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ABSTRACT 
      This paper presents preliminary results of the 
modelling of an unconventional unmanned airship 
moving in an ideal fluid. We are studying here a 
quad-rotor flying wing.  
The airships are also governed by the aerodynamic 
forces that have to be modelled. An evaluation of the 
added masses of the airship’s components is 
presented. A first dynamic modelling including the 
effect of the added masses is proposed.  
 A control law based on the elaborated dynamic 
model was applied to this large flying object to 
evaluate its sensitivity when manoeuvring over an 
uploading area. 

I. INTRODUCTION

Interest in airships has increased in the last decades. 
Exhaustive studies in this topic were presented by [1-
2]. Much of the current airships developed and 
studied in the literature adopt the ellipsoidal shape [4-
6]. This particular shape has a wide popularity in this 
field due to the existence of a large and reliable 
knowledge and experimentations for both ellipsoidal 
airships and their alter ego submarines. However the 
advances in aerodynamics, control theory and 
embedded electronics permit to consider new and 
complex shapes in order to achieve optimal 
performance for airships.  The airship studied here 
slices with the traditional shapes. The MC 500 is a 
flying wing (figure 1), developed by the French 
network DIRISOFT. 
The MC500 is an experimental prototype for a set of 
great, innovating and ecological airships. When used 
as unmanned aerial vehicles, the large airships need 
precise dynamic models. This permits to elaborate 

convenient algorithms of control, stabilization or 
navigation of these autonomous objects.  
To establish the dynamics model, we use a formalism 
based on the Newton-Euler approach. This choice is 
mainly motivated by the easiness to build control or 
stabilization algorithms based on this model. An 
alternative of this method consists to use a lagrangian 
approach [6-7]. 
 The MC500 is powered by four electric engines, 
driving contra-rotating propellers and placed properly 
to allow good forward propulsion as well as the yaw, 
pitch and roll control.  

Beside, airships are also governed by the 
aerodynamic forces that have to be modelled. Among 
the aerodynamic solicitations the added masses 
phenomenon is one of the most important. In fact, 
while hovering or in case of low speed displacement, 
the lift and drag forces and torques could be 
neglected. 

The added masses phenomenon is palpable in the 
case of objects lighter than air. When an airship 
moves in an incompressible and infinite inviscid fluid 
assuming that the external flow is everywhere 
irrotational and continuous, the kinetic energy of the 
fluid produces an effect equivalent to an important 
increase of the mass and of the moments of inertia of 
the body.  

A geometric technique is used for the computation of 
the different terms of the added mass matrix. A 
methodology for the computation of generic shapes 
was presented in [8-9]. The shape of the careen of the 
MC500 is considered as the combination of a 
truncated cone with elliptic section and a conoid. 
Some other assumptions were introduced for the 
computation of the added masses of the tail fins. An 
alternative of this computation should be a derivation 
of this matrix from the velocity potential flow theory 
[10-11]. When we consider that the velocity potential 
of the air obeys the Laplace equation, the added 
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masses matrix could be determined by resolving this 
equation, using the sphero-conal coordinates in this 
case. This leads to the Lamé equations that we solve 
to retrieve the velocity potential flow. The results of 
this method will be presented in future works. 

In order to validate our model of the airship, we 
apply a control law on the airship manoeuvring over 
an uploading area, considered as equilibrium point. 

Numerical simulations are presented at the end of this 
paper. They highlight the developed theoretical 
results. 

Figure 1. The flying wing Airship MC 500 

NOMENCLATURE 

1 0 0 0[ , , ]η = Tx y z : Vector position of the origin 

expressed in the fixed reference frame0R , 

2 [ , , ]η φ θ ψ= T : Vector orientation of the pointer mR  in

regards to R and given by the Euler angles,   

1 2[ , ]η η η= T : Vector attitude compared to 0R ,

η& : Velocity Vector compared to 0R  expressed in 0R ,

1 [ , , ]ν = Tu v w : Velocity Vector expressed in mR ,

2 [ , , ]ν = Tp q r : Vector of angular velocities expressed

in mR . 

m : the mass of the airship. 
I3 : the identity matrix 3x3. 

II. DYNAMIC MODEL

II.1. Kinematics 

The MC 500 is modelled in first approximation as a 
rigid flying object.  
In the beginning let us define the different reference 
frames used in this study (see figure 2). First an 
earth-fixed frame 0 0, 0 0( , , )=R O X Y Z  assumed to be

galilean. Then a local reference frame, R(G,X,Y,Z) 

parallel to the first and fixed at the centre of gravity 
of the airship G. And finally a third one called pointer 

,( , , )m m m mR G X Y Z= ,  its axes are selected as follows:

mX  and mY  are the transverse axis of the airship, mZ : 

the normal axis directed downwards. 

Fig. 2. Different frames used. 

Commonly in aeronautics, a parameterization in yaw, 
pitch and roll is used to describe the orientation of the 
UAV.  
The configuration of the object is described by means 
of three rotations defined by three angles of 
orientation i.e. the yaw ψ  , pitch θ , and roll φ . 

The whole transformation between the pointer Rm 
and the local reference frame R is the combination of 
elementary matrices of rotation around the three axes 

1 2z, y , and x
r r r

, and is given by : 

T
1 2

c .c c .s s

J ( ) s .s .c c .s s .s .s c .c s .c

c .s .c s .s c .s .s s .c c .c

θ ψ θ ψ − θ 
 η = φ θ ψ− φ ψ φ θ ψ+ φ ψ φ θ 
 φ θ ψ+ φ ψ φ θ ψ− φ ψ φ θ 

Such as:  1 2 1 2 1 2 1 2 3( ). ( ) ( ). ( )T TJ J J J Iη η η η= =   We

denote by: c cos ; s sinθ = θ φ = φ

Using the rotation matrix1 2( )J η , the expression of the

linear speed in the reference frame 0R  is given by: 

 1 1 2 1( ).η η ν=& J  (1) 

On the other hand, the angular speed of the UAV ν2 
is the combination of the angular speeds around the 
three axes of yaw, pitch and roll. It can be written 
related to 2η&  as: 

  2

1 0 s

0 c s c .

0 s c c

 −   
    = =     

     −     

&

&

&

p

q

r

θ φ
ν φ φ θ θ

φ φ θ ψ
  (2) 

or :                 ( )2 2 2 2.Jη η ν=&  (3) 

The transformation matrix 2 2( )J η is represented by: 

Flight path 
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2 2

1 s tan c tan

( ) 0 c s

s c
0

c c

 
 
 

= − 
 
  
 

J

φ θ φ θ
η φ φ

φ φ
θ θ

 

It is noticed that the parameterization by the Euler 

angles have a singularity in 
2

k
πθ π= +  .

This parameterization is acceptable because it is 
impossible for an airship to reach this singular 
orientation of 90 degrees pitching angle. 

The global kinematics equation is then: 

1 2 1

2 2 2

( ) 0

0 ( )

η ν
η

η ν
  

=   
  

&
J

J
 (4) 

II.2. Dynamics 

The lighter than air aerial vehicles are subjected to a 
particular aerodynamic phenomenon called added 
masses. If a voluminous and light object is moving in 
an inviscid and incompressible fluid, the kinetic 
energy of the fluid produces an effect equivalent to 
an important growing of the mass and inertia of the 
body. As the airship displays a very large volume, its 
added masses and inertias become significant. We 
will assume that the added mass coefficients are 
constant.  
The basis of the analysis of the motion of a rigid 
body immersed in a perfect fluid is established by 
Lamb [10]. He proves that the kinetic energy of the 
fluid surrounding the body can be expressed as a 
quadratic function of the six components of the 
translation and rotation velocity. 
The whole kinetic energy T of the rigid body and the 
surrounding fluid is: 

 ( )T
b a

M

1
T M M

2
= ν + ν

14243
 (5) 

Where Mb is the mass matrix of the body: 

bTT bTR
b

bRT bRR xx xz

yy

xz zz

m 0 0 0 0 0

0 m 0 0 0 0

M M 0 0 m 0 0 0
M

M M 0 0 0 I 0 I

0 0 0 0 I 0

0 0 0 I 0 I

 
 
 
  

= =   
  
 
  
 

(6) 

Since the centre of the reference frame coincides with 
the centre of gravity, the extra-diagonal matrices are 
null. Taking into account that the plane x-z is a plane 
of symmetry of the MC 500, we conclude that the 
inertia products Ixy, and Iyz are null. 

Evaluation of the added masses: 

The added mass matrix Ma is also positive definite 
and symmetric. 

aTT aTR
a

aRT aRR

M M
M

M M

 
=  
 

A detailed explanation of its various terms can be 
found in [12]. Geometric methods could also be used 
to evaluate these coefficients [9,10,13,14]. Following 
the exhaustive study of Brennen [9], we model our 
flying wings as a sum of a truncated cone (T) with 
elliptic section and a conoid (C). This is motivated by 
the fact that each transverse section of the airship is 
roughly an ellipse. Two curvatures can be seen in 
figure 2. That is why we use the theory of the 2D 
added masses coefficients to compute the different 
terms of the added mass matrix. 

For example: 

11a 11 11

(T) (C)

M m (y,z)dx m (y,z)dx= +∫ ∫  (7) 

Where m11 is a 2D added mass coefficient for the 
forward motion.  
Similar procedure is applied on the tail fins. 
According to the large difference of size between the 
diagonal and off-diagonal terms, we will neglect 
these last terms, keeping only the term Ma46. 

For the computation of the whole dynamics model, 

we choose to use the Kirchoff’s equation [13]: 

2 1
1 1

2 1 2
2 2 1

d T T

dt

d T T T

dt

 ∂ ∂+ ν ∧ = τ ∂ν ∂ν 

 ∂ ∂ ∂+ ν ∧ + ν ∧ = τ ∂ν ∂ν ∂ν 

 (8) 

τ1 and τ2 are respectively the external forces and 
torques, including the rotors effects, the weight (m.g), 
the buoyancy B, and the aerodynamic lift (FL) and 
drag (FD). 

The dynamical system of the airship becomes: 

1 2 11

2 2 2 1 12

( )0

( ) ( )0

− ∧   
=     − ∧ − ∧    

&

&

TTTT

RR TTRR

MM

M MM

τ ν νν
τ ν ν ν νν

 (9) 

Description of the rotors: 

The MC 500 has four electric engines driving rotors. 
Each rotor has two parallel contra-rotating propellers 
to avoid any aerodynamic torque. (Figure 3)  The 
rotor can swivel in two directions. A rotation of angle 
βi around the Y axis ( )i180 180− ° ≤ β ≤ ° , and a
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rotation of angle γi around an axis ZiR normal to Y 
and initially coinciding with the Z axis 

( )i30 30− ° ≤ γ ≤ ° . A fictive axis XiR completes the

rotor frame. 

Figure 3. Position of the rotors 

An upward motion requires the contribution of the 
fours rotors in accordance with the configuration of 
the figure 3. Tilted horizontally, they enable the 
forward motion. While cruising, the rudders (figure 
1) become the main actuators of the tilt, roll or pitch.
But when hovering or in the case of low speed flight, 
the swivelling of the rotors in two directions and the 
differential change of their rotational speeds are the 
only way to effect such rotations of the airship or to 
effect a lateral move. 

Let us denote Pi the position of the rotor i. We can 

then define a rotation matrix i
3J  between the frame

( )i iR iRP ,X ,Y , Z and the pointer Rm such as:

i i i i i
i
3 i i

i i i i i

c c s c s

J s c 0

c s s s c

γ β − γ β β 
 = γ γ 
 − γ β γ β β 

 (10) 

If we suppose that the intensity of the thrust force of 
the rotor i is iF , this force could be introduced in 

the second member of the dynamic equation as:  

Fi = 
m

i
3 i XJ F .e                                                   (11) 

Where 
mXe is an unitary vector along the Xm axis.

The torque produced by this rotor is Fi Ÿ PiG  

Weight and buoyancy: 

An important characteristic of the airships is the 
buoyancy Bu. This force represents a natural static 
lift, corresponding roughly to 1Kg for each m3 of 
helium involved in the careen. We suppose here that 
this force is applied in the centre of buoyancy B 
different from the centre of gravity G. 

u airB .V.g= ρ  (12) 

where V is the volume of the careen, ρair is the 
density of the air, and g the gravity. 
Let us note FWB and MWB the force and the moment 
due to the weight and buoyancy. 
We have: 

 FWB = .(mg - Bu).
T
1J eZ  (13-a) 

 MWB = Bu .(
T
1J .eZ Ÿ BG)  (13-b) 

Aerodynamic forces FA: 
Such as other flying objects, the airships are 
subjected to aerodynamic forces. The resultant of 
these forces could be decomposed into two 
component forces, one parallel to the direction of the 
relative wind and opposite to the motion, called Drag, 
and the other perpendicular to the relative wind, 
called Lift. The MC500 is designed with an original 
shape oriented to a best optimization of the ratio lift 
upon drag forces.  
However, and as first study, we try to evaluate the 
behaviour of the airship in the case of low velocity or 
while hovering. In these cases, the effect of these 
forces could be neglected. 

The whole system of forces applied on the airship is 
then: 

4

1

4

1
1

4

1

. . ( ).

( ). .

. ( ) .

i i i u
i

i i u
i

i i i u
i

F c c mg B s

F s mg B s c

F c s mg B c c

γ β θ

τ γ φ θ

γ β φ θ

=

=

=

 − − 
 
 

= + − 
 
 

− + −  
 

∑

∑

∑

 (14) 

and : 
4

1 1 1 1 2 2 2
1

3 3 3 3 4 4 4

4

4 4 4 3 3 3
1

2
1 1 1 2 2 2

1 1 1 1 2 2 2

3 3 3 3 4 4 4

4 4 3

. ( . . )

( . . ) . .

. ( . .

. . ) .

( . . )

( . . )

(

i i
i

u B

i i i
i

u B

c F s b F c s F c s

b F c s F c s B zs c

c F c c a F c s F c s

F c s F c s B z s

b F c c F c c

b F c c F c c

a F s F

γ γ β γ β

γ β γ β φ θ

γ β γ β γ β

τ γ β γ β θ

γ β γ β
γ β γ β
γ

=

=

+ −

+ − +

− + +

=− − − +

−

+ −

+ +

∑

∑

3 1 1 2 2)

(15)

s F s F sγ γ γ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − −
 
 
 

 

                           

The global dynamic system could be expressed in a 
compact form as follows: 

M. = + GQ&ν τν τν τν τ  (16) 
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2 

1 

4 
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With : 

0

0
TT

RR

M
M

M

 
=  
 

, 
1

2

 
=  
 

ν
ν

νννν , 
1

2

 
=  
 

τ
τ

ττττ  and 

2 1

2 2 1 1

( )

( ) ( )
TT

G
RR TT

M

M M

− ∧ 
=  − ∧ − ∧ 

Q
ν νν νν νν ν
ν ν ν νν ν ν νν ν ν νν ν ν ν

Let us note Mij the terms of the whole mass matrix M. 

The vector of gyroscopic forces can then be expressed 

as :

                       

22 33

33 11

11 22

46 55 66

2 2
46 66 44 46

44 55 46

( )

( )

( )

E

M vr M qw

M pw M ur

M uq M vp
Q

M pq M M qr

M p M M pr M r

M M pq M qr

− 
 − 
 −

=  
− + − 
 + − −
 
 − + 

  (17) 

This leads to the developed dynamic model: 
4

11
1

33 22

4

22
1

33 11

4

33
1

11 22

4

662
144 66 46

46 66 1 1 1 1 2 2 2

. . ( )

. . ( ) .

. . ( ) .

1
{

( )

( ) ( . . )

i i i u
i

i i u
i

i i i u
i

i i
i

M u F c c mg B s

M qw M rv

M v F s mg B s c

M pw M ru

M w F c s mg B c c

M uq M vp

p M c F s
M M M

M M b F c s F c s

γ β θ

γ φ θ

γ β φ θ

γ

γ β γ β

=

=

=

=

= − −

− +

= + −

+ −

= − + −

+ −

= −
−

+ − −

+

∑

∑

∑

∑

&

&

&

&

46 66 3 3 3 3 4 4 4

46 4 4 3 3 1 1 2 2

66 46 44 55 66

2 2
55 66 46 66

4

55 4 4 4
1

3 3 3 1 1 1 2 2 2

2
46 6

( ) ( . . )

( )

. ( )

( ) }

. . ( .

. . . )

. (

u G

i i i
i

u G

M M b F c s F c s

M a F s F s F s F s

M B z s c M M M M pq

M M M M qr

M q c F c c a F c s

F c s F c s F c s

B z s M p M

γ β γ β
γ γ γ γ

φ θ

γ β γ β

γ β γ β γ β

θ

=

− −

+ + − −
− − − +

+ − −

= − +

+ − −

− + +

∑&

2
6 44 46)M pr M r































 − +





4

462
144 66 46

46 44 1 1 1 1 2 2 2

46 44 3 3 3 3 4 4 4

44 4 4 3 3 1 1 2 2

2 2
46 44 46 44 55

46 44 55 66

1
{ .

( )

( ) ( . . )

( ) ( . . )

( )

. ( )

( )

i i
i

u G

r M c F s
M M M

M M b F c s F c s

M M b F c s F c s

M a F s F s F s F s

M B z s c M M M M pq

M M M M qr

γ

γ β γ β
γ β γ β

γ γ γ γ

φ θ

=

 = −
 + − −
 + − −
 − + − −
 + + + −


+ − +

∑&

(18) 

III. Stabilization strategy

The MC 500 is controlled by varying the speeds of 
the electric engines, thereby changing the thrust 
forces Fi, and by tilting the rotors at angles βi and γi. 
We propose the following vector for the control of 
the dirigible:     

4

1
1

4

2
1

4

3
1

4

4 66
1

46 66 1 1 1 1 2 2 2

46 66 3 3 3 3 4 4 4

46 4 4 3 3 1 1 2 2

4

5
1

4 4 4 3

.

. (19)

( ) ( . . )

( ) ( . . )

( )

.

( .

i i i
i

i i
i

i i i
i

i i
i

i i i
i

u F c c

u F s

u F c s

u M c F s

M M b F c s F c s

M M b F c s F c s

M a F s F s F s F s

u c F c c

a F c s F

γ β

γ

γ β

γ

γ β γ β
γ β γ β

γ γ γ γ

γ β

γ β

=

=

=

=

=

=

=

= −

= −

+ − −

+ − −

+ + − −

= −

+ +

∑

∑

∑

∑

∑

3 3

1 1 1 2 2 2

4

6 46
1

46 66 1 1 1 1 2 2 2

46 66 3 3 3 3 4 4 4

44 4 4 3 3 1 1 2 2

. )

( . . )

( ) ( . . )

( ) ( . . )

( )

i i
i

c s

a F c s F c s

u M c F s

M M b F c s F c s

M M b F c s F c s

M a F s F s F s F s

γ β
γ β γ β

γ

γ β γ β
γ β γ β

γ γ γ γ

=
























+ − −

 =

+ − −
+ − −

− + − −

∑

As first approach the values of the real actuators (Fi, 
γi, and βi ) are computed by the numerical resolution 
of a rectangular non-linear system. 
An alternative to this approach is the use of the real 
actuators as control vectors. This technique has yet 
produced convincing results for configuration in 
degraded mode (the angles gamma are fixed and the 
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betas are equal in pairs). However the study of the 
complete independent system is underway. The 
results will be published in future works. 

Let us consider in this part a small deviation around a 
position of equilibrium. As our model is local and 
Eulerian, we will use the theory of small 
perturbations. This simplified theory gives good 
results, especially in the stability analysis of the 
equilibrium states and the response to commands. 

III.1.  Linearization of equations 

This process begins by decomposing the motion 
between the equilibrium state and the deviation from 
this state [15-16]. The idea is to stabilize the XSF 
around a position of equilibrium defined as follows 
[17]: 

d d d d d d d du v w p q r 0= = = = = =θ =φ =           (20)

Where the label d is used for the “desired” 
parameters. 

Under these conditions, and when neglecting the 
variation of the quadratic terms, and when linearizing 
the trigonometric expressions [18], the dynamic 
equations become: 

11 1

22 2

33 3

( )

( )

( )

u

u

u

M u mg B u

M v mg B u

M w mg B u

θ
φ

∆ = − − ∆ +
 ∆ = − ∆ +
 ∆ = − +

&

&

&

 (21)

2
44 66 46 66 4

55 5

2
44 66 46 46 6

( )

( )

u G

u G

u G

M M M p M B z u

M q B z u

M M M r M B z u

φ
θ

φ

 − ∆ = − ∆ +
 ∆ = − ∆ +
 − ∆ = ∆ +

&

&

&

Under the desired conditions (20) we will have: 

u u; v v; w w; p p; q q; r r

u u; v v; w w; p p; q q; r r

∆ = ∆ = ∆ = ∆ = ∆ = ∆ =
∆ = ∆ = ∆ = ∆ = ∆ = ∆ =& & & & & && & & & & &

and the kinematics part is given by:

p ; q ; r∆ = φ ∆ = θ ∆ = ψ& & &                        (22)

III.2. Backstepping controller 

Backstepping controllers are especially useful when 
some states are controlled through other states [19]. 
Another application for a Quadrotor was proposed by 
Altug [20] using lagrangian variables. 
In this work, we use of the Eulerian variables. These 
variables are more realistic, because they correspond 
to the data given by the embedded sensors. We 
underline that some degrees of freedom such as roll 
and pitch are particularly critical for the stabilization 

of the airship when hovering. A blast of wind can 
destabilize the airship in unloading phase. It is then 
important to stabilize efficiently these two degrees of 
freedom. 
A strategy of stabilization is summarized in table 1. 
The vector of control is then introduced into the 
dynamic system. The numerical tests of this 
command are presented in the following section. 

IV. Numerical simulation

In this section we present some numerical examples 
concerning the stabilization of the MC500 around an 
equilibrium point. 

Table 1.  Stabilization strategy 
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We present here some characteristics of the airship: 
Geometry: 
zG =  0.5m      ; a =  2.5m  ;  c = 2m ; 
b1 =   5.4m   ; b3 =  6.5m   ; Volume V= 500 m3 ; 
Inertia and added mass matrix: 
M11 =;  583 kg ; M22 = 620 kg  ;  M33 = 687kg  ; 
M44 =  9413 kg.m2  ;  M55 =  10456 kg.m2  ; 
M66 = 18700 kg.m2  ; M46 = 160 kg.m2  ; 

Figure 4. angular rolling speed 

Figure 5. roll angle 

Figure 6. angular pitching angle 

As perturbation around the equilibrium point we 
simulate an initial rolling angle Φ= π/8 and a pitching 
angle θ = π/8.  

 Figure 7. pitch angle 

 Figure 8. Lateral control 

 Figure 9. Roll control 
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Figure 10. Pitch control 

Figures 4-7 depict the convergence of the roll and 
pitch angles and their derivatives, in a relatively short 
time. Small values of gains are chosen to avoid a 
stabilization which may be very costly in energy. 
In figures 8-10 we visualized various efficient 
controls that stabilize in less than six seconds. 
Although some aerodynamics terms are roughly 
estimated and others are neglected, it nonetheless 
demonstrates the capability of the proposed model to 
display the behaviour and the sensitivity of this 
airship around an equilibrium point. 

V. Conclusion 

In this paper a first dynamic model of an 
unconventional airship is presented. The original 
shape of the careen induces a necessary reformulation 
of the dynamic and aerodynamic study of these flying 
objects. The whole model will be completed by 
1) a precise computing of the added masses using the
potential flow theory, 2) the introduction of the 
flexibility of the hull in the global model.  
However, the resulting model is a good approach to 
the problem. The stabilization of the airship at an 
equilibrium point has been touched on with 
satisfactory results. 
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