considered in the previous paragraph, the frequency
they appear on discretizations of orders smaller thanM accumulates on both 0 and 1 when
M goes to infinity.

3) Some important dynamical features of a generic homeomorphism can be detected by looking
at some dynamical features of all the discretizations.

We have observed that one can not detect the dynamics of a generic homeomorphism
when looking at the dynamics of its discretizations, or even at the frequency some dynamics
appears on discretizations. Nevertheless, some dynamical features can be deduced from

2I.e. there is a Gδ dense subset of the set of conservative homeomorphisms of the torus on which the
conclusion of theorem holds.
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the analogous dynamical features of all the discretizations. This idea of convergence of
the dynamics when looking at arbitrary large precisions can be related to the work of P.
Diamond et al (see page 2). For instance, the periods of periodic orbits of a homeomorphism
can be read on the periods of periodic orbits of its discretizations:

Proposition. A generic homeomorphism f has a periodic orbit with period p if and only
if there exists infinitely many integers N such that fN has a periodic orbit with period p.

We will also prove a theorem in the same vein for invariant measures. It expresses
that the set of invariant measures of the homeomorphism can be deduced from the sets of
invariant measures of its discretizations. More precisely:

Theorem. LetMN be the set of probability measures on EN that are invariant under fN .
For a generic conservative homeomorphism f , the upper limit over N (for Hausdorff topol-
ogy) of the setsMN is exactly the set of probability measures that are invariant under f .

4) Physical measures of a generic homeomorphism can not be detected on discretizations.

Given x ∈ Tn, the Birkhoff limit of x is defined (when it exists) as the limit of
1
m

∑m−1
i=0 f i∗δx when m goes to infinity; the basin of a measure µ is the set of points x

whose Birkhoff limit coincides with µ. Heuristically, the basin of a measure is the set of
points that can see the measure. A Borel measure is said physical if its basin has posi-
tive Lebesgue measure (see e.g. [You02]). The heuristic idea underlying this concept is
that physical measures are the invariant measure which can be detected “experimentally”
(since many initial conditions lead to these measures). Indeed, some experimental results
on specific examples of dynamical systems show that they are actually the measures that
are detected in practice (see e.g. [BCG+78, BCG+79] or [Boy86, GB88]); moreover if
the dynamical system is uniquely ergodic then the invariant measure appears naturally on
discretizations (see [Mie06]).

According to this heuristic and these results, one could expect physical measures to be
the only invariant measures that can be detected on discretizations of generic conservative
homeomorphisms. This is not the case: for a generic conservative homeomorphism, there
exists a unique physical measure, say Lebesgue measure. According to the previous theo-
rem, invariant measures of the discretizations accumulate on all the invariant measures of
the homeomorphism and not only on Lebesgue measure.

However, one can still hope to distinguish the physical measure from other invariant
measures. For this purpose, we define the canonical physical measure µfN associated to a
discretization fN : it is the limit in the sense of Cesàro of the images of the uniform measure
on EN by the iterates of fN : if λN is the uniform measure on EN , then

µfN = lim
M→∞

1

M

M−1∑
m=0

(fmN )∗λN .

This measure is supported by the maximal invariant set Ω(fN ); it is uniform on every
periodic orbit and the total weight of a periodic orbit is proportional to the size of its
basin of attraction. The following theorem expresses that these measures accumulate on
the whole set of f -invariant measures: physical measures can not be distinguished from
other invariant measures on discretizations, at least for generic homeomorphisms.

Theorem. For a generic conservative homeomorphism f , the set of accumulations points
of the sequence (µfN )N∈N is the set of all f -invariant measures.

5) The dynamics of discretizations of a generic dissipative homeomorphism tends to that of the
initial homeomorphism.

We then study properties of discretizations of generic dissipative homeomorphisms3.
The basic tool is the shredding lemma of F. Abdenur and M. Andersson [AA13], which

3I.e. without assumption of preservation of a given measure.
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implies that a generic homeomorphism has a “attractor dynamics”. This easily transmits
to discretizations, for example the basins of attraction of the homeomorphism can be seen
on all the fine enough discretizations. Moreover there is convergence of the dynamics of
discretizations fN to that of f :

Theorem. For a generic dissipative homeomorphism f , for all ε > 0 and all δ > 0, there
is a full measure dense open subset O of Tn such that for all x ∈ O, all δ > 0 and all N
large enough, the orbit of xN under fN δ-shadows the orbit4 of x under f .

Thus, one can detect on discretizations the dynamics of a generic dissipative homeomor-
phism, which is mainly characterized by position of the attractors and of the corresponding
basins of attraction. Note that this behaviour is in the opposite of the conservative case,
where the individual behaviour of discretizations does not indicate anything about the
actual dynamics of the homeomorphism.

6) In practice, one can not deduce the dynamics of a conservative homeomorphism from its
discretizations, and the dynamics of a dissipative homeomorphism can be detected on discretiza-
tions only if the basins are large enough.

Finally, we compare our theoretical results with the reality of numerical simulations.
Indeed, it is not clear that the behaviour predicted by our results can be observed on
computable discretizations of an homeomorphism defined by a simple formula. On the one
hand, all our results are valid “for generic homeomorphisms”: nothing indicates that these
results apply to practical examples of homeomorphisms defined by simple formulas. On the
other hand, results such as “there are infinitely many integers N such that the discretization
of order N . . . ” provide no control over the integers N involved, they may be so large that
the associated discretizations are not calculable in practice.

For conservative homeomorphisms, our numerical simulations produce mixed results.
From a quantitative viewpoint, the behaviour predicted by our theoretical result cannot be
observed on our numerical simulations. For example, we can not observe any discretization
whose recurrence rate is equal to 1 (i.e. which is a permutation). This is nothing but
surprising: the events pointed out by the theorems are a priori very rare. For instance,
there is a very little proportion of bijective maps among maps from a given finite set
into itself. From a more qualitative viewpoint, the behaviour of the simulations is quite
in accordance with the predictions of the theoretical results. For example, for a given
conservative homeomorphism, the recurrence rate of a discretization depends a lot on the
size of the grid used for the discretization. Similarly, the canonical invariant measure
associated with a discretization of a homeomorphism f does depend a lot on the size of the
grid used for the discretization.

We also carried out simulations of dissipative homeomorphisms. The results of dis-
cretizations of a small perturbation of identity (in C0 topology) may seem disappointing
at first sight: the attractors of the initial homeomorphisms can not be detected, and there
is little difference with the conservative case. This behaviour is similar to that highlighted
by J.-M. Gambaudo and C. Tresser in [GT83] (see page 1). That is why it seemed to us
useful to test an homeomorphism which is C0 close to the identity, but whose basins are
large enough. In this case the simulations point out a behaviour that is very similar to that
described by theoretical results, namely that the dynamics converges to the dynamics of
the initial homeomorphism. In facts, one have actually observed behaviours as described
by theorems only for examples of homeomorphisms with a very few number of attractors.

We carried out many other numerical simulations, they can be found on the web page:
http://www.math.u-psud.fr/~guiheneu/Simulations.html

In section 2 we will present the framework. Sections 4 to 9 concern conservative homeo-
morphisms. More precisely, the results concerning the behaviour of a single discretization
are set out in section 6, and those concerning the average behaviour of discretizations in

4I.e. for all k ∈ N, d(fkN (xN ), fk(x)) < δ.

http://www.math.u-psud.fr/~guiheneu/Simulations.html
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section 7. We then come to the results about all the discretizations in section 8 and about
physical measures in section 9. The behaviour of discretizations of generic dissipative
homeomorphisms is established in section 11. Finally, the results of numerical simulations
are presented in part 3.

2. Framework

The manifold X and the measure λ. The results stated in the introduction for the
torus Tn and the Lebesgue measure Leb actually extend to any smooth connected manifold
X with dimension n ≥ 2, compact and possibly with boundary, endowed with a Riemannian
metric d. We fix once and for all such a manifold X endowed with the metric d. In the
general case, Lebesgue measure on Tn can be replaced by a good measure λ on X:

Definition 1. A Borel probability measure λ on X is called a good measure, or an Oxtoby-
Ulam measure if it is nonatomic, it has total support (it is positive on nonempty open sets)
and it is zero on the boundary of X.

We fix once and for all a good measure λ on X.

Notation 2. We denote by Homeo(X) the set of homeomorphisms of X, endowed by the
metric d defined by:

d(f, g) = sup
x∈X

d(f(x), g(x)).

We denote by Homeo(X,λ) the subset of Homeo(X) made of the homeomorphisms that pre-
serve the measure λ, endowed with the same metric d. Elements of Homeo(X) will be called
dissipative homeomorphisms and which of Homeo(X,λ) conservative homeomorphisms.

Generic properties in Homeo(X) and Homeo(X,λ). The topological spaces Homeo(X)
and Homeo(X,λ) are Baire spaces (see [Gui12]), i.e.: the intersection of every countable
collection of dense open sets is dense. We call Gδ a countable intersection of open sets; a
property satisfied on at least a Gδ dense set is called generic. Note that in a Baire space,
generic properties are stable under intersection.

Sometimes we will use the phrase “for a generic homeomorphism f ∈ Homeo(X) (resp.
Homeo(X,λ)), we have the property (P )”. By that we will mean that “the property (P )
is generic in Homeo(X) (resp. Homeo(X,λ))”, i.e. “there exists Gδ dense subset G of
Homeo(X) (resp. Homeo(X,λ)), such that every f ∈ G satisfy the property (P )”.

Discretization grids, discretizations of a homeomorphism. We now define a more
general notion of discretization grid. Some of the assumptions about these grids will be
useful later, it will be the subject of the next paragraph.

Definition 3 (Discretization grids). A sequence of discretization grids on X is a sequence
(EN )N∈N of discrete subsets of X \∂X, such that the grids are more and more precise: for
all ε > 0, there exists N0 ∈ N such that for all N ≥ N0, the grid EN is ε-dense. We denote
by qN the cardinality of EN .

We fix once and for all a sequence (EN )N∈N of discretization grids on X. We can now
define discretizations associated to these grids:

Notation 4 (Discretizations). Let PN be a projection of X on EN (the projection of
x0 ∈ X on EN is some y0 ∈ EN minimizing the distance d(x0, y) when y runs through
EN ). Such a projection is uniquely defined out of the set E′N made of the points x ∈ X for
which there exists at least two points minimizing the distance between x and EN . On E′N
the map PN is chosen arbitrarily (nevertheless measurably). For x ∈ X we denote by xN
the discretization of order N of x, defined by xN = PN (x). For f ∈ Homeo(X) we denote
by fN : EN → EN the discretization of order N of f , defined by fN = PN ◦ f .

Let DN be the set of homeomorphisms g such that g(EN ) ∩ E′N = ∅.
If σ : EN → EN and f ∈ Homeo(X), we denote by dN (f, σ) the distance between f|EN

and σ, considered as maps from EN into X.
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Remark 5. One might wonder why the points of the discretization grids are supposed to be
inside X. The reason is simple: a homeomorphism f of X sends ∂X on ∂X. Putting points
of some grids on the edge could perturb the dynamics of discretizations fN . In particular
it would introduce at least one orbit5 with length smaller than Card(EN ∩ ∂X).

Remark 6. As the exponential map is a local diffeomorphism, the sets E′N are closed and
have empty interior for every N large enough. Subsequently, we will implicitely suppose
that the union

⋃
N∈NE′N is an Fσ with empty interior. It is not a limitating assumption as

we will focus only on the behaviour of the discretizations for N going to +∞. It will allow
us to restrict the study to the Gδ dense set

⋂
N∈NDN , which is the set of homeomorphisms

whose N -th discretization is uniquely defined for all N ∈ N.

Probability measures on X. From section 8, we will be interested in ergodic properties
of discretizations of f . Denote P the set of Borel probability measures on X endowed with
the weak-star topology: a sequence (νm)m∈N of P tends to ν ∈ P (denoted by νm ⇀ ν) if
for all continuous function ϕ : X → R,

lim
m→∞

∫
X

ϕdνm =

∫
X

ϕdν.

Under these conditions the space P is metrizable and compact, therefore separable (Pro-
horov, Banach-Alaoglu-Bourbaki theorem).

To study ergodic properties of homeomorphisms and their discretizations, we define
natural invariant probability measures associated with these maps:

Definition 7. For any nonempty open subset U of X, we denote by λU the normalized
restriction of λ on U , i.e. λU = 1

λ(U)λ|U . We also denote by λN,U the uniform probability
measure on EN ∩ U and λN = λN,X . For x ∈ X we denote by (when the limit exists) the
Birkhoff limit of x:

µfx = lim
m→∞

1

m

m−1∑
i=0

f i∗δx,

and similarly for fN . When it is well defined, we set

µfU = lim
m→∞

1

m

m−1∑
i=0

f i∗λU

and

µfN,U = lim
m→∞

1

m

m−1∑
i=0

(fN )i∗ λN,U .

Finally, we note µfN = µfN,X .

We just define two types of invariant measures: on the one hand from a point x, the
other from the uniform measure λ. The link between it is done by the following proposition:

Proposition 8. When U is an open set whose almost every point admit a Birkhoff limit,
the measure µfU is well defined and satisfies, for every continuous map ϕ : X → R,∫

X

ϕdµfU =

∫
U

(∫
X

ϕdµfx

)
dλU .

Similarly, ∫
X

ϕdµfN,U =

∫
U

(∫
X

ϕdµfN,x

)
dλN,U .

Proof of proposition 8. It follows easily from the dominated convergence theorem. �

5Recall that orbit means forward orbit.



DYNAMICAL PROPERTIES OF SPATIAL DISCRETIZATIONS OF A GENERIC HOMEOMORPHISM 9

Hypothesis on discretization grids. Previously, we have given a very general definition
of the concept of sequence of discretization grids. In some cases, we will need additional
technical assumptions about these sequences of grids. Of course all of them will be satisfied
by the uniform discretization grids on the torus (as defined in the introduction).

The first assumption is useful to prove Lax’s theorem (theorem 20), and therefore nec-
essary only in the part concerning conservative homeomorphisms.

Definition 9 (Well distributed and well ordered grids). We say that a sequence of dis-
cretization grids (EN )N∈N is well distributed if one can associate to each x ∈ EN a subset
CN,x of X, which will be called a cube of order N , such that:

• for all N and all x ∈ EN , x ∈ CN,x,
• for all N , {CN,x}x∈EN

is a measurable partition of X:
⋃
x∈EN

CN,x is full measure
and for x, y two distinct points of EN , the intersection CN,x∩CN,y is null measure,

• for a fixed N , all the cubes CN,x have the same measure,
• the diameter of the cubes of order N tends to 0: maxx∈EN

diam(CN,x) −→
N→+∞

0.

If (EN )N∈N is well distributed and if {CN,x}N∈N,x∈EN
is a family of cubes as below,

we will say that (EN )N∈N is well ordered if, for a fixed N , the cubes {CN,x}x∈EN
can be

indexed by Z/qNZ such that two consecutive cubes (in Z/qNZ) are close to each other:
maxi∈Z/qNZ diam(CiN ∪ Ci+1

n ) −→
N→+∞

0 (especially, it is true when the boundaries of two

consecutive cubes overlap).

At first glance, it can seem surprising that there is no link between the cubes and the
projections. In fact, the existence of such cubes expresses that the grids “fit” the measure
λ.

The two following definitions describe assumptions that will be useful especially to obtain
properties in average.

Definition 10 (Refining grids). We say that a sequence of discretization grids refines if
for all N,N ′ ∈ N such that N ≤ N ′, one has EN ⊂ EN ′ .

Definition 11 (Self-similar grids). We say that a sequence of discretization grids (EN )N∈N
is self similar if for all ε > 0, there exists N0, N1 ∈ N such that for all N ≥ N1, the set EN
contains disjoint subsets Ẽ1

N , . . . , Ẽ
αN

N whose union fills a proportion greater than 1− ε of
EN , and such that for all j, ẼjN is the image of the grid EN0 by a bijection hj which is
ε-close to identity.

We say that a sequence of discretization grids (EN )N∈N is strongly self similar if it is
self similar and for all N ≥ N0, one of the hj equals to identity.

Remark 12. One easily verify that the hypothesis “being strongly self-similar” implies both
“being self-similar” and “refining”.

3. Some examples of discretization grids

In the previous section we set properties on discretizations — namely being well dis-
tributed, being well ordered, refining, being strongly self-similar or self-similar — that will
be used subsequently. In this section we give some examples of grids that verify some of
these assumptions.

Uniform discretization grids on the torus. The simplest example, which will be used
for the simulations, is that of the torus Tn = Rn/Zn of dimension n ≥ 2 endowed with
discretizations called uniform discretizations, defined from the fundamental domain In =
[0, 1]n of Tn: take an increasing sequence of integers (kN )N∈N and set

EN =

{(
i1
kN

, . . . ,
in
kN

)
∈ In

∣∣ ∀j, 0 ≤ ij ≤ kN − 1

}
,

CN,(i1/N,...,in/N) =

n∏
j=1

[
ij
kN
− 1

2kN
,
ij
kN

+
1

2kN

]
.
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Figure 1. Uniform discretization grids of order 5 on the torus T2 (EN left) and on the
cube I2 (E0

N middle and E1
N right) and their associated cubes
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Figure 2. Self similarity of grids E0
N

We easily verify that this sequence of grids is well distributed, well ordered and self-
similar. If we further assume that for any N ∈ N, kN divides kN+1 (which is true when
kN = pN with p ≥ 2), then the sequence is strongly self-similar (therefore refines). When
kN = pN with p = 2 (resp. p = 10) the discretization performs what one can expect from a
numerical simulation: doing a binary (resp. decimal) discretization at order N is the same
as truncating each binary (resp. decimal) coordinate of the point x ∈ In to the N -th digit,
i.e. working with a fixed digital precision6.

Uniform discretization grids on the cube. Similarly, one can define uniform discretiza-
tions on the cube In = [0, 1]n by setting

E0
N =

{(
i1
kN

, . . . ,
in
kN

)
∈ In

∣∣ ∀j, 1 ≤ ij ≤ kN − 1

}
,

still with an increasing sequence (kN )N∈N of integers, to which are associated the cubes7

(see figure 1)

CN,(i1/N,...,in/N) =

n∏
j=1

[
ij − 1

kN − 1
,

ij
kN − 1

]
.

As before, one easily verifies that this sequence of grids is well distributed, well ordered
and self-similar (see figure 2). If we further assume that for any N ∈ N, kN divides kN+1,
then the sequence is strongly self-similar (therefore refines).

One can also take discretizations according to the centres of the cubes.

E1
N =

{(
i1 + 1/2

kN
, . . . ,

in + 1/2

kN

)
∈ In

∣∣ ∀j, 0 ≤ ij ≤ kN − 1

}
.

6In fact, in practice the computer works in floating point format, so that the number of decimal places
is not the same when the number is close to 0 or not.

7Be careful, these cubes have their vertices on the grid of order kN − 1.
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This time the cubes are much more natural (see figure 1):

CN,(i1/N,...,in/N) =

n∏
j=1

[
ij
kN

,
ij + 1

kN

]
.

Again, we easily verify that this sequence of grids is well distributed, well ordered and
self-similar (but does not refine).

Discretization grids on an arbitrary manifold. In fact, discretizations E0
N on In can

be generalized to an arbitrary manifold X with the Oxtoby-Ulam theorem (see [OU41]):

Theorem 13 (Oxtoby, Ulam). Under the assumptions that have been made on X and λ,
there exists a map φ : In → X such that:

(1) φ is surjective
(2) φ|I̊n is an homeomorphism on its image
(3) φ(∂In) is a closed subset of X with empty interior and disjoint from φ(I̊n)
(4) λ(φ(∂In)) = 0
(5) φ∗(λ) = Leb, where Leb is Lebesgue measure.

This theorem allows us to define discretization grids on X from uniform discretizations
on the cube. We obtain the following informal proposition:

Proposition 14. If there is a sequence (EN )N of grids on In whose elements are not on
the edge of the cube, then its image by φ defines a sequence of grids on X which satisfy the
same properties as the initial grid on the cube.

Remark 15. The example also includes the case where X = In, λ = Leb and where the
grids are the images of the grids EN by a unique homeomorphism of X preserving Lebesgue
measure.

Part 1. Discretizations of a generic conservative homeomorphism

Recall that we have fixed once and for all a manifold X, a good measure λ on X and a
sequence of discretization grids (EN )N∈N (see definition 3). It is further assumed that this
sequence of grids is well distributed and well ordered (see definition 9). In this section we
will focus on discretizations of elements of Homeo(X,λ), so homeomorphisms will always
be supposed conservative.

4. Dense types of approximations

To begin with we define the notion of type of approximation.

Definition 16. A type of approximation T = (TN )N∈N is a sequence of subsets of the set
F(EN , EN ) made of applications from EN into itself.

Let U be an open subset of Homeo(X,λ). A type of approximation T is said to be dense
in U if for all f ∈ U , ε > 0 and all N0 ∈ N, there exists N ≥ N0 and σN ∈ TN such that
dN (f, σN ) < ε (recall that dN is the distance between f|EN

and σN considered as maps
from EN into X).

The goal of this paragraph is to obtain the following result: every dense type of approx-
imation appears on infinitely many discretizations of a generic homeomorphism.

Theorem 17. Let U be an open subset8 of Homeo(X,λ) and T be a type of approximation
which is dense in U . Then for a generic homeomorphism f ∈ U and for all N0 ∈ N, there
exists N ≥ N0 such that fN ∈ TN .

When we will try to obtain properties of discretizations of generic homeomorphisms, this
theorem will be the second step of the proof, the first being to show that the approximation
type we are interested in is dense. In section 6 we will try to establish as many corollaries of

8We will often take U = Homeo(X,λ).
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this theorem as possible, showing that the approach “prove that such approximation is dense
then apply theorem 17” is a general method in the study of properties of discretizations9.

To prove of theorem 17 we start from a dense type of approximations — in other words
discrete applications — and we want to get properties of homeomorphisms. The tool that
allows us to restore a homeomorphism from a finite map σN : EN → EN , i.e. do the
opposite of a discretization, is the finite map extension proposition:

Proposition 18 (Finite map extension). Let (x1, x2, . . . , xk) and (y1, y2, . . . , yk) be two
k-tuples of pairwise distinct points in X \ ∂X (i.e. for all i 6= j, xi 6= xj and yi 6= yj).
Then there exists f ∈ Homeo(X,λ) such that for all i, f(xi) = yi. Moreover f can be
chosen such that if maxi d(xi, yi) < δ then d(f, Id) < δ.

The idea of the proof is quite simple: it suffice to compose homeomorphisms whose
support’s size is smaller than ε and which are central symmetries within this support. Then
one constructs a sequence (zj)1≤j≤k such that z1 = x1, y1 = zk and d(zj , zj+1) < ε/10.
Composing k − 1 homeomorphisms as above, such that each one sends zj on zj+1, one
obtains a conservative homeomorphism which sends x0 on y0. Implementing these remarks
is then essentially technical. A detailed proof can be found in section 2.2 of [Gui12].

With this proposition, we can build homeomorphisms from a dense type of approxima-
tion:

Lemma 19. Let U be an open subset of Homeo(X,λ) and T = (TN )N∈N be a type of
approximation which is dense in U . Then for all N0 ∈ N, the set of homeomorphisms f
such that there exists N ≥ N0 such that the discretization fN belongs to TN is dense in U .

Proof of lemma 19. Let f ∈ U , N0 ∈ N and ε > 0. Since T is a type of approximation
which is dense in U , there exists N ≥ N0 and σN ∈ TN such that dN (f, σN ) < ε. Let
x1, . . . , xqN be the elements of EN . Then for all `, d(f(x`), σN (x`)) < ε. We modify σN into
a bijection σ′N : EN → X whose discretization on EN equals to σN : set σ′N (x1) = σ(x1),
σ′N is defined by induction by choosing σ′N (x`) such that σ′N (x`) is different from σ′N (xi)
for i ≤ `, such that PN (σ′N (x`)) = PN (σN (x`)) and that d(f(x`), σ

′
N (x`)) < ε.

Since σ′N is a bijection proposition 18 can be applied to f(x`) and σ′N (x`); this gives
a measure-preserving homeomorphism ϕ such that ϕ(f(x`)) = σ′N (x`) for all ` and such
that d(ϕ, Id) < ε. Set f ′ = ϕ ◦ f , we have d(f, f ′) ≤ ε and f ′(x`) = σ′N (x`) for all `, and
therefore fN = σN . �

Proof of theorem 17. Let (xN,`)1≤`≤qN be the elements of EN and consider the set (where
ρN is the minimal distance between two distinct points of EN )⋂

N0∈N

⋃
N≥N0
σN∈TN

{
f ∈ U | ∀`, dN

(
f(xN,`), σN (xN,`)

)
<
ρN
2

}
.

This set is clearly a Gδ set and its density follows directly from lemma 19. Moreover we
can easily see that its elements satisfy the conclusions of the theorem. �

5. Lax’s theorem

Now that we have shown theorem 17, we have to obtain dense types of approximation.
Again, a theorem will be systematically used: Lax’s theorem, and more precisely its im-
provement stated by S. Alpern [Alp76] which allows us to approach any homeomorphism
by a cyclic permutation of the elements of a discretization grid.

Theorem 20 (Lax, Alpern). Let f ∈ Homeo(X,λ) and ε > 0. Then there exists N0 ∈ N
such that for all N ≥ N0, there exists a cyclic permutation σN of EN such that d(f, σN ) < ε.

9Although some properties can be proved in different ways: for instance corollary 38 can be proved
in inserting horseshoes in the dynamics of a given homeomorphism, using the local modification theorem
(theorem 31, for a presentation of the technique in another context see section 3.3 of [Gui12]); also a
variation of corollary 26 can be shown in perturbing any given homeomorphism such that it has a periodic
orbit whose distance to the grid EN (grids are assumed to refine) is smaller than the modulus of continuity
of f , so that the actual periodic orbit and the discrete orbit fit together.
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As a compact metric set can be seen as a “finite set up to ε”, Lax’s theorem allows us to
see an homeomorphism as a “cyclic permutation up to ε”. In practice this theorem is used
to “break” homeomorphisms into small pieces. Genericity of transitivity in Homeo(X,λ)
follows easily from Lax’s theorem together with finite map extension proposition (again, see
[AP00] or part 2.4 of [Gui12]). In our case, applying theorem 17, we deduce that infinitely
many discretizations of a generic homeomorphism are cyclic permutations. The purpose of
section 6 is to find variations of Lax’s theorem (which are at the same time corollaries of
it) concerning other properties of discretizations.

We give briefly the beautiful proof of Lax’s theorem, which is essentially combinatorial
and based on marriage lemma and on a lemma of approximation of permutations by cyclic
permutations due to S. Alpern. Readers wishing to find proofs of these lemmas may consult
section 2.1 of [Gui12]. This is here that we use the fact that discretizations are well
distributed and well ordered.

Lemma 21 (Marriage lemma). Let E and F be two finite sets and ≈ a relation between
elements of E and F . Suppose that the number of any subset E′ ⊂ E is smaller than the
number of elements in F that are associated with an element of E′, i.e.:

∀E′ ⊂ E, Card(E′) ≤ Card {f ∈ F | ∃e ∈ E′ : e ≈ f} ,
then there exists an injection Φ : E → F such that for all e ∈ E, e ≈ Φ(e).

Lemma 22 (Cyclic approximations in Sq, [Alp76]). Let q ∈ N∗ and σ ∈ Sq (Sq is seen
as the permutation group of Z/qZ). Then there exists τ ∈ Sq such that |τ(k)− k| ≤ 2 for
all k (where |.| is the distance in Z/qZ) and such that the permutation τσ is cyclic.

Proof of theorem 20. Let f ∈ Homeo(X,λ) and ε > 0. Consider N0 ∈ N such that for
all N ≥ N0, the diameter of the cubes of order N (given by the hypothesis “being well
distributed”) and their images by f is smaller than ε. We define a relation ≈ between cubes
of order N − 1: C ≈ C ′ if and only if f(C) ∩C ′ 6= ∅. Since f preserves λ, the image of the
union of ` cubes intersects at least ` cubes, so marriage lemma (lemma 21) applies: there
exists an injection ΦN from the set of cubes of order N into itself (then a bijection) such
that for all cube C, f(C)∩ΦN (C) 6= ∅. Let σN be the application that maps the center of
any cube C to the center of the cube ΦN (C), we obtain:

dN (f, σN ) ≤ sup
C

(
diam(C)

)
+ sup

C

(
diam(f(C))

)
≤ 2ε.

It remains to show that σN can be chosen as a cyclic permutation. Increasing N if
necessary, adn using the hypothesis that the grids are well ordered, we number the cubes
such that the diameter of the union of two consecutive cubes is smaller than ε. Then we
use lemma 22 to obtain a cyclic permutation σ′N whose distance to σN is smaller than ε.
Thus we have found N0 ∈ N and for all N ≥ N0 a cyclic permutation σ′N of EN whose
distance to f is smaller than 3ε. �

6. Individual behaviour of discretizations

Once we have set theorems 17 and 20, we can establish results concerning the behaviour
of discretizations of a generic conservative homeomorphism. Here we study individual
behaviour of discretizations, i.e. properties about only one order of discretization. As has
already been said, applying theorem 17, it suffices to find dense types of approximation to
obtain properties about discretizations. In practice, these dense types of approximations
are obtained from variations of Lax’s theorem (theorem 20).

Recall that the sequence (EN )n∈N of discretization grids is well distributed and well
ordered (see definition 9), we denote by fN the discretization of an homeomorphism f and
Ω(fN ) the maximal invariant set of fN (i.e. the union of periodic orbits of fN ).

We will try to show that for simple dynamical properties (P ) about finite maps and
for a generic conservative homeomorphism f , infinitely many discretizations fN verify (P )
as well as infinitely many discretizations verify its contrary. For instance, for a generic
homeomorphism f , the maximal invariant set Ω(fN ) is sometimes as large as possible,
i.e. Ω(fN ) = EN (corollary 23), sometimes very small (corollary 26) and even better
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sometimes the number of elements of the image of EN is small (corollary 38). In the same
way stabilization time10 is sometimes zero (corollary 23 for example), sometimes around
Card(EN ) (corollary 28). Finally, concerning the dynamics of fN |Ω(fN ), sometimes it is a
cyclic permutation (corollary 23) or a bicyclic permutation (remark 24, see also corollary
36), sometimes it has many orbits (corollary 40).

Firstly, we deduce directly from Lax’s theorem that cyclic permutations of sets EN form
a dense type of approximation in Homeo(X,λ). Combining this with theorem 17, we obtain:

Corollary 23 (Miernowski, [Mie05]). For a generic homeomorphism f ∈ Homeo(X,λ),
for every N0 ∈ N, there exists N ≥ N0 such that fN is a cyclic permutation11.

Remark 24. The same result is obtained for with bicyclic permutations, which are permu-
tations having exactly two orbits whose lengths are relatively prime (see [Gui12]).

The first variation of Lax’s theorem concerns the approximation of applications which
maximal invariant set is small. It is the contrary to what happens in corollary 23.

Proposition 25 (First variation of Lax’s theorem). Let f ∈ Homeo(X,λ). Then for all
ε, ε′ > 0, there exists N0 ∈ N such that for all N ≥ N0, there exists a map σN : EN → EN
such that dN (f, σN ) < ε and

Card(Ω(σN ))

Card(EN )
=

Card(Ω(σN ))

qN
< ε′,

and such that EN is made of a unique (pre-periodic) orbit of σN .

Proof of proposition 25. Let f ∈ Homeo(X,λ), ε > 0 and x a recurrent point of f . There
exists τ ∈ N∗ such that d(x, fτ (x)) < ε

8 ; this inequality remains true for fine enough
discretizations: there exists N1 ∈ N such that if N ≥ N1, then

d(x, xN ) <
ε

8
, d

(
fτ (x), fτ (xN )

)
<
ε

8
and

τ

qN
< ε′.

Using the modulus of continuity of fτ and Lax’s theorem (theorem 20), we obtain an integer
N0 ≥ N1 such that for all N ≥ N0, there exists a cyclic permutation σN of EN such that
dN (f, σN ) < ε

2 and dN (fτ , στN ) < ε
8 . Then

d(xN , σ
τ
N (xN )) ≤ d(xN , x) + d

(
x, fτ (x)

)
+ d
(
fτ (x), fτ (xN )

)
+d
(
fτ (xN ), στN (xN )

)
<

ε

2
.

We compose σN by the (non bijective) application mapping στ−1
N (xN ) on xN and being

identity anywhere else (see figure 3), in other words we consider the application

σ′N (x) =

{
xN if x = στ−1

N (xN )
σN (x) otherwise.

The map σ′N has a unique injective orbit whose associated periodic orbit Ω(σ′N ) has length τ
(it is (xN , σN (xN ), . . . , στ−1

N (xN ))). Since d(f, σ′N ) < ε, the map σ′N verifies the conclusion
of the proposition. �

A direct application of theorem 17 gives:

Corollary 26. For a generic homeomorphism f ∈ Homeo(X,λ),

limN→+∞
Card(Ω(fN ))

Card(EN )
= 0.

Specifically for all ε > 0 and all N0 ∈ N, there exists N ≥ N0 such that Card(Ω(fN ))
Card(EN ) < ε

and such that EN is made of a unique (pre-periodic) orbit of fN .

10I.e. the smallest integer k such that fkN (EN ) = Ω(fN ).
11In fact, T. Miernowski proves “permutation” but his arguments, combined with the version of the

Lax’s theorem we gave, show “cyclic permutation”.
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xNσN (xN )

σ2
N (xN )

στ−1
N (xN )

στN (xN )

στ+1
N (xN )

σqN−2
N (xN )

σqN−1
N (xN )

xNσN (xN )

σ2
N (xN )

στ−1
N (xN )

στN (xN )

στ+1
N (xN )

σqN−2
N (xN )

σqN−1
N (xN )

Figure 3. Modification of a cyclic permutation

The same kind of idea leads to the following proposition:

Proposition 27. Let f ∈ Homeo(X,λ) having at least one periodic point of period p. Then
for all ε > 0, there exists N0 ∈ N such that for all N ≥ N0, there exists an application
σN : EN → EN with Card(Ω(σN )) = p and dN (f, σN ) < ε, such that EN is made of a
unique (pre-periodic) orbit of σN .

Proof of proposition 27. Simply replace the recurrent point by a periodic point of period p
in the proof of proposition 25. �

We will show that owning a periodic point is a generic property in Homeo(X,λ) (see also
[DF00] or part 3.2 of [Gui12]), a proper application of Baire’s theorem leads to a refinement
of corollary 26:

Corollary 28. Let ε > 0. A generic homeomorphism f ∈ Homeo(X,λ) has a periodic
point whose orbit is ε-dense. Moreover, fN has a unique periodic orbit for infinitely many
integers N , whose period does not depend on N ∈ N and equals the smallest period of
periodic points of f which are ε-dense; moreover EN is covered by a single (pre-periodic)
orbit of fN .

To prove corollary 28 we have to introduce the concept of persistent point.

Definition 29. Let f ∈ Homeo(X). A periodic point x of f with period p is said persistent
if for all neighborhood U of x, there exists a neighborhood V of f in Homeo(X) such that
every f̃ ∈ V has a periodic point x̃ ∈ U with period p.

Example 30. The endomorphism h = Diag(λ1, . . . , λn) of Rn, with
∏
λi = 1 and λi 6= 1 for

all i, is measure-preserving and has a persistent fixed point at the origin (see e.g. [KH95],
p. 319). Let s be a reflection of Rn, the application h ◦ f is also measure-preserving and
has a persistent fixed point at the origin.

Finally, we use the theorem of local modification of conservative homeomorphisms, which
allows us to replace locally a homeomorphism by another. Although it is geometrically
“obvious” and it has an elementary proof in dimension two, it is easily deduced from the
(difficult) annulus theorem. For more details one may refer to [DF00] or part 3.1 of [Gui12].
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A1σ1

σ2

Σ

A2

f1

f2

B1 τ1

τ2

B2

Λ

Figure 4. Local modification technique

Theorem 31 (Local modification). Let σ1, σ2, τ1 and τ2 be four bicollared embeddings12

of Sn−1 in Rn, such that σ1 is in the bounded connected component13 of σ2 and τ1 is in
the bounded connected component of τ2. Let A1 be the bounded connected component of
Rn \σ1 and B1 the bounded connected component of Rn \τ1; Σ be the connected component
of Rn\(σ1∪σ2) having σ1∪σ2 as boundary and Λ the connected component of Rn\(τ1∪τ2)
having τ1 ∪ τ2 as boundary; A2 be the unbounded connected component of Rn \ σ2 and B2

the unbounded connected component of Rn \ τ2 (see figure 4).
Suppose that Leb(A1) = Leb(B1) and Leb(Σ) = Leb(Λ). Let fi : Ai → Bi be two

measure-preserving homeomorphisms such that either each one preserves the orientation, or
each one reverses it. Then there exists a measure-preserving homeomorphism f : Rn → Rn

whose restriction to A1 equals f1 and restriction to A2 equals f2.

Since this theorem is local, it can be applied to an open space O instead of Rn, or even
better, together with Oxtoby-Ulam theorem (theorem 13), to any domain of chart of a
manifold X instead of Rn and measure λ instead of Lebesgue measure

Proof of corollary 28. Let ε > 0 and Up the set of homeomorphisms that have at least one
periodic persistent point with period p whose orbit is ε-dense (strictly), but no periodic
point with period less than p whose orbit is ε-dense (not strictly). The sets Up are open
and pairwise disjoints. Moreover their union is dense. Indeed, for f ∈ Homeo(X,λ), if f
has at least one periodic point whose orbit is ε-dense, then we choose a periodic point x
whose orbit is ε-dense and whose period p is minimal. Then we perturb f such that this
point is persistent, avoiding the creation of periodic points of smaller periods: we choose a
neighborhood D of x such that the sets D, f(D), · · · , fp−1(D) are pairwise disjoints and we
replace locally f by the map h◦f−(p−1) (where h is one of the two maps of the example 30,
depending of whether f−(p−1) preserves orientation or not) in the neighborhood of f−1(x),
using the theorem of local modification (theorem 31), such that f do not change outside
the union of the sets f i(D). On the contrary, if f does not have any periodic point, we
pick a recurrent point and perturb f such that this point is periodic, and then we apply
the previous case.

Let p ∈ N∗. Proposition 27 indicates that the set of maps whose longest periodic orbit
has length p is a dense type of approximation in Up. So, by theorem 17, there exists open
sets Op,N such that

⋂
N∈NOp,N is a dense Gδ of Up, made of homeomorphisms of Up whose

an infinity of discretizations have only one injective orbit whose associated cycle has length
p and is ε-dense.

Set ON =
⋃
p∈N∗ Op,N . Since the sets Up are pairwise disjoints,⋂

N∈N

ON =
⋂
N∈N

⋃
p∈N∗

Op,N =
⋃
p∈N∗

⋂
N∈N

Op,N .

12An embedding i of a manifoldM in Rn is said bicollared if there exists an embedding j : M×[−1, 1]→
Rn such that jM×{0} = i.

13By the Jordan-Brouwer theorem the complement of a set which is homeomorphic to Sn−1 has exactly
two connected components: one bounded and one unbounded.
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The right side of the equation forms a dense subset of Homeo(X,λ), so the left side is a
dense Gδ of Homeo(X,λ). It is made of homeomorphisms f such that for infinitely many
N ∈ N, the grid EN is covered by a single forward orbit of fN whose associated periodic
orbit is ε-dense and whose length is the shortest period of periodic points of f whose orbit
are ε-dense. �

Remark 32. The shortest period of periodic points of generic homeomorphisms has not
any global upper bound in Homeo(X,λ): for example, for all p ∈ N, there is a open set
of homeomorphisms of the torus without periodic point of period less than p (e.g. the
neighborhood of a nontrivial rotation) and this property remains true for discretizations.

We now want to get a discrete analogue to topological weak mixing (which is generic in
Homeo(X,λ), see e.g. [AP00] or part 2.4 of [Gui12]).

Definition 33. A homeomorphism f is said topologically weakly mixing if for all nonempty
open sets (Ui)i≤M and (U ′i)i≤M , there exists m ∈ N such that fm(Ui) ∩ U ′i is nonempty
for all i ≤M .

The proof of the genericity of topological weak mixing starts by an approximation of
every conservative homeomorphism by another having ε-dense periodic orbits whose lengths
are relatively prime. The end of the proof lies primarily in the use of Baire’s theorem
and Bezout’s identity. In the discrete case, the notion of weak mixing is replaced by the
following:

Definition 34. Let ε > 0. A finite map σN is said ε-topologically weakly mixing if for all
M ∈ N and all balls (Bi)i≤M and (B′i)i≤M with diameter ε, there exists m ∈ N such that
for all i

σmN (Bi ∩ EN ) ∩ (B′i ∩ EN ) 6= ∅.
The first step of the proof is replaced by the following variation of Lax’s theorem:

Proposition 35 (Second variation of Lax’s theorem). Let f ∈ Homeo(X,λ) be a homeo-
morphism whose all iterates are topologically transitive. Then for all ε > 0 and allM ∈ N∗,
there exists N0 ∈ N such that for all N ≥ N0, there exists σN : EN → EN which
has M ε-dense periodic orbits whose lengths are pairwise relatively prime, and such that
dN (f, σN ) < ε.

Proof of proposition 35. We prove the proposition in the case where M = 2, the other
cases being easily obtained by an induction. Let ε > 0 and f be an homeomorphism whose
all iterates are topologically transitive. Then there exists x0 ∈ X and p ∈ N∗ such that
{x0, . . . , f

p−1(x0)} is ε-dense and d(x0, f
p(x0)) < ε/2. Since transitive points of fp form

a dense Gδ subset of X, while the orbit of x0 form a Fσ set with empty interior, the set
of points whose orbit under fp is dense and disjoint from that of x0 is dense. So we can
pick such a transitive point y0. Set y1 = f(y0). Then there exists a multiple q1 of p such
that the orbit {y1, . . . , f

q1−1(y1)} is ε-dense and d(y1, f
q1(y1)) < ε/2. Again, by density,

we can choose a transitive point y2 whose orbit is disjoint from that of x0 and y1, with
d(y1, y2) < ε/2 and d(y0, y1) − d(y0, y2) > ε/4. Then there exists a multiple q2 of p such
that d(y2, f

q2(y2)) < ε/2. And so on, we construct a sequence (ym)1≤m≤` such that (see
figure 5):
(i) for all m, there exists qm > 0 such that p|qm and d(ym, f

qm(ym)) < ε/2,
(ii) the orbits {x0, . . . , f

p−1(x0)} and {ym, . . . , fqm−1(ym)} (m going from 0 to `− 1) are
pairwise disjoints,

(iii) for all m, d(ym, ym+1) < ε/2 and d(y0, ym)− d(y0, ym+1) > ε/4,
(iv) y` = y0.
Let σN be a finite map given by Lax’s theorem. For all N large enough, σN satis-

fies the same properties (i) to (iii) than f . Changing σN at the points σqm−1
N ((ym)N )

and σp−1
N ((x0)N ), we obtain a finite map σ′N such that σ′N

qN ((ym)N ) = (ym+1)N and
σpN ((x0)N ) = (x0)N . Thus the orbit of (x0)N under σ′N is 2ε-dense and has period p
and the orbit of (y0)N under σ′N is 2ε-dense, disjoint from which of (x0)N and has period
1 + q1 + · · ·+ q`−1 relatively prime to p. �
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×y0 = y` ×y1 = f(y0)
×

y2

×
y3

×
y`−1 ×

fq1(y1)×
fq2(y2)

×
fq`−1(y`−1)

. . .

f

fq1fq2
fq`−1

Figure 5. Construction of the sequence (ym)1≤m≤`

Corollary 36. For a generic homeomorphism f ∈ Homeo(X,λ), for all ε > 0 and all
N0 ∈ N, there exists N ≥ N0 such that fN is ε-topologically weakly mixing.

Proof of corollary 36. Again, we prove the corollary in the case where M = 2, other cases
being easily obtained by induction. Let ε > 0 and N0 ∈ N. All iterates of a generic
homeomorphism f are topologically transitive: it is an easy consequence of the genericity
of transitivity (see e.g. corollary 23 or theorem 2.11 of [Gui12]); we pick such a homeomor-
phism. Combining theorem 17 and proposition 35, we obtain N ≥ N0 such that fN has two
ε/3-dense periodic orbits whose lengths p et q are coprime. We now have to prove that fN
is ε-topologically weakly mixing. Let B1, B2, B′1 and B′2 be balls with diameter ε. Since
each one of these orbits is ε/3-dense, there exists xN ∈ X which is in the intersection of the
orbit whose length is p and B1, and yN ∈ X which is in the intersection of the orbit whose
length is q and B2. Similarly, there exists two integers a and b such that faN (xN ) ∈ B′1 and
f bN (yN ) ∈ B′2.

Recall that we want to find a power of fN which sends both xN in B′1 and yN in B′2. It
suffices to pick m ∈ N such that m = a+ αp = b+ βq. Bezout’s identity states that there
exists two integers α and β such αp− βq = b− a. Set m = a+ αp, adding a multiple of pq
if necessary, we can suppose that m is positive. Thus fmN (xN ) ∈ B′1 and fmN (yN ) ∈ B′2. �

We now establish a new variation of Lax’s theorem. It asserts that every homeomorphism
can be approximated by a finite map whose image has a small cardinality, unlike what
happens in Lax’s theorem.

Proposition 37 (Third variation of Lax’s theorem). Let f ∈ Homeo(X,λ) and ϑ : N →
R∗+ a map which tends to +∞ at +∞. Then for all ε > 0, there exists N0 ∈ N such that
for all N ≥ N0, there exists a map σN : EN → EN such that Card(σN (EN )) < ϑ(N) and
dN (f, σN ) < ε.

Proof of proposition 37. Let f ∈ Homeo(X,λ), ϑ : N → R∗+ a map which tends to +∞
at +∞ and ε > 0. By Lax’s theorem (theorem 20) there exists N1 ∈ N such that for all
N ≥ N1, there exists a cyclic permutation σN : EN → EN whose distance to f is smaller
than ε/2. For N ≥ N1, set σ′N = PN1

◦σN . Increasing N1 if necessary we have d(f, σ′N ) < ε,
regardless of N . Moreover Card(σ′N (EN )) ≤ qN1

, if we choose N0 large enough such that
for all N ≥ N0 we have qN1

< ϑ(N), then Card(σ′N (EN )) ≤ ϑ(N). We have shown that
the map σ′N satisfies the conclusions of proposition for all N ≥ N0. �

Corollary 38. Let ϑ : N → R∗+ a map which tends to +∞ at +∞. Then for a generic
homeomorphism f ∈ Homeo(X,λ),

lim
N→+∞

Card(fN (EN ))

ϑ(N)
= 0.

In particular, generically, limCard(fN (EN ))
Card(EN ) = 0.
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Proof of corollary 38. Remark that if we replace ϑ(N) by
√
ϑ(N), it suffices to prove that

for a generic homeomorphism, limCard(fN (EN ))
ϑ(N) ≤ 1. It is easily obtained in combining

theorem 17 and proposition 37. �

So far all variations of Lax’s theorem built finite maps with a small number of orbits.
With the additional assumption that the sequence of grids is self-similar, we show a last
variation of Lax’s theorem approaching every homeomorphism with a finite map with a
large number of orbits.

Proposition 39 (Fourth variation of Lax’s theorem). Assume that the sequence of grids
(EN )N∈N is self-similar. Let f ∈ Homeo(X,λ) and ϑ : N → R such that ϑ(N) = o(qN ).
Then for all ε > 0 there exists N1 ∈ N such that for all N ≥ N1, there exists a permutation
σN of EN such that dN (f, σN ) < ε and that the number of cycles of σN is greater than
ϑ(N). Moreover these ϑ(N) cycles of σN are conjugated to a cyclic permutation of EN0

by
bijections whose distance to identity is smaller than ε.

Proof of proposition 39. Let ε > 0, for all N0 ∈ N large enough, Lax’s theorem gives us a
cyclic permutation σ′N0

of EN0
whose distance to f is smaller than ε. Since the grids are self-

similar, there exists N1 ∈ N such that for all N ≥ N1, the set EN contains qN/qN0 ≥ ϑ(N)

disjoint subsets ẼjN , each one conjugated to a grid EN0
by a bijection hj whose distance

to identity is smaller than ε. On each ẼjN , we define σN as the conjugation of σ′N0
by hj ;

outside these sets we just pick σN such that dN (f, σN ) < ε. Since the distance between hj
and identity is smaller than ε, we have dN (f, σN ) < 2ε. Moreover, σN has at least ϑ(N)
cycles; this completes the proof. �

The application of theorem 17 gives us:

Corollary 40. We still assume that the sequence of grids (EN )N∈N is self-similar. Let
ϑ : N→ R such that ϑ(N) = o(qN ). Then for a generic homeomorphism f ∈ Homeo(X,λ)
and for infinitely many integers N , the discretization fN of f has at least ϑ(N) cycles which
are pairwise conjugated.

7. Average behaviour of discretizations

We now want to study the average behaviour of discretizations of a generic homeomor-
phism. For example one could imagine that even if for a generic homeomorphism f , the
event “fN is a cyclic permutation” appears for infinitely many orders, it is still quite rare.
More precisely, we study the frequency of occurrence of properties related to the discretiza-
tions of generic homeomorphisms in the Cesàro sense: given a property (P ) concerning
discretizations, what is the behaviour of the proportion between 1 and M of discretizations
satisfying the property (P ), when M goes to infinity? For this study, we assume that the
sequence of discretization grids refines (which is true for example for discretizations upon
uniform grids of orders powers of an integer, see section 3). This prevents us from tricky
arithmetic problems about overlay of grids.

Definition 41. Let f ∈ Homeo(X,λ). We say that a property (P ) about discretizations
is satisfied in average if for all N0 ∈ N and all ε > 0, there exists N ≥ N0 such that the
proportion of integers M ∈ {0, . . . , N} such that fM satisfies (P ) is greater than 1− ε, i.e.

lim
N→+∞

1

N + 1
Card

{
M ∈ {0, . . . , N} | fM satisfies (P )

}
= 1.

We will show that most of the dynamical properties studied in the previous section
are actually satisfied on average for generic homeomorphisms. To start with we set out a
technical lemma:

Lemma 42. Let T be a dense type of approximation in Homeo(X,λ). Then for a generic
homeomorphism f ∈ Homeo(X,λ), for all ε > 0 and all α > 0, the property (P ) : “EN
contains at least α disjoints subsets which fulfils a proportion greater than 1−ε of EN , each
one stabilized by fN and such that the restriction of fN to each one is conjugated to a map
of T by a bijection whose distance to identity is smaller than ε” is satisfied in average.
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In practice, this lemma provides many properties satisfied on average, for instance:
• quantitative properties on discretizations, such as owning at leastM periodic orbits,
• properties of existence of sub-dynamics on discretizations, such as owning at least

one dense periodic orbit.

Proof of lemma 42. Let us consider the set

C =
⋂
ε>0
N0∈N

⋃
N≥N0

{
f ∈ Homeo(X,λ)

∣∣
1

N+1 Card
{
M ∈ {0, . . . , N} | fM satisfies (P )

}
> 1− ε

}
.

We want to show that C contains a dense Gδ of Homeo(X,λ). The set C is a Gδ of the
generic set

⋂
N∈NDN , it suffices to prove that it is dense in

⋂
N DN . Let f ∈ Homeo(X,λ),

N0 ∈ N, δ > 0 and ε > 0. To prove it we want to find a homeomorphism g whose distance
to f is smaller than δ and an integer N ≥ N0 such that

1

N + 1
Card

{
M ∈ {0, . . . , N} | gM satisfies (P )

}
> 1− ε.

It is simply obtained in combining the density of the type of approximation T and the fact
that the grids refines. �

This corollary allows us to obtain some properties about the average behaviour of dis-
cretizations. For instance there is an improvement of corollary 28:

Corollary 43. For a generic homeomorphism f ∈ Homeo(X,λ), the property “fN has
a ε-dense periodic orbit and the cardinality of Ω(fN ) is smaller than ϑ(N) = o(qN )” is
satisfied in average.

Or an improvement of corollary 36:

Corollary 44. For a generic homeomorphism f ∈ Homeo(X,λ) and for all ε > 0, the
property “fN is ε-topologically weakly mixing (see definition 34)” is satisfied in average.

Or even an improvement of corollary 38:

Corollary 45. For a generic homeomorphism f ∈ Homeo(X,λ) and for all ε > 0, the
property “ Card(fN (EN ))

Card(EN ) < ε” is satisfied in average.

And an improvement of corollary 40:

Corollary 46. For a generic homeomorphism f ∈ Homeo(X,λ) and for all M ∈ N,
property “fN has at least M periodic orbits” is satisfied in average.

However, note that the most simple property about discretizations, i.e. being a cyclic
permutation, can not be proved by using lemma 42. To do this, we need a slightly more
precise result, that we will not prove here.

Proposition 47. For a generic homeomorphism f ∈ Homeo(X,λ), the property “fN is a
cyclic permutation” is satisfied in average.

Remark 48. However, the property of approximation by bicyclic permutations in average
can not be proven with this technique.

Remark 49. A simple calculation shows that everything that has been done in this section
also applies to the behaviour of discretizations in average of Cesàro average, in average of
average of Cesàro average etc., i.e. when studying quantities

1

N2 + 1

N2∑
N1=0

1

N1 + 1
Card

{
M ∈ {0, . . . , N1} | fM satisfies (P )

}
,

1

N3 + 1

N3∑
N2=0

1

N2 + 1

N2∑
N1=0

1

N1 + 1
Card

{
M ∈ {0, . . . , N1} | fM satisfies (P )

}
. . .
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8. Behaviour of all the discretizations

In the previous sections we showed that the dynamical behaviour of discretizations
seems very chaotic depending of the order of discretization. In contrast, the dynamics
of a generic homeomorphism is well known (see e.g. [Gui12]) and independent from the
homeomorphism. One even has a 0-1 law on Homeo(X,λ) (see [GK98] or the last chapter of
[Gui12]) which states that either a given ergodic property on conservative homeomorphisms
is generic, or its contrary is generic. Thus, the dynamics of a generic homeomorphism and
that of its discretizations seem quite of independent. In fact one can deduce some dynamical
features of a generic homeomorphism from the corresponding dynamical features of all its
discretizations. For instance, the following property can be easily deduced from corollary
28.

Proposition 50. Let f be a generic homeomorphism of Homeo(X,λ) and p be an integer.
Then f has a periodic orbit with period p if and only if there exists infinitely many integers
N such that fN has a periodic orbit with period p.

Proof of proposition 50. An easy variation of corollary 28 shows that if p is a period of a
periodic orbit of a generic homeomorphism f , then there exists infinitely many discretiza-
tions fN such that fN has a periodic orbit with period p. The other implication of the
proposition follows easily from a compactness argument. �

We now try to obtain information about invariant measures of a generic homeomorphism
from invariant measures of its discretizations. More precisely, given all the invariant mea-
sures of discretizations of a generic homeomorphism, what can be deduced about invariant
measures of the initial homeomorphism? A first step in this study was performed by T.
Miernowski in 2006 in part 8 of his article [Mie06]:

Proposition 51 (Miernowski). Let f : X → X be a uniquely ergodic homeomorphism and
µf his unique invariant probability measure. For all N ∈ N let γN ⊂ EN be a periodic
cycle of fN and νN the uniform probability measure on γN . Then the weak convergence
νN ⇀ µf occurs independently of the choice of the cycles γN .

The proof of this proposition essentially consists in an appropriate application of Prokho-
rov’s theorem which express the compactness of the set of probability measures on X. We
now set a theorem of this kind for generic homeomorphisms. Recall that µfN is the limit in
the sense of Cesàro of the pushforwards by iterates of fN of uniform measure on EN (see
definition 7):

µfN = lim
m→∞

1

m

m−1∑
i=0

(fN )i∗λN .

The measure µfN is supported by the maximal invariant set of fN ; it is uniform on every
periodic orbit and the total weight of a periodic orbit is proportional to the size of its
basin of attraction. The following theorem expresses that we can obtain all the invariant
measures of a generic homeomorphism from all the invariant measures of its discretizations:

Theorem 52. Let f ∈ Homeo(X,λ) be a generic homeomorphism and suppose that the
sequence of grids (EN )N∈N is self-similar. Let MN be the set of probability measures on
EN that are invariant under fN . Then the upper limit over N (for Hausdorff metric) of
the setsMN is exactly the setM of probability measures that are invariant under f .

Before giving a detailed proof of theorem 52 let us give its main arguments. To show that
the upper limit of sets MN is a subset of M, by a compactness argument, we only have
to prove that limit points of a sequence (νfN )N∈N, such that every measure νfN is invariant
under fN , are invariant under f . This can be easily verified in using uniform convergence of
fN to f and equicontinuity of the measures νfN . Then (again by a compactness argument)
we have to show that generically every invariant measure is a limit point of a sequence of
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discretizations. An ad hoc application of Baire’s theorem reduces the proof to which of the
following variation of Lax’s theorem14:

Lemma 53 (Ergodic variation of Lax’s theorem). Suppose that the sequence of grids
(EN )N∈N is self-similar. For all f ∈ Homeo(X,λ), for all collection of f -invariant mea-
sures ν1, . . . , ν`, for all ε > 0 and k0, N0 ∈ N:

(1) It exists g ∈ Homeo(X,λ) and N ≥ N0 such that d(f, g) < ε, d(ν1, µ
g
N ) < 1

k0
and

µgN is g-invariant.
(2) It exists g ∈ Homeo(X,λ) and N ≥ N0 such that d(f, g) < ε, and for all i ≤ ` there

exists a measure νgi,N such that d(νi, ν
g
i,N ) < 1

k0
and that νgi,N is invariant under g

and gN .

Suppose first that ` = 1 and that ν1 is ergodic. For this purpose we apply Birkhoff’s
theorem to f , ν1, ϕ and a recurrent point x: for all M large enough,

1

M

M−1∑
k=0

ϕ ◦ fk(x) '
∫
ϕdν1.

Since x is recurrent we can choose an integer M large enough such that x ' fM (x). First
we approximate f by a cyclic permutation σN given by Lax’s theorem, then we slightly
modify σN into a map σ′N by choosing σ′N (σMN (xN )) = xN , as in proposition 25. The
measure νσ

′
N

N is the uniform measure on the orbit xN , . . . , σM−1
N (xN ), so it is close to ν1

with respect to the test function ϕ. This property can be obtained for all test functions by
a diagonal-like method. The proof of the lemma when ν1 is not ergodic but only invariant is
obtained by approximating the invariant measure by a finite convex combination of ergodic
measures; this proves the first point of the lemma. To obtain the latter, it suffices to use the
self-similarity hypothesis: on at least ` sub-grids we apply the first point to each measure
νi.

Proof of theorem 52. For all δ > 0, for all N large enough, MN ⊂ B(M, δ). For a set A
and δ > 0, we denote by B(A, δ) the set of elements whose distance to A is smaller than
δ. This inclusion follows easily from the upper semi-continuity of the application g 7→ Mg

(whereMg denotes the set of Borel probability measures which are invariant under g) and
the compactness of P.

Generically, for all δ > 0 and all N0 ∈ N, there exists N ≥ N0 such that M ⊂
B(MN , δ). Recall that we denote by P the set of all Borel probability measures on X. Set
d a distance on P defining the weak-* topology. Thereafter homeomorphisms will be taken
in the generic set ⋂

N∈N

DN ,

made of homeomorphisms whose Nth discretization is uniquely defined for all N . Consider

A =
⋂

(N0,k0)∈N2

ON0,k0 ,

where

ON0,k0 =

{
f ∈

⋂
N∈N

DN

∣∣∣∣∣ ∃N ≥ N0 s.t. M⊂ B
(
MN ,

3

k0

)}
.

Trivially, if f ∈ A, then the upper limit of the setsMN containsM.

To show that the sets ON0,k0 are open, it suffices to remark that if M ⊂ B
(
MN ,

3
k0

)
for a given N , then it is also true on a neighborhood of f since g 7→ Mg

N is constant on a
neighborhood of f and g 7→ Mg is upper semi-continuous.

14The first point of this lemma is somehow a weak version of the latter. It will be useful in the next
section.
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It remains to show that the sets ON0,k0 are dense; it follows from the second point of
the variation of Lax’s theorem (lemma 53): by upper semi-continuity of g 7→ Mg, one has
Mg ⊂ B

(
Mf , 1

k0

)
for all g close enough to f . Moreover, by compactness, there exists

f -invariant measures ν1, . . . , ν` such thatMf ⊂
⋃
iB
(
νi,

1
k0

)
. So it suffices to find g close

to f such that for a N ≥ N0, there exists gN -invariant measures νg1,N , . . . , ν
g
`,N such that

d(νi, ν
g
i,N ) < 1

k0
for all i, but this is exactly the conclusion of the lemma. �

Proof of lemma 53. To begin with we prove the first point of the lemma. Suppose first
that the measure ν = ν1 is ergodic. We want to show that there exists a homeomorphism
g whose distance to f is smaller than ε, and an integer N ≥ N0 such that d(ν, µgN ) < 2

k0
.

Let (ϕj)j∈N be a sequence which is dense in the set of continuous maps from X into R.
By Prokhorov’s theorem, there exists i ∈ N such that if we have∣∣∣∣∫ ϕj dν −

∫
ϕj dµ

∣∣∣∣ ≤ 1

i

for all j ≤ i, then d(ν, µ) < 1
k0
.

Since ν is ergodic, for all continuous map ϕ, by Birkhoff’s theorem,

1

M

M−1∑
m=0

ϕ ◦ fm(x) −→
M→+∞

∫
ϕdν (1)

for ν-a.e. x. Let x ∈ X be a recurrent point for f satisfying equation (1) for all ϕj (such
points form ν-full measure set). For all j there exists Mj ∈ N such that for all M ≥ Mj

one has ∣∣∣∣∣ 1

M

M−1∑
m=0

ϕj ◦ fm(x)−
∫
ϕj dν

∣∣∣∣∣ ≤ 1

2i
. (2)

Let M ′i = maxj≤iMj . Since x is recurrent, there exists τ ≥M ′i such that d(x, fτ (x)) ≤
ε/4. Let σN be a map from EN into itself given by Lax’s theorem: it is a cyclic permutation
and its distance to f is smaller than ε/2. For all N large enough the orbit (σmN (xN ))0≤m≤τ
shadows the orbit (fm(x))0≤m≤τ , thus d(xN , σ

τ
N (xN )) < ε/2. Then we “close” the orbit of

xN between the points xN and στN (xN ), i.e. we set (as in proposition 25, see also figure 3)

σ′N (yN ) =

{
xN if yN = στ−1

N (xN )
σN (yN ) otherwise.

Then dN (σ′N , f) < ε and (xN , ..., σ
′τ−1
N (xN )) is a periodic orbit for σ′N whose basin of

attraction is the whole set EN .
Since the periodic orbit (σ′mN (x))0≤m≤τ attracts EN , for all M ′ large enough and yN ∈

EN we have

1

M ′

M ′−1∑
m=0

ϕj ◦ σ′mN (yN ) −→
M ′→∞

1

τ

τ−1∑
m=0

ϕj ◦ σ′mN (xN ). (3)

With proposition 18, the same way as in lemma 19, we construct a homeomorphism gN

from the map σ′N such that the discretization (gN )N and σ′N fit together, and such that g
and the restriction of (gN )N to the orbit of xN fit together. Since dN (f, σ′N ) < ε, we can
furthermore assume that d(f, gN ) < ε. Thus, equation (3) implies that

µg
N

N =
1

τ

τ−1∑
m=0

δσ′mN (xN ). (4)

Since ϕj is continuous, increasing N (if necessary) such that the orbit (σmN (xN ))0≤m≤τ
shadows (fm(x))0≤m≤τ better, we have for all j ≤ i:∣∣∣∣∣1τ

τ−1∑
m=0

ϕj ◦ fm(x)− 1

τ

τ−1∑
m=0

ϕj ◦ σ′mN (xN )

∣∣∣∣∣ ≤ 1

2i
(5)
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We now have all the necessary estimations to compute the distance between µg
N

N and ν:
by equation (4) and triangle inequality,∣∣∣∣∫ ϕj dµg

N

N −
∫
ϕj dν

∣∣∣∣ =

∣∣∣∣∣1τ
τ−1∑
m=0

ϕj ◦ σ′mN (xN )−
∫
ϕj dν

∣∣∣∣∣
≤

∣∣∣∣∣1τ
τ−1∑
m=0

ϕj ◦ σ′mN (xN )− 1

τ

τ−1∑
m=0

ϕj ◦ fm(xN )

∣∣∣∣∣
+

∣∣∣∣∣1τ
τ−1∑
m=0

ϕj ◦ fm(xN )−
∫
ϕj dν

∣∣∣∣∣
Hence, with equation (2) applied to M = τ and equation (5),∣∣∣∣∫ ϕj dµg

N

N −
∫
ϕj dν

∣∣∣∣ ≤ 1

i
.

We obtain d(µg
N

N , ν) < 1
k0
. Since µg

N

N is invariant under gN (gN is a cyclic permutation of
the orbit of xN ), gN is the desired homeomorphism.

In the general case the measure ν is only invariant (and not ergodic). It reduces to
the ergodic case by the fact that the set of invariant measures is a compact convex set
whose extremal points are exactly the ergodic measures: by the Krein-Milman theorem,
for all M ≥ 1 there exists an f -invariant measure ν′ which is a finite convex combination
of ergodic measures:

ν′ =

r∑
j=0

λjν
e
j ,

and whose distance to ν is smaller than 1
k0
.

Then we use the hypothesis of self-similarity of the grids: for all ε > 0 and all P ∈ N
there exists a map σN whose distance to f is smaller than ε and whose at least p ≥ P
cycles are conjugated to a permutation of a coarser subdivision, via the composition of a
fixed homothety by a translation. Moreover the union on these p cycles fulfils the set EN
with a proportion of at least 1− 1

2k0
. Take P ∈ N such that 2r

P ≤
1

2k0
. For all j between 1

and r we set

λ′j =
bλjpc
p

and

λ′0 = 1−
r∑
j=1

λ′j .

Then for all j > 0 we have |λj − λ′j | ≤ 1
P and |λ0 − λ′0| ≤ r

P . Since
∑
λ′j = 1 we can

associate bijectively a set Λj made of pλ′j cycles to each integer j; the union of the sets
Λj fills the set EN with a proportion of at least 1− 1

2k0
. We do the previous construction

concerning ergodic measures for each j: increasing N if necessary, the cycles of each Λj
can be changed such that each of them carries a (unique) invariant probability measure
νej
′ satisfying d(νej , ν

e
j
′) ≤ 1

2k0
. These modifications transform the map σN into a map σ′N

satisfying d(σ′N , σN ) < ε. Then the measure µσ
′
N

N associated with the map σ′N satisfies:

d

µσ′NN ,

r∑
j=0

λ′jν
e
j
′

 ≤ 1

2k0
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and we have:

d(ν′, µ
σ′N
N ) ≤

r∑
j=0

d
(
λjν

e
j , λ

′
jν
e
j
′)+

1

2k0

≤
r∑
j=0

d
(
λjν

e
j , λ

′
jν
e
j

)
+

r∑
j=0

d
(
λ′jν

e
j , λ

′
jν
e
j
′)+

1

2k0

≤
r∑
j=0

∣∣λj − λ′j∣∣+

r∑
j=0

λ′jd
(
νej , ν

e
j
′)+

1

2k0

≤ 2r

P
+

1

2k0
+

1

2k0
≤ 3

2k0
.

Thus d(ν, µ
σ′N
N ) ≤ 2

k0
. As above the desired homeomorphism is obtained by extending σ′N

to a homeomorphism of X. We have proven the first point of the lemma.

Finally we handle the second point of the lemma. To do that, it suffices to apply the
first point on ` different sub-grids of a given grid EN0

. On the i-th sub-grid, define the
discretization gN such that it has a single invariant measure which is close to νi. This
proves the lemma. �

There is a kind of duality between invariant measures and invariant compact sets, thus
the previous theorem is also true for invariant compact sets:

Proposition 54. Let f ∈ Homeo(X,λ) be a generic homeomorphism and suppose that
the sequence of grids (EN )N∈N is self-similar. Set IN the set of subsets of EN that are
invariant under fN . Then the upper limit over N (for the Hausdorff metric) of the sets IN
is exactly the set of compacts that are invariant under f .

Sketch of proof of proposition 54. To show that all limit point K of a sequence (KN ) of
compact invariant sets is a compact invariant set, it suffices to calculate dH(K, f(K)). For
the other inclusion, as in the case of invariant measures, it follows from an approximation
lemma whose proof is the same as for invariant measures: �

Lemma 55 (Compact variation of Lax’s theorem). Suppose that the sequence of grids
(EN )N∈N is self-similar. For all f ∈ Homeo(X,λ), for all collection of f -invariant com-
pacts K1, . . . ,K`, for all ε > 0 and k0, N0 ∈ N:

(1) It exists g ∈ Homeo(X,λ) and N ≥ N0 such that d(f, g) < ε, dH(K1,Ω(fN )) < 1
k0

and Ω(fN ) is g-invariant.
(2) It exists g ∈ Homeo(X,λ) and N ≥ N0 such that d(f, g) < ε, and for all i ≤ `,

there exists a compact Kg
i,N such that dH(Ki,K

g
i,N ) < 1

k0
and that Kg

i,N is invariant
under g and gN .

9. Physical measures

In the previous part we proved that generically, the upper limit of the sets of invariant
measures of discretizations is the set of invariant measures of the initial homeomorphism.
It expresses that the sets of invariant measures of discretizations behave “as chaotically as
possible”. However, one might expect that physical measures (Borel measures µ such that
µ = µfx is verified on a set of points x with λ positive measure, see e.g. [You02]) play a
specific part: their definition expresses that they are the measures that can be observed in
practice, because they governs the ergodic behaviour of λ a.e. point. So one can hope that
the natural invariant measures µfN of fN , which can be seen as the physical measures of
fN , converge to the physical measures of f . This expectation is supported by the following
variation of proposition 51, obtained by replacing νN by µfN : if f is uniquely ergodic, then
the measures µfN converge weakly to the only measure µf that is invariant under f .
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In this section we show that this is not at all the case: the sequence of measures (µfN )
accumulates of the whole set of f -invariant measures15. More precisely one has the following
theorem:

Theorem 56. If the sequence of grids (EN )N∈N is self-similar, for a generic homeomor-
phism f ∈ Homeo(X,λ), the set of limit points of the sequence (µfN )N∈N is exactly the set
of f -invariant measures.

This theorem can be seen as a discretized version of the following conjecture:

Conjecture 57 (F. Abdenur, M. Andersson, [AA13]). A homeomorphism f which is
generic in the set of homeomorphisms of X (without measure preserving hypothesis) that do
not have any open trapping set is wicked, i.e. it is not uniquely ergodic and the measures

1

m

m−1∑
k=0

fk∗ (Leb)

accumulate on the whole set of invariant measures under f .

The behaviour described in this conjecture is the opposite of that consisting of possessing
a physical measure.

Sketch of proof of theorem 56. The proof is similar to which of theorem 52: the set A is
replaced by

A′ =
⋂

(`,N0,k0)∈N3

O`,N0,k0 ,

where

O`,N0,k0 =

f ∈ ⋂
N∈N

DN

∣∣∣∣∣∣
(
∃νf -inv. : d(ν, ν̃`) ≤ 1

k0

)
=⇒(

∃N ≥ N0 : d(ν̃`, µ
f
N ) < 2

k0

)  ,

and the second point of lemma 53 is replaced by the first. �

Remark 58. Taking over the proof of the theorem, if we set x /∈
⋂
N E

′
N , then generically

the measures µfN,x accumulate on the whole set of f -invariant measures. This seems to con-
tradict the empirical observations made by A. Boyarsky in 1986 (see [Boy86] or [GB88]):
when a homeomorphism f has a unique ergodic measure µf which is absolutely continu-
ous with respect to Lebesgue measure “most of” the measures µfN,x tend to measure µf .
However, the author does not specify in what sense he means “most of the points”, or if his
remark is based on a tacit assumption of regularity for f .

Note that as in the previous section, we have a compact counterpart of theorem 56:

Proposition 59. If the sequence of grids (EN )N∈N is self-similar, for a generic homeo-
morphism f ∈ Homeo(X,λ), the set of limit points of the sequence (Ω(fN ))N∈N is exactly
the set of f -invariant compact sets.

Part 2. Discretizations of a generic dissipative homeomorphism

Throughout this section, we fix a manifold X and a good measure λ as defined in
section 2. Now homeomorphisms are no longer supposed conservative. More formally,
we recall that we denote by Homeo(X) the set of all dissipative homeomorphisms of X
(without assumption of conservation of a given measure), we are interested in properties
of discretizations of generic elements of Homeo(X). The manifold X is equipped with a
sequence (EN )N∈N of discretization grids.

Generic topological properties of dissipative homeomorphisms have been discussed in
a survey of E. Akin, M. Hurley and J. Kennedy [AHK03]. However, ergodic properties
of generic homeomorphisms had not been studied until the work of F. Abdenur and M.

15It is easy to see that if (νN )N∈N is a sequence of measures, with νN invariant under fN for all N , then
its limit set is included in the set of f -invariant measures. Again, this reflects the fact that the behaviour
of discretizations of a generic homeomorphism is “as chaotic as possible”.
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Andersson in [AA13], in which the authors are interested in the typical behaviour of Birkhoff
averages. For this purpose they establish a technical lemma they call shredding lemma
which allows them to show that a generic homeomorphism is weird.

Definition 60. A homeomorphism f is said weird if almost every point x ∈ X (for λ) has
a Birkhoff’s limit µfx, and if f is totally singular (i.e. there exists a Borel set with total
measure whose image by f is null measure) and does not admit any physical measure.

In opposition to the conservative case, the lack of conservation of a given measure allows
us to perturb any diffeomorphism to create attractors whose basins of attraction cover
almost the entire space X. This is an open property, so such basins of attraction can be
seen on discretizations.

With what has just been said, we can already note that properties of discretizations of
generic dissipative and conservative homeomorphisms are quite different: if before (almost)
all possible dynamical properties are observed on the discretizations of a homeomorphism,
the dissipative case reveals a much more regular behaviour: “the dynamics of discretizations
of a homeomorphism f converges to the dynamics of f ”. For example, the measures µfN
accumulate on a single measure, namely µfX , and not on all the invariant measures under
f .

10. The shredding lemma and its discrete counterpart

In their article [AA13], F. Abdenur and M. Andersson try to identify the generic ergodic
properties of continuous maps and homeomorphisms of compact manifolds. More precisely,
they study the behaviour of Birkhoff limits µfx for a generic homeomorphism f ∈ Homeo(X)
and almost every point x for Lebesgue measure. To do this they define some interesting
behaviours of homeomorphisms related to Birkhoff limits, including one they call weird (see
def 60). This definition is supported by their proof, based on the shredding lemma, that a
generic homeomorphism is weird. We outline an improvement of this lemma, whose main
consequence is that a generic homeomorphism has many open attractive sets, all of small
measure and decomposable into a small number of small diameter open sets:

Lemma 61 (Shredding lemma, F. Abdenur, M. Andersson, [AA13]). For all homeomor-
phism f ∈ Homeo(X), for all ε, δ > 0, there exists a family of regular pairwise disjoints open
sets16 U1, . . . , U` such that for all ε′ > 0, there exists g ∈ Homeo(X) such that d(f, g) < δ
and:
(i) g(Uj) ⊂ Uj,
(ii) λ(Uj) < ε,
(iii) λ

(⋃`
j=1 Uj

)
> 1− ε,

(iv) λ(g(Uj)) < ελ(Uj),
(v) there exists open sets Wj,1, . . . ,Wj,`j such that:

(a) diam(Wj,i) < ε′ for all i ∈ {1, . . . , `j},
(b) g(Wj,i) ⊂Wj,i+1, for every i ∈ {1, . . . , `j − 1} and g(Wj,`j ) ⊂Wj,1,
(c)

Uj ⊂
⋃
m≥0

g−m
( `j⋃
i=1

Wj,i

)
.

The lemma as stated by F. Abdenur and M.Andersson in their paper can be obtained
making ε = ε′. To get this improvement, it suffices to consider the sets Wj,i given by the
weak version of the lemma and to crush them with a contraction mapping, as the authors
do in the first part of the proof of the lemma.

Remark 62. It can be easily seen that the lemma remains true on a neighborhood of the
homeomorphism g.

Remark 63. We can further assume that:

16An open set is said regular if it is equal to the interior of its closure.
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(1) The open sets Wj,i have disjoints attractive sets, i.e. for all j ∈ N and all i 6= i′,
we have17 ⋂

m≥0

⋃
m′≥m

fm
′
(Wj,i)

 ∩
 ⋂
m≥0

⋃
m′≥m

fm
′
(Wj,i′)

 = ∅.

For this it suffices to replace Wj,i by W ′j,i defined by induction by:

W ′j,1 = Wj,1

W ′j,i+1 = Wj,i+1 \

⋃
i′≤i

⋂
m≥0

⋃
m′≥m

fm
′
(Wj,i′)

 .

(2) Each set Wj,i contains a periodic Lyapunov stable point. Indeed, for all ε > 0,
there exists x ∈ Wj,i and m > 0 such that d(x, fm(x)) < ε. Then we perturb f
in order to make x m-periodic and attractive, and the Lyapunov stability remains
true in a neighborhood of f .

(3) The set g(Uj) is “independent” from the choice of ε′: there exists compact sets Vj
such that g(Uj) ⊂ Vj and Vj ⊂ Uj , λ(Vj) < ελ(Uj).

This lemma tells us a lot about the dynamics of a generic homeomorphism, which be-
comes quite clear: there are many attractors whose basins of attraction are small and
attract almost all the manifold X. Moreover there is convergence of the attractive sets of
the shredding lemma to the closure of the Lyapunov stable periodic points of f :

Notation 64. For an homeomorphism f ∈ Homeo(X), we denote by A0 the set of Lya-
punov stable periodic points of f , i.e. the sets of periodic points x such that for all δ > 0,
there exists η > 0 such that if d(x, y) < η, then d(fm(x), fm(y)) < δ for all m ∈ N.

Corollary 65. Let f ∈ Homeo(X) verifying the conclusions of the shredding lemma for
all ε = ε′ > 0 and Wj,i,ε be the corresponding open sets. Such homeomorphisms form a Gδ
dense subset of Homeo(X). Then the sets

Aε =
⋃
j,i

Wj,i,ε

converge for Hausdorff distance when ε tends to 0 to a closed set. This is a null set18 which
coincides generically with the closure of the set A0.

Proof of corollary 65. Let f verifying the hypothesis of the corollary. We want to show that
the sets Aε tend to A0 when ε goes to 0. This is equivalent to show that for all δ > 0, there
exists ε0 > 0 such that for all ε < ε0, A0 ⊂ B(Aε, δ) and Aε ⊂ B(A0, δ) (where B(A, δ)
denotes the set of points of X whose distance to A is smaller than δ). Subsequently we will
denote by Uj,ε and byWi,j,ε the open sets given by the shredding lemma for the parameters
ε = ε′.

Let δ > 0. We start by taking x ∈ X whose orbit is periodic and Lyapunov stable. Then
there exists η > 0 such that if d(x, y) < η, then d(fm(x), fm(y)) < δ/2 for all m ∈ N; let
O = B(xη). Then there exists ε0 > 0 such that for all ε ∈]0, ε0[, there exists j ∈ N such that
the intersection between O and Uj,ε is nonempty. Let y be an element of this intersection.
By compactness, there exists a subsequence of (fm(y))m∈N which tends to x0; moreover
fm(y) ∈

⋃
iWj,i eventually and d(x, x0) < δ/2. We deduce that x ∈ B

(⋃
j,iWj,i,ε0 , δ/2

)
for all ε0 small enough. Since A0 is compact, it is covered by a finite number of balls of
radius δ/2 centred in some points xi whose orbits attract nonempty open sets. Taking ε′0
the minimum of all the ε0 associated to the xi, the inclusion A0 ⊂ B(Aε, δ) takes place for
all ε < ε′0.

In the other way, let δ > 0, ε < δ and focus on the set Wj,i,ε. By point 2. of the remark
63, we can suppose that there exists x ∈Wj,i,ε whose orbit is periodic and Lyapunov stable.

17These two sets are decreasing intersections of compact sets, so they are compact and nonempty.
18And better, if we are given a countable family (λm)m∈N of good measures, generically λm(A0) = 0.
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Thus x ∈ A0 and since the diameter of Wj,i,ε is smaller than δ, Wj,i,ε ⊂ B(A0, δ). The
corollary is proved. �

Now we establish a discrete counterpart of the shredding lemma. This result shows that
the general dynamics of a generic dissipative homeomorphism is quite simple; thus the
dynamics of the discretizations these homeomorphisms is also quite simple. More precisely,
since having basins of attraction is stable by perturbation, we have a similar statement for
discretizations of a generic homeomorphism. The following develops these arguments.

To each point xN ∈ EN , we associate a closed set P−1
N ({xN}), made of the points in X

one of whose the projections on EN is xN . The closed sets P−1
N ({xN}) form a basis of the

topology of X when N runs through N and xN runs through EN . Let f ∈ Homeo(X),
N ∈ N and ϑ : N → R∗+ be a function that tends to +∞ at +∞. Let δ, ε > 0 and Uj be
the sets obtained by the shredding lemma for f , δ and ε.

For all j ≤ ` we denote by ŨNj the union over xN ∈ EN of the closed sets P−1
N ({xN})

whose intersection with Uj are nontrivial. Then ŨNj tends to Uj for the metric d(A,B) =
λ(A∆B), and for the Hausdorff metric. By point (3) of remark 63, these convergences are
independent from the choice of ε′. Thus, for all k big enough, properties (i) to (iii) of
the shredding lemma remain true for the discretizations gN (for arbitrary g satisfying the
properties of the lemma). Taking ε′ small enough and modifying a little g if necessary,
there exists sets Wj,i and g ∈ Homeo(X) such that d(f, g) < δ, Wj,i ⊂ P−1

N ({xN}) and
Card(

⋃
j,iWj,i ∩EN ) ≤ ϑ(N). The others estimations over the sizes of the sets involved in

the lemma are obtained similarly. Finally we have:

Lemma 66 (Discrete shredding lemma). For all f ∈ Homeo(X), for all ε, δ > 0 and all
function ϑ : N → R∗+ that tends to +∞ at +∞, there exists N0 ∈ N such that for all
N ≥ N0, there exists a family of subsets UN1 , . . . , UN` of EN and g ∈ Homeo(X) such that
d(f, g) < δ and:
(i) gN (UNj ) ⊂ UNj ,
(ii) Card(UNj ) < εqN ,

(iii) Card
(⋃`

j=1 U
N
j

)
> (1− ε)qN ,

(iv) Card(gN (UNj )) < εCard(UNj ),
(v) for all j, there exists wNj,1, . . . , wNj,`j ∈ EN such that

(a) Card(
⋃
j,i{wj,i}) ≤ ϑ(N),

(b) gN (wNj,i) = wNj,i+1, for every i ∈ {1, . . . , `j − 1} and gN (wNj,`j ) = wNj,1,
(c)

UNj ⊂
⋃
m≥0

g−mN
( kj⋃
i=1

wNj,i
)
,

(vi) for all j and all i, there exists sets Uj and Wj,i satisfying properties (i) to (v) of the
shredding lemma such that Uj ⊂ P−1

N (UNj ) and Wj,i ⊂ P−1
N (wNj,i).

(vii) if N ≥ N0, then for all j and all i, we have∑
j

dH(Uj , P
−1
N (UNj )) < ε and

∑
i,j

dH(Wj,i, P
−1
N (wNj,i)) < ε

(where dH is the Hausdorff metric), and∑
j

λ(Uj∆P
−1
N (UNj )) < ε and

∑
i,j

λ(Wj,i∆P
−1
N (wNj,i)) < ε.

Remark 67. Properties (i) to (v) are discrete counterparts of properties (i) to (v) of the
continuous shredding lemma, but the two last ones reflect the convergence of the dynamics
of discretizations to that of the original homeomorphism.

This lemma implies that we can theoretically deduce the behaviour of a generic homeo-
morphism from the dynamics of its discretizations. The next section details this remark.
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11. Dynamics of discretizations of a generic homeomorphism

To begin with, we deduce from the shredding lemma that the dynamics of discretiza-
tions fN tends to that of the homeomorphism f . More precisely almost all orbits of the
homeomorphism are δ-shadowed by the orbits of the corresponding discretizations.

Definition 68. Let f and g be two maps from a metric space X into itself, x, y ∈ X and
δ > 0. We say that the orbit of x by f δ-shadows the orbit of y by g if for all m ∈ N,
d(fm(x), gm(y)) < δ.

Corollary 69. For a generic homeomorphism f ∈ Homeo(X), for all ε > 0 and all δ > 0,
there exists an open set A such that λ(A) > 1 − ε and N0 ∈ N such that for all N ≥ N0

and all x ∈ A, the orbit of xN = PN (x) by fN δ-shadows that of x by f .
Therefore, for a generic homeomorphism f , there exists a full measure dense open set O

such that for all x ∈ O, all δ > 0 and all N large enough, the orbit of xN by fN δ-shadows
that of x by f .

Proof of corollary 69. This easily follows from the discrete shredding lemma, and especially
from the fact that the points wNj,i tend to the sets Wj,i for Hausdorff metric. �

This statement is a bit different from the genericity of shadowing (see [PP99]): here the
start point is not a pseudo-orbit but a point x ∈ X; the corollary 69 expresses that we
can “see” the dynamics of f on that of fN , with arbitrarily high precision, provided that
N is large enough. Among other things, this allows us to observe the basins of attraction
of the Lyapunov stable periodic points of f on discretizations. Better yet, to each family
of attractors (Wj,i)i of the basin Uj of the homeomorphism correspond a unique family of
points (wNj,i)i that are permuted cyclically by fN and which attracts a neighborhood of Uj .
Thus attractors are shadowed by cyclic orbits of fN and we can detect the “period” of the
attractor (i.e. the integer kj) on discretizations. This behaviour is the opposite of what
happens in the conservative case, where discretized orbits and true orbits are very different
for most points.

Again, in order to show that the dynamics of discretizations converge to that of the
initial homeomorphism, we establish the convergence of attractive sets of fN to that of f .
Recall that A0 is the closure of the Lyapunov periodic points of f (see notation 64).

Proposition 70. For a generic homeomorphism f ∈ Homeo(X), the sets Ω(fN ) tend
weakly to A0 in the following sense: for all ε > 0, it existe N0 ∈ N such that for all
N ≥ N0, there exists a subset ẼN of EN , stabilized by fN such that, noting Ω̃(fN ) the
corresponding maximal invariant set, we have Card(ẼN )

Card(EN ) > 1− ε and dH(A0, Ω̃(fN )) < ε.

Proof of proposition 70. Let ε > 0. For all N ∈ N, set ẼN the union of the sets UNj of
lemma 66 for the parameter ε. This lemma ensures that ẼN is stable by fN and fills a
proportion greater than 1 − ε of EN . We also denote by Ω̃(fN ) the associated maximal
invariant set:

Ω̃(fN ) =
⋃

x∈
⋃`

j=1 Ũ
N
j

ωfN (x).

Property (viii) of lemma 66 ensures that

lim
N→+∞

dH(Aε, Ω̃(fN )) < ε.

To conclude, it suffices to observe that Aε → A0 for Hausdorff distance. �

Finally, we conclude this section with a last consequence of lemma 66 which reflects that
the ratio between the cardinality of the image of discretizations and which of the grid is
smaller and smaller:

Corollary 71. For a generic homeomorphism f ∈ Homeo(X),

lim
N→+∞

Card(fN (EN ))

Card(EN )
= 0 ;
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particularly for all δ > 0, there exists N0 ∈ N such that if N ≥ N0, then the cardinality of
each orbit of fN is smaller than δCard(EN ).

This corollary can be seen as a discrete analogue of the fact that a generic homeomor-
phism is totally singular, i.e. that there exists a Borel set of full measure whose image under
f is zero measure. Again, it reflects the regularity of the behaviour of the discretizations
of a dissipative homeomorphism: generically, we can describe the behaviour of all (fine
enough) discretizations. This is very different from the conservative case, where sometimes
fN (EN ) = EN and sometimes Card(fN (EN )) ≤ ϑ(N) where ϑ : R+ → R∗+ is a given map
that tends to +∞ at +∞. Moreover, we have the following estimation on the maximal
invariant set (easily deduced from the discrete shredding lemma):

Corollary 72. Let ϑ : R+ → R∗+ be a function that tends to +∞ at +∞. Then for a
generic homeomorphism f ∈ Homeo(X),

lim
N→+∞

Card(Ω(fN )) ≤ ϑ(N).

It remains to study the behaviour of measures µfN,U (see definition 7). Again, the results
are very different from the conservative case: for any open set U , the measures µfN,U tend
to a single measure, say µfU .

Theorem 73. For a generic homeomorphism f ∈ Homeo(X) and an open subset U of X,
the measure µfU is well defined19 and is supported by the closure of the set of attractors A0.
Moreover the measures µfN,U tend weakly to µfU .

Sketch of proof of theorem 73. The proof of this theorem is based on the shredding lemma:
the set of homeomorphisms which satisfy the conclusions of the lemma is a Gδ dense, so
it suffices to prove that such homeomorphisms f satisfy the conclusion of the proposition.
Let U be an open subset of X and ϕ : X → R be a continuous function.

We want to show that on one hand the integral
∫
X
ϕdµfU is well defined, i.e. that the

Birkhoff limits for the function ϕ

lim
m→+∞

1

m

m−1∑
i=0

ϕ(f i(x))

are well defined for a.e. x ∈ U ; and on the other hand we have the convergence∫
X

ϕdµfN,U −→
N→+∞

∫
X

ϕdµfU ,

For the first step, the idea of the proof is that most of the points (for λ) go in a Wj,i.
Since the iterates of the sets Wj,i have small diameter, by uniform continuity, the function
ϕ is almost constant on the sets fm(Wj,i). Thus the measure µfx is well defined and almost
constant on the set of points which goes in Wj,i. And by the same construction, since
the dynamics of fN converge to that of f , and in particular that the sets UNj and {wNj,i}
converge to the sets Uj and Wj,i, the measures µfN,U tend to the measures µfU . �

Part 3. Numerical simulations

12. Conservative homeomorphisms

Now we present the results of numerical simulations of conservative homeomorphisms we
conducted. We sought whether it is possible to observe behaviours such as those obtained
in section 6 or that described by theorem 56 on actual simulations: it is not clear that the
orders of discretization described by these results can be reached in practice, or if simple
examples of homeomorphisms behave the same way as generic homeomorphisms.

Recall that we simulate homeomorphisms f(x, y) = P ◦Q ◦ P (x, y), where P and Q are
both homeomorphisms of the torus that modify only one coordinate:

P (x, y) = (x, y + p(x, y)) and Q(x, y) = (x+ q(x, y), y),

19In other words a generic homeomorphism is weird, see also [AA13].
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and that we discretize according to the uniform grids on the torus:

EN =

{(
i1
N
, . . . ,

in
N

)
∈ Tn

∣∣ ∀j, 0 ≤ ij ≤ N − 1

}
.

To obtain conservative homeomorphisms, we choose p(x, y) = p(x) and q(x, y) = q(y). We
perform simulations of two conservative homeomorphisms which are small perturbations of
identity or of the standard Anosov automorphism A : (x, y) 7→ (x+ y, x+ 2y):

• To begin with we study f1 = P ◦Q ◦ P , with

p(x) =
1

259
cos(2π × 227x) +

1

271
sin(2π × 253x),

q(y) =
1

287
cos(2π × 241y) +

1

263
sin(2π × 217y).

This conservative homeomorphism is a small C0 perturbation of identity. Experi-
ence shows that even dynamical systems with fairly simple definitions behave chaot-
ically (see e.g. [GT83]). We can expect that a homeomorphism such as f1 has a
complex dynamical behaviour and even behaves essentially as a generic homeomor-
phism, at least for small orders of discretization. Note that we choose coefficients
that have (virtually) no common divisors to avoid arithmetical phenomena such as
periodicity or resonance.

• We also simulate f2 the composition of f1 with the standard Anosov automorphism
A, say f2 = P ◦ Q ◦ P ◦ A. This makes it a small C0-perturbation of A. Thus f2

is semi-conjugated to A but not conjugated: to each periodic orbit of A corre-
sponds many periodic orbits of f2. As for f1, we define f2 in the hope that the
behaviour of its discretizations is fairly close to that of discretizations of a generic
homeomorphism.

Note that the homeomorphisms f1 and f2 have at least one fixed point (for f1, simply
make simultaneously p(x) and q(y) equal to 0; for f2, note that 0 is a persistent fixed
point of A). Thus, the theoretical results indicate that for a generic homeomorphism f
which has a fixed point, infinitely many discretizations has a unique fixed point; moreover
a subsequence of (µfN )N tends to an invariant measure under f supported by a fixed point.
We can test if this is true on simulations.

From a practical point of view, we restricted ourselves to grids of sizes smaller than
215 × 215: the initial data become quickly very large, and the algorithm creates temporary
variables that are of size of the order of five times the size of the initial data. For example,
for a grid 215 × 215, the algorithm takes between 25 and 30 Go of RAM on the machine.

12.1. Combinatorial behaviour. As a first step, we are interested in some quantities
related to the combinatorial behaviour of discretizations of homeomorphisms. These quan-
tities are:

• the cardinality of the maximal invariant set Ω(fN ),
• the number of periodic orbits of the map fN ,
• the maximal size of a periodic orbit of fN .

Recall that according to corollaries 23, 28 and 40, for a generic homeomorphism, the ratio
Card(Ω(fN ))

qN
must fluctuate between 0 and 1 depending on N , the number of orbits must

fluctuate between 1 and (e.g.) √qN and the maximal size of a periodic orbit must fluctuate
between 1 and qN .

We calculated these quantities for discretizations of orders 128k, for k from 1 to 100 and
have represented them graphically. For information, if N = 128× 100, then qN ' 1.6.108.

We begin with the cardinality of the maximal invariant set Ω(fN ) (figure 6). Contrary
to what the theoretical results provide for a generic homeomorphism, for all simulations
the ratio Card(Ω(fN ))

qN
tends to 0 when N increases. More specifically, the cardinality of

Ω(fN ) evolves much more regularly for f1 than for f2: for f1 the value of this cardinality
seems to be the sum of a smooth increasing function and a random noise, but for f2 this
value seems to be the product of a smooth increasing function with a random noise. We
have no explanation to the parabolic shape of the curve for f1: it reflects the fact that the
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Figure 6. Size of the maximal invariant set Ω((fi)N ) (left), number of periodic orbits of
(fi)N (middle) and length of the largest periodic orbit of (fi)N (right) depending on N ,
for f1 (top) and f2 (bottom), on the grids EN with N = 128k, k = 15, . . . , 100

cardinality of Ω((f1)N ) evolves in the same way as 4
√
qN (whereas for a random map of a

finite set with q elements into itself it evolves the same way as √q). Finally, it is interesting
to note that for f2, the size of the maximal invariant set is distributed more or less around
the size of the maximal invariant set of a random map of a set with qN elements into itself,
which depends (asymptotically) linearly of N and is worth about 16, 000 for N = 128×100
(see [Bol01]).

According to the results of the previous sections, for a generic homeomorphism f , the
number of periodic orbits of fN must fluctuate between 1 and (e.g.) √qN . It is clearly
not the case for the simulations. In addition, its behaviour is not the same for f1 and
for f2 (figure 6): for f1 the number of orbits reaches quickly a value around 2.104 to
increase slightly thereafter, while for f2 it oscillates between 1 and 18, regardless the order
of discretization. These graphics can be compared with those representing the size of the
maximal invariant set Ω((fi)N ): the number of periodic orbits and the size of the maximal
invariant set are of the same order of magnitude for f1 (up to a factor 5), which means
that the average period of a periodic orbit is small (which is not surprising, since f1 is a
small perturbation of identity). In contrast, they differ by a factor roughly equal to 103 for
f2, which means that this time the average period of a periodic orbit is very large. This
can be explained partly by the fact that the standard Anosov automorphism tends to mix
what happens in the neighborhood of identity. The fact remains that these simulations
(such as the size of the maximal invariant set Ω((fi)N )) suggest that the behaviour in the
neighborhood of identity and of the standard Anosov automorphism are quite different, at
least for small orders of discretization.

Regarding the maximum size of a periodic orbit of fN (figure 6), again its behaviour
does not correspond to that of a generic homeomorphism: it should oscillate between 1 and
qN , which is not the case. However, it varies widely depending on N , especially when N
is large. The qualitative behaviours are similar for both simulations, but there are some
quantitative differences: the maximum of the maximal length of a periodic orbit is greater
for f2 than for f1.

12.2. Behaviour of invariant measures. We also simulated the measure µfiN for the two
examples of conservative homeomorphisms f1 and f2 as defined in page 32. Our purpose
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is to test whether phenomena as described by theorem 56 can be observed in practice
or not. We obviously can not expect to see the sequence (µfiN )N∈N accumulating on all
the invariant probability measures of f , since these measures generally form an infinite-
dimensional convex set, but we can still test if it seems to converge or not.

We present images of sizes 128× 128 pixels representing in logarithmic scale the density
of the measures µfN : each pixel is coloured according to the measure carried by the set
of points of EN it covers. The blue corresponds to a pixel with very small measure and
the red to a pixel with very high measure. Scales on the right of each image corresponds
to the measure of one pixel in logarithmic scale to base 10: if the green codes −3, then
a green pixel will have measure 10−3 for µfN . For information, when Lebesgue measure is
represented, all the pixels have a value about −4.2.

Theoretically, the maximal value of the measure µN (figure 7) should oscillate between
1/qN and 1, but this is not the case for these examples. Again the behaviour is quite
different for f1 and for f2: for f1 it seems that the values of µN are well distributed
between null function and a linear function of N while for f2 we observe peaks: there
are a few values of N for which µN is much higher than elsewhere. For f1 the maximal
value of µN seems globally grow with N , but with a quite irregular behaviour, apparently
confirming theorem 56. Finally, we note that the maximum value of µN is much lower for
f2 than for f1.

Figure 7. Maximal value of the measure µN on EN depending on N for f1 (left) and f2

(right), on the grids EN with N = 128k, k = 15, . . . , 100



Figure 8. Simulations of invariant measures µf1N on grids of size N × N , with N =
20000, . . . , 20008 (from left to right and top to bottom)

The results of simulations of invariant measures of discretizations of f1 (which is a C0

conservative perturbation of identity) are quite positive: they agree with theoretical results
about discretizations of generic conservative homeomorphisms, in particular with theorem
56. When f1 is discretized, we observe that the measure is first fairly well distributed.
When the step of the discretization improves we can observe places where the measure ac-
cumulates; moreover these places changes a lot when the orders of discretizations varies (see
figure 8). This fairly agrees with what happens in the C0 generic case, where the measure
µfN depends very much on the order of discretization rather than on the homeomorphism
itself. There is also an other phenomenon: when the size of the grid is large enough (around
1012 × 1012), it appears areas uniformly charged by the measure µfN ; their sizes seems to
be inversely proportional to the common mass of the pixels of the area.



Figure 9. Simulations of invariant measures µf2N on grids of size N × N , with N =
20005, . . . , 20013 (from left to right and top to bottom)

For the discretizations of f2, which is a C0 conservative perturbation of the standard
Anosov automorphism, the simulations on grids of size 2k × 2k might suggest that the
measures µf2N tend to Lebesgue measure. In fact, making a large number of simulations,
we realize that there is also strong variations of the behaviour of measures (figure 9): the
measure is often well distributed in the torus and sometimes quite singular with respect
to Lebesgue measure (as in figure 7). For example when we discretize on the grid of size
20010× 20010 (middle right of figure 9), one observe an orbit with length 369 which mass
84% of the total measure. In fact the behaviour of discretizations looks the same that in the
neighborhood of identity, modulo the fact that the standard Anosov automorphism tends
to spread the attractive periodic orbits of discretizations on the entire torus: for many
values of N composing by A spreads the behaviour of the measure µf2N , but sometimes (in
fact seldom) a fixed point of (f1)N which attracts a large part of EN is located around
one of the few periodic points of small period for A. This then creates a periodic orbit for
(f2)N with a big measure for µf2N .
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13. Dissipative homeomorphisms

Let us finish by presenting the results of some numerical simulations of dissipative homeo-
morphisms. Again, our aim is to compare the theoretical results with the reality of numer-
ical simulations: for simple homeomorphisms and reasonable orders of discretization does
one have convergence of the dynamics of discretizations to that of the homeomorphism, as
suggested by the above theorems?

Recall that we simulate homeomorphisms such that

f(x, y) = Q ◦ P (x, y) or f(x, y) = P ◦Q ◦ P (x, y),

where P and Q are two homeomorphisms of the torus that modify only one coordinate:

P (x, y) = (x, y + p(x, y)) and Q(x, y) = (x+ q(x, y), y).

Unlike the conservative case, p and q depends on both x and y. Again, we tested two
homeomorphisms:

• To begin with we studied f3 = Q ◦ P , with

p(x, y) =
1

259
cos(2π × 227y) +

1

271
sin(2π × 233x),

q(x, y) =
1

287
cos(2π × 241y) +

1

263
sin(2π × 217y) +

1

263
cos(2π × 271x)

This dissipative homeomorphism is a small C0 perturbation of identity, whose de-
rivative has many oscillations whose amplitudes are close to 1. That creates many
fixed points which are attractors, sources or saddles.

• It has also seemed useful to us to simulate a homeomorphism close to the iden-
tity in C0 topology, but with a small number of attractors. Indeed, as explained
heuristically by J.-M. Gambaudo and C. Tresser in [GT83], a homeomorphism
such that f3 can have a large number of attractors whose basins of attraction are
small. It turns out that the dissipative behaviour of f3 can not be detected in or-
ders discretization that can be achieved in practice. We therefore defined another
homeomorphism close to the identity in C0 topology, but with much less attractors,
say f4 = P ◦Q ◦ P , with

p(x, y) =
1

259
tanh

(
50 cos(2π × y)

)
+

1

271
tanh

(
50 cos(2π × 5x)

)
,

q(x, y) =
1

287
tanh

(
50 cos(2π×y)

)
+

1

263
tanh

(
50 cos(2π×7y)

)
+

1

263
tanh

(
50 cos(2π×3x)

)
.

13.1. Combinatorial behaviour. We simulated some quantities related to the combina-
torial behaviour of discretizations of homeomorphisms, namely:

• the cardinality of the maximal invariant set Ω(fN ),
• the number of periodic orbits of fN ,
• the maximal size of a periodic orbit of fN .

We calculated these quantities for discretizations of orders 128k for k from 1 to 100 and
represented it graphically. For information, if N = 128× 100, then qN ' 1.6.108.

Theoretically, the ratio between the cardinality of Ω(fN ) and qN must tend to 0, this
is what can be seen in simulations. This is not really surprising: we already observed
that for discretizations of conservative homeomorphisms. In this context it is interesting
to compare the behaviour of Ω(fN ) in the conservative and the dissipative case. The
result is a bit disappointing: for f3, the graphics in the case of conservative and dissipative
homeomorphisms are as alike as two peas in a pod, while in theory they should be very
different. Still, for f4, there are very few attractors, and around each one there are just a
few attractive points of the discretization (each attractor is “sharp”) so that the cardinality
of Ω((f4)N ) is more or less constant. For this case, the behaviour of discretizations seems
clearly typical of the dissipative case.

The behaviour of the number of periodic orbits of fN is not provided by the theoretical
study. However, we can hope that it reflects the fact that the dynamics converges to that
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Figure 10. Size of the maximal invariant set Ω((fi)N ) (left), number of periodic orbits
of (fi)N (middle) and length of the largest periodic orbit of (fi)N (right) depending on N ,
for f3 (top) and f4 (bottom), on the grids EN with N = 128k, k = 15, . . . , 100

of the initial homeomorphism: among others, we can test if it is of the same order as the
number of attractors of the homeomorphism. In practice, its behaviour is similar to that
of the cardinality of the maximal invariant set Ω(fN ): its evolution is very regular for f3

but oscillates (from N = 15) between 30 and 90 for f4. As in the conservative case, the
comparison with figure 10 indicates that the average length of a periodic cycle is about 3
for f3 and f4.

Since the dynamics of discretizations is assumed to converge to that of the initial homeo-
morphism, one could expect that the length of the longest periodic orbit of discretizations
(fi)N is almost always a multiple of that of an attractive periodic orbit of fi. The graphic
of this length for f3 looks like the conservative case, so one can say that the dissipative
behaviour of this homeomorphism is not detected for reasonable orders of discretizations.
Despite this, the values of the lengths of the longest periodic orbit are much smaller (up
to a factor 10) than in the conservative case. It is not obvious if it is more a dissipative
effect than a coincidence. For f4, the length of the longest orbit is smaller than 25, which
is normal because we are supposed to detect the attractors of the homeomorphism. The
changes of the length of the longest orbit are probably due to errors of discretization if the
neighborhood of the attractors of f4. Furthermore, we note that some values of the size
of the longest orbit are more achieved: for example for 30 different integers N the longest
periodic orbit has length 4, for 19 different integers N this length is 8 and for 10 different
integers N it is 10. This is certainly due to the shadowing property of periodic orbits of
f4 by those of the discretizations: see the work of M. Blank for a discussion about the
phenomenon of multiplication of the period [Bla89, Bla86, Bla84, Bla94].

13.2. Behaviour of invariant measures. As in the conservative case we calculated the
invariant measures µfiN of dissipative homeomorphisms f3 and f4 as defined on page 37.
Our aim is to test whether theorem 73 apply in practice or if there are technical constraints
such that this behaviour can not be observed on these examples. For a presentation of the
representations of the measures, see page 34.



DYNAMICAL PROPERTIES OF SPATIAL DISCRETIZATIONS OF A GENERIC HOMEOMORPHISM39

Figure 11. Maximal value of µN on EN depending on N for f3 (left) and f4 (right), on
the grids EN with N = 128k, k = 15, . . . , 100

There is no clear theoretical results concerning the behaviour of the maximal value of
the measure µfN (figure 11), but we can at least observe that a convergence of this amount
would be a good indication that the considered homeomorphism is dissipative. As in the
conservative case (in the neighborhood of identity), the behaviour of µf3N seems very chaotic.
While µf3N is always smaller than 0.07, the maximum value of µf4N is very high and fluctuates
between 0.02 and 0.3, with many values around 0.06 and 0.12 and some values around 0.25.
The obvious arithmetic relationships between these values can be explained by the fact that
some attractors of discretizations merge for some values of N . Thus, there are orbits which
attract many points; it seems to reflect the typical behaviour of generic homeomorphisms.



Figure 12. Simulations of µf3N on grids EN , with N = 20000, . . . , 20008 (from left to right
and top to bottom)

The behaviour of invariant measures for f3, which is a small C0 dissipative perturbation
of identity, is relatively similar to that of invariant measures for f1 i.e. the corresponding
conservative case: when the order discretization is large enough, there is a strong varia-
tion of the measure µf3N . Moreover this measure has a significant absolutely continuous
component with respect to Lebesgue measure. Nevertheless, there are differences with the
conservative case: the maximum value of µf3N is very large, much more than for f1, and
there are orbits which attract many points. On the other hand, one can observe the follow-
ing phenomenon (we hope that it is anecdotal): these orbits are located on vertical stripes.
This is probably related to specific arithmetic phenomena due to the specific form of the
homeomorphism f3.

It is normal not to be able to observe all the attractors of f3 on these simulations:
as noted by J.-M. Gambaudo and C. Tresser in [GT83], the size of these attractors can
be very small compared to the numbers involved in the definition of f3. So even in orders
discretization such as 215, the dissipative nature of the homeomorphism can not be detected
on discretizations. For this reason, it looks as if the discretizations of f3 are very similar
to those of f1.



Figure 13. Simulations af µf4N on the grids EN , with N = 2k and k = 6, . . . , 14 (from left
to right and top to bottom)

Recall that what happens for f3 is rather close to what happens for f1. For their part,
simulations of invariant measures for f4 on grids of size 2k×2k highlight that we expect from
a generic dissipative homeomorphism: the measures µf4N tend quickly to a single measure
(that is also observed on a series of simulations), which is carried by the attractors of f4.
The fact that f4 has few attractors allows the discretizations of reasonable orders (typically
211) to find the actual attractors of the initial homeomorphism, contrary to what we had
observed for f3.
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