
HAL Id: hal-00764425
https://hal.science/hal-00764425v1

Preprint submitted on 13 Dec 2012 (v1), last revised 16 Jul 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uniform strong consistency of a frontier estimator using
kernel regression on high order moments

Stéphane Girard, Armelle Guillou, Gilles Stupfler

To cite this version:
Stéphane Girard, Armelle Guillou, Gilles Stupfler. Uniform strong consistency of a frontier estimator
using kernel regression on high order moments. 2012. �hal-00764425v1�

https://hal.science/hal-00764425v1
https://hal.archives-ouvertes.fr


Uniform strong consistency of a frontier estimator using

kernel regression on high order moments

Stéphane Girard(1), Armelle Guillou(2) & Gilles Stupfler(3)

(1) Team Mistis, INRIA Rhône-Alpes & LJK, Inovallée, 655, av. de l’Europe,

Montbonnot, 38334 Saint-Ismier cedex, France

(2) Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Descartes,

67084 Strasbourg cedex, France

(3) Université d’Aix-Marseille, CERGAM, 15-19 allée Claude Forbin,

13628 Aix-en-Provence Cedex 1, France

Abstract. We consider the high order moments estimator of the frontier of a random pair in-

troduced by Girard, S., Guillou, A., Stupfler, G. (2012). Frontier estimation with kernel regression

on high order moments. It is shown that this estimator is strongly uniformly consistent, and its

rate of convergence is given when the conditional cumulative distribution function belongs to the

Hall class of distribution functions.
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1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random pair (X, Y ) such that their common

distribution has a support defined by S = {(x, y) ∈ Ω× R; 0 ≤ y ≤ g(x)} , where Ω is a compact

subset of Rd. The unknown function g is called the frontier. In Girard et al. (2012), a new estimator

of g is introduced, based upon kernel regression on high order moments of the data:

1

ĝn(x)
=

1

apn

[
((a+ 1)pn + 1)

µ̂(a+1)pn
(x)

µ̂(a+1)pn+1(x)
− (pn + 1)

µ̂pn
(x)

µ̂pn+1(x)

]
(1)

where (pn) is a nonrandom positive sequence such that pn → ∞, a > 0 and

µ̂pn
(x) =

1

n

n∑

i=1

Y pn

i Khn
(x −Xi)
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is a kernel estimator of the conditional moment mpn
(x) = E(Y pn |X = x). Classically, K is

a probability density function on R
d, Kh(u) = h−dK(u/h) and (hn) is a nonrandom positive

sequence such that hn → 0. From a practical point of view, the use of a small window-width hn

allows to select the pairs (Xi, Yi) such that Xi is close to x while the use of the high power pn gives

more weight to the Yi close to g(x). Using high order moments was first suggested by Girard and

Jacob (2008) in the case when Y given X is uniformly distributed. This approach was also used in

Girard and Jacob (2009) to develop a local polynomial estimator.

Uniform consistency results in frontier estimation are seldom available in the literature: we refer the

reader to Geffroy (1964) for the uniform consistency of the blockwise maxima estimator when the

conditional distribution function of Y given X is uniform, and to Jacob and Suquet (1995) for the

uniform consistency of a projection estimator when the observations are realizations of a Poisson

process whose intensity is known. In both papers, the respective rates of uniform convergence are

not given. In the field of econometrics, where the frontier function is assumed to be monotonic, the

uniform consistency of the Free Disposal Hull (FDH) estimator introduced by Deprins et al. (1984)

was shown by Korostelev et al. (1995), along with the minimax rate of uniform convergence; the

uniform consistency of isotonized versions of order−m frontiers introduced in Cazals et al. (2002)

is proven in Daouia and Simar (2005), but rates of convergence are not available in this study.

Consistency results in the L1 sense were studied by Girard et al. (2005) for an estimator solving

an optimization problem and by Geffroy et al. (2006) for the blockwise maxima estimator. The

minimax rate of L1−convergence was established by Härdle et al. (1995).

Outside the field of frontier estimation, uniform convergence of the Parzen-Rosenblatt density es-

timator (Parzen, 1962 and Rosenblatt, 1956) was first considered by Nadaraya (1965). His results

were then improved by Silverman (1978) and Stute (1982), the latter proving a law of the iter-

ated logarithm in this context. Analogous results on kernel regression estimators were obtained by,

among others, Mack and Silverman (1982), Härdle et al. (1988) and Einmahl and Mason (2000).

Uniform consistency of isotonized versions of order−α quantile estimators introduced in Aragon et

al. (2005) was shown in Daouia and Simar (2005). The case of estimators of left-truncated quantiles

is considered in Lemdani et al. (2009).

The paper is organized as follows. Our main results are stated in Section 2. The estimator is

strongly uniformly consistent in a nonparametric framework. The rate of convergence is provided

when the conditional survival function of Y given X = x belongs to the Hall class (Hall, 1982). The

rate of uniform convergence is closely linked to the rate of pointwise convergence in distribution

established in Girard et al. (2012). The proofs of the main results are given in Section 3. Auxiliary

results are postponed to the Appendix.
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2 Main results

Our results are established under the following classical condition on the kernel:

(K) K is a probability density function which is Hölder continuous with exponent ηK :

∃ cK > 0, ∀x, y ∈ R
d, |K(x)−K(y)| ≤ cK ‖x− y‖ηK

and its support is included in B, the unit ball of Rd.

Note that (K) implies that K is bounded with compact support. We first wish to state the uniform

consistency of our estimator on Ω. To this end, three nonparametric hypotheses are introduced.

The first one states the existence of the frontier g.

(NP1) Given X = x, Y is positive and has a finite right endpoint g(x).

Let F(y |x) = F (g(x) y |x) be the conditional survival function of the normalised random variable

Y/g(x) given X = x. The second assumption is a regularity condition on the conditional survival

function of Y given X along the upper boundary of S.

(NP2) There exists y0 ∈ (0, 1) such that for all y ∈ [y0, 1], x 7→ F(y |x) is continuous on Ω.

The third assumption can be seen as a regularity condition on the (normalised) conditional high

order moment mpn
(x)/gpn(x) = E((Y/g(x))pn |X = x).

(NP3) For all c ≥ 1,

sup
x∈Ω

sup
u∈B

∣∣∣∣∣∣∣∣

∫ 1

0

ycpn−1F(y |x− hnu) dy

∫ 1

0

ycpn−1F(y |x) dy
− 1

∣∣∣∣∣∣∣∣
→ 0 as n → ∞.

Let f be the probability density function of X . The following regularity assumption is introduced:

(A1) f is a positive continuous function on Ω and g is a positive Hölder continuous function

with Hölder exponent ηg.

Before stating our first result, let us introduce some further notations. For any real-valued function

γ on R
d, the oscillation of γ between two points x and x− hnu, u ∈ B, is denoted by

∆γ
n(x, u) = γ(x− hnu)− γ(x).

Finally, let µpn
(x) be the smoothed version of the conditional moment mpn

(x), namely

µpn
(x) = E(Y pn Khn

(x−X)) =

∫

Ω

Khn
(x− t)mpn

(t) f(t) dt.

Our uniform consistency result may now be stated:

Theorem 1. Assume that (NP1 − NP3), (K) and (A1) hold. If
nhd

n

logn
inf
x∈Ω

µ(a+1)pn
(x)

g(a+1)pn(x)
→ ∞ and

pn h
ηg

n → 0 as n → ∞, then

sup
x∈Ω

|ĝn(x)− g(x)| → 0 almost surely as n → ∞.
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As far as the conditions on (pn) and (hn) are concerned, let us highlight that, under (A1) and since

Ω is compact, f is uniformly continuous on Ω and inf
Ω

f > 0. As a consequence, the uniform relative

oscillation of f can be controlled as

sup
x∈Ω

sup
u∈B

∣∣∣∣
f(x− hnu)

f(x)
− 1

∣∣∣∣ = sup
x∈Ω

sup
u∈B

∣∣∣∣
∆f

n(x, u)

f(x)

∣∣∣∣→ 0. (2)

Similarly, inf
Ω

g > 0 and we thus have

sup
x∈Ω

sup
u∈B

∣∣∣∣
∆g

n(x, u)

g(x)

∣∣∣∣ = O(hηg

n ) → 0. (3)

Remarking that

log

[
gpn(x − hnu)

gpn(x)

]
= pn log

[
1 +

∆g
n(x, u)

g(x)

]

entails, if pn h
ηg

n → 0,

sup
x∈Ω

sup
u∈B

∣∣∣∣
gpn(x− hnu)

gpn(x)
− 1

∣∣∣∣ = O(pn h
ηg

n ) . (4)

As a conclusion, the condition pn h
ηg

n → 0 thus makes it possible to control the oscillation of gpn

around x, uniformly in x ∈ Ω. This condition was already introduced in Girard and Jacob (2008,

2009) and in Girard et al. (2012).

Besides, for all v ∈ Ω,

m(a+1)pn
(v)

g(a+1)pn(v)
= (a+ 1)pn

∫ 1

0

y(a+1)pn−1F(y | v) dy ≥ (1− 1/pn)
(a+1)pn F(1 − 1/pn | v)

so that, under the condition pn h
ηg

n → 0,

µ(a+1)pn
(x)

g(a+1)pn(x)
= f(x)

∫

Ω

m(a+1)pn
(x− hnu)

g(a+1)pn(x− hnu)

g(a+1)pn(x− hnu)

g(a+1)pn(x)

f(x− hnu)

f(x)
K(u) du

≥ e−(a+1) f(x)

∫

B

F(1 − 1/pn |x− hnu)K(u) du (1 + o(1)),

uniformly in x ∈ Ω, see (2) and (4). Consequently, under the additional mild regularity condition

(NP4) sup
x∈Ω

sup
u∈B

∣∣∣∣
F(1 − 1/pn |x− hnu)

F(1 − 1/pn |x)
− 1

∣∣∣∣→ 0 as n → ∞,

it appears that a sufficient condition for Theorem 1 to hold is

nhd
n

logn
inf
x∈Ω

F(1 − 1/pn |x) → ∞. (5)

The behavior of the frontier estimator is thus linked to the conditional number nhd
nF(1− 1/pn |x)

of the exceedances over the level g(x)(1 − 1/pn) in the ball B(x, h).

Our second aim is to compute the rate of convergence of the estimator (1) under less stringent

conditions than in Theorem 3 in Girard et al. (2012). The conditional survival function of Y/g(x)

given X = x is assumed to check the semiparametric hypothesis

(SP ) For all y ∈ [0, 1], F(y |x) = (1−y)α(x) L
(
x, (1 − y)−1

)
, where L is bounded on Ω× [1, ∞)

and satisfies

∀x ∈ Ω, ∀ z ≥ 1, L(x, z) = C(x) +D(x, z) z−β(x)
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where α, β and C are positive Borel functions and D is a bounded Borel function on Ω× [1, ∞).

For all x ∈ Ω, the function L(x, ·) is slowly varying at infinity (see for example Bingham et al., 1987)

and belongs to the Hall class (Hall, 1982). Let us emphasize that α(x) drives the behavior of the

distribution tail of Y given X = x in the neighborhood of its endpoint g(x). In the general context

of extreme-value theory (see for instance Embrechts et al., 1997), the conditional distribution of Y

given X = x is said to belong to the Weibull max-domain of attraction with conditional extreme-

value index −1/α(x). The model (SP ) is clearly more general than the one in Girard et al. (2012),

which is restricted to the constant case L ≡ 1.

An additional regularity condition is necessary:

(A2) α is a Hölder continuous function with Hölder exponent ηα; β and C are continuous

functions on Ω and there exists z0 ∈ [1, ∞) such that for all z ≥ z0, the map x 7→ D(x, z) is

continuous on Ω.

Let us remark that assumption (SP ), (A1 − A2) and pn h
ηg

n → 0 clearly entail (NP1), (NP2) and

(NP4). Besides, for all c ≥ 1, Proposition 2 below yields

sup
x∈Ω

∣∣∣∣
µcpn

(x)

f(x)C(x) Γ(α(x) + 1) gcpn(x) (cpn)−α(x)
− 1

∣∣∣∣→ 0 as n → ∞.

Using Lemma 2 (see the Appendix) then gives

sup
x∈Ω

∣∣∣∣∣∣∣∣

∫ 1

0

ycpn−1F(y |x) dy

C(x) Γ(α(x) + 1) (cpn)−α(x)
− 1

∣∣∣∣∣∣∣∣
→ 0 as n → ∞.

We therefore obtain that if hypotheses (SP ), (A1 − A2) and pn h
ηg
n → 0 hold, then assumption

(NP3) holds as well. In particular, Theorem 1 holds in that semiparametric setting. Besides, if

(A2) holds,

α := max
Ω

α < ∞ and β := min
Ω

β > 0

because Ω is compact.

Letting wn =
√
n p−α+2

n hd
n/ logn, we can now state our result on the rate of uniform convergence

in the semiparametric framework (SP ):

Theorem 2. Assume that (SP ), (K) and (A1 −A2) hold. If

• n p−α
n hd

n/logn → ∞ as n → ∞,

• lim sup
n→∞

wn

{
hηg

n ∨ p−1
n hηα

n ∨ p
−β−1
n

}
< ∞,

then

wn sup
x∈Ω

|ĝn(x)− g(x)| = O(1) almost surely as n → ∞.
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Let us highlight that the condition n p−α
n hd

n/ logn → ∞ is exactly condition (5). The second

condition controls the bias of the estimator ĝn. The term h
ηg

n corresponds to the bias introduced by

using a kernel smoothing, while the presence of both other terms is due to the particular structure

of the semiparametric model (SP ). Moreover, as pointed out in Theorem 3 in Girard et al. (2012),

the rate of pointwise convergence of ĝn(x) to g(x) is

√
n p

−α(x)+2
n hd

n. Up to the factor
√
logn,

the rate of uniform convergence of ĝn is therefore the infimum (over Ω) of the rate of pointwise

convergence of ĝn(x).

Theorem 2 allows us to compute the optimal rate of convergence of ĝn. For the sake of simplicity,

we shall consider the case when α is more regular than g (i.e. ηα ≥ ηg) and F(y |x) = (1 − y)α(x)

for all y ∈ [0, 1] (namely, D is identically zero). In that case, the conditions on (pn) and (hn) reduce

to
n p−α

n hd
n

logn
→ ∞ as n → ∞ and lim sup

n→∞

n p−α+2
n h

d+2ηg
n

logn
< ∞.

Up to the factor
√
logn, the optimal rate of convergence is obtained if pn has order nc1 and hn has

order n−c2 , where (c1, c2) is a solution of the constrained optimization problem

(c1, c2) = argmax
(c, c′)∈∆

1 + (2− α)c− dc′

with ∆ = {(c, c′) ∈ R
2 | 1− α c− dc′ ≥ 0, 1 + (2− α)c− (d+ 2ηg)c

′ ≤ 0, c, c′ > 0}.

This yields c1 = ηg/(d+αηg) and c2 = 1/(d+αηg), in which case the (optimal) rate of convergence

has order nηg/(d+αηg). Let us note that this rate of convergence has been shown to be minimax by

Härdle et al. (1995) for a particular class of densities in the case d = 1 with a L1 risk.

3 Proofs of the main results

Before proceeding to the proofs of our main results, we point out that, due to our hypotheses, all

our results and lemmas on the behavior of mpn
(x), µpn

(x) and µ̂pn
(x) hold as well when pn is

replaced by (a+ 1)pn.

The key idea to show Theorem 1 is to prove a uniform law of large numbers for µ̂pn
(x) in the

nonparametric setting.

Proposition 1. Assume that (NP1 −NP3), (K) and (A1) hold. Let vn =

√
nhd

n

logn
inf
x∈Ω

µpn
(x)

gpn(x)
. If

vn → ∞ and pn h
ηg
n → 0 as n → ∞, then there exists a positive constant c > 0 such that for every

ε > 0 and every sequence of positive numbers (δn) converging to 0 such that δn vn → ∞, there exists

a positive constant cε with

P

(
δn vn sup

x∈Ω

∣∣∣∣
µ̂pn

(x)

µpn
(x)

− 1

∣∣∣∣ > ε

)
= O

(
nc exp

[
−cε

logn

δ2n

])
.

Consequently,

δn vn sup
x∈Ω

∣∣∣∣
µ̂pn

(x)

µpn
(x)

− 1

∣∣∣∣→ 0 almost surely as n → ∞.
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Proof of Proposition 1. The proof is based on that of Lemma 1 in Härdle and Marron (1985).

Since Ω is a compact subset of Rd, we may, for all n ∈ N \ {0}, find a finite subset Ωn of Ω such

that:

∀x ∈ Ω, ∃χ(x) ∈ Ωn, ‖x− χ(x)‖ ≤ n−η and ∃ c > 0, |Ωn| = O(nc) ,

where |Ωn| stands for the cardinality of Ωn, and η = d−1 + η−1
K . Notice that, since nhd

n → ∞, one

can assume that eventually χ(x) ∈ B(x, hn) for all x ∈ Ω. Picking ε > 0, and letting

T1, n := P

(
δn vn sup

x∈Ω

∣∣∣∣
µ̂pn

(x)

µpn
(x)

− µ̂pn
(χ(x))

µpn
(χ(x))

∣∣∣∣ >
ε

2

)

and T2, n :=
∑

ω∈Ωn

P

(
δn vn

∣∣∣∣
µ̂pn

(ω)

µpn
(ω)

− 1

∣∣∣∣ >
ε

2

)
,

the triangular inequality then yields

P

(
δn vn sup

x∈Ω

∣∣∣∣
µ̂pn

(x)

µpn
(x)

− 1

∣∣∣∣ > ε

)
≤ T1, n + T2, n.

The goal of the proof is to show that

T1, n + T2, n = O

(
nc exp

[
−cε

logn

δ2n

])
.

We start by controlling T1, n. For all x ∈ Ω,

∣∣∣∣
µ̂pn

(x)

µpn
(x)

− µ̂pn
(χ(x))

µpn
(χ(x))

∣∣∣∣ ≤
1

n

n∑

i=1

Y pn

i

∣∣∣∣
Khn

(x−Xi)

µpn
(x)

− Khn
(χ(x)−Xi)

µpn
(χ(x))

∣∣∣∣ ,

and the triangular inequality entails

∣∣∣∣
Khn

(x−Xi)

µpn
(x)

− Khn
(χ(x) −Xi)

µpn
(χ(x))

∣∣∣∣ ≤ |Khn
(x−Xi)−Khn

(χ(x) −Xi)|
µpn

(x)

+
|µpn

(x) − µpn
(χ(x))|

µpn
(x)µpn

(χ(x))
Khn

(χ(x) −Xi).

Using hypothesis (K) and Lemma 3, there exists a positive constant κ such that, for n large enough,

sup
x∈Ω

{
µpn

(x)

∣∣∣∣
Khn

(x−Xi)

µpn
(x)

− Khn
(χ(x) −Xi)

µpn
(χ(x))

∣∣∣∣
}

≤ κ

hd
n

[
n−η

hn

]ηK

1l{X∈B(x, hn)∪B(χ(x), hn)}.

Since the support of the random variable Khn
(χ(x) −Xi) is included in B(x, 2hn), one has

sup
x∈Ω

∣∣∣∣
µ̂pn

(x)

µpn
(x)

− µ̂pn
(χ(x))

µpn
(χ(x))

∣∣∣∣ ≤ κ

[
n−η

hn

]ηK

sup
x∈Ω

1

µpn
(x)

∣∣∣∣∣
1

nhd
n

n∑

i=1

Y pn

i 1l{Xi∈B(x, 2hn)}

∣∣∣∣∣ .

For all x ∈ Ω,

1

n

n∑

i=1

Y pn

i 1l{Xi∈B(x, 2hn)} ≤ sup
B(x, 2hn)

gpn

almost surely, and in view of (4), it follows that

sup
x∈Ω

∣∣∣∣
µ̂pn

(x)

µpn
(x)

− µ̂pn
(χ(x))

µpn
(χ(x))

∣∣∣∣ ≤ 2κ

[
n−η

hn

]ηK 1

hd
n

sup
x∈Ω

gpn(x)

µpn
(x)

7



for n large enough. Finally, nhd
n → ∞ implies

[
n−η

hn

]ηK

=

[
1

nhd
n

]ηK/d
1

n
= o

(
1

n

)

and therefore, we have the following bound:

δn vn sup
x∈Ω

∣∣∣∣
µ̂pn

(x)

µpn
(x)

− µ̂pn
(χ(x))

µpn
(χ(x))

∣∣∣∣ ≤ 2κ
δn

vn logn
→ 0

as n → ∞. Hence T1, n = 0 eventually.

Let us now control T2, n. To this end, pick ω ∈ Ωn and introduce

Zn, i(ω) =
Y pn

i

sup
B(ω, hn)

gpn
K

(
ω −Xi

hn

)
.

Remark that |Zn, i(ω)− E(Zn, i(ω))| ≤ sup
B

K almost surely and thus

hd
n

µ̂pn
(ω)− µpn

(ω)

sup
B(ω, hn)

gpn
=

1

n

n∑

i=1

{
Zn, i(ω)− E(Zn, i(ω))

}

is a mean of bounded, centered, independent and identically distributed random variables. Defining

τn(ω) :=
ε

2 sup
B

K

1

δn vn

nµpn
(ω)hd

n

sup
B(ω, hn)

gpn

and λn(ω) :=
ε

2
sup
B

K
1

δn vn

µpn
(ω)hd

n

sup
B(ω, hn)

gpn

1

Var(Zn, 1(ω))
,

Bernstein’s inequality (see Hoeffding, 1963) yields, for all ε > 0,

P

(
δn vn

∣∣∣∣
µ̂pn

(ω)

µpn
(ω)

− 1

∣∣∣∣ >
ε

2

)
= P


hd

n

∣∣∣∣∣∣∣

µ̂pn
(ω)− µpn

(ω)

sup
B(ω, hn)

gpn

∣∣∣∣∣∣∣
>

ε

2

1

δn vn

µpn
(ω)hd

n

sup
B(ω, hn)

gpn




≤ exp

(
− τn(ω)λn(ω)

2(1 + λn(ω)/3)

)
.

Using once again (4), we get, for n large enough,

inf
ω∈Ωn

τn(ω) ≥
ε

4 sup
B

K

vn logn

δn
.

Moreover, for all ω ∈ Ωn,

1

λn(ω)
=

2

ε sup
B

K
δn vn sup

B(ω, hn)

gpn h−d
n

[
E(Z2

n, 1(ω))

µpn
(ω)

− [E(Zn, 1(ω))]
2

µpn
(ω)

]
,

and since sup
B(ω, hn)

gpn h−d
n Zn, 1(ω) = Y pn

1 Khn
(ω −X1), it follows that

sup
B(ω, hn)

gpn h−d
n

[
E(Z2

n, 1(ω))

µpn
(ω)

− [E(Zn, 1(ω))]
2

µpn
(ω)

]
≤ sup

B
K,

8



so that

sup
ω∈Ωn

1

λn(ω)
≤ 2

ε
δn vn.

Remarking that the function x 7→ 1/[2(x+1/3)] is decreasing on R+, there exists a constant cε > 0

such that, for all ω ∈ Ωn,

P

(
δn vn

∣∣∣∣
µ̂pn

(ω)

µpn
(ω)

− 1

∣∣∣∣ >
ε

2

)
≤ exp

(
−cε

logn

δ2n

)
,

for all n large enough. Taking into account that |Ωn| = O(nc), this implies that

T2, n = O

(
nc exp

[
−cε

log n

δ2n

])
.

Notice now that the above bound yields

∀ ε > 0,
∑

n

P

(
δn vn sup

x∈Ω

∣∣∣∣
µ̂pn

(x)

µpn
(x)

− 1

∣∣∣∣ > ε

)
< ∞

and use Borel-Cantelli’s lemma to get the final part of the result.

With Proposition 1 at hand, we can now prove Theorem 1.

Proof of Theorem 1. Since g is positive and continuous on the compact set Ω, it is bounded

from below by a positive constant. It is then enough to prove that

sup
x∈Ω

∣∣∣∣
1

ĝn(x)
− 1

g(x)

∣∣∣∣→ 0 almost surely as n → ∞.

To this end, notice that

µ̂(a+1)pn
(x)

µ̂(a+1)pn+1(x)
=

µ(a+1)pn
(x)

µ(a+1)pn+1(x)

µ̂(a+1)pn
(x)

µ(a+1)pn
(x)

[
µ̂(a+1)pn+1(x)

µ(a+1)pn+1(x)

]−1

and
µ̂pn

(x)

µ̂pn+1(x)
=

µpn
(x)

µpn+1(x)

µ̂pn
(x)

µpn
(x)

[
µ̂pn+1(x)

µpn+1(x)

]−1

.

Using again the positivity and the continuity of g on the compact set Ω, Lemma 2(iii) yields

sup
x∈Ω

∣∣∣∣
µpn+1(x)

µpn
(x)

− g(x)

∣∣∣∣→ 0 and sup
x∈Ω

∣∣∣∣
µ(a+1)pn+1(x)

µ(a+1)pn
(x)

− g(x)

∣∣∣∣→ 0.

Since µ(a+1)pn
(x)/g(a+1)pn(x) ≤ µpn

(x)/gpn(x) (1 + o(1)) uniformly in x ∈ Ω, Proposition 1 entails

sup
x∈Ω

∣∣∣∣
µ̂(a+1)pn

(x)

µ̂(a+1)pn+1(x)
− 1

g(x)

∣∣∣∣→ 0 and sup
x∈Ω

∣∣∣∣
µ̂pn

(x)

µ̂pn+1(x)
− 1

g(x)

∣∣∣∣→ 0 (6)

almost surely as n → ∞. The result follows by reporting (6) into (1).

Before proving Theorem 2, further examination of the behavior of the high order moment µpn
(x)

is needed. The next result gives a uniform equivalent of the moment µpn
(x) in the semiparametric

framework.

9



Proposition 2. Assume that (SP ), (K), (A1 −A2) hold and pn h
ηg
n → 0 as n → ∞. Then

sup
x∈Ω

∣∣∣∣∣
µpn

(x)

f(x)C(x) Γ(α(x) + 1) gpn(x) p
−α(x)
n

− 1

∣∣∣∣∣→ 0 as n → ∞.

Proof of Proposition 2. Let us introduce Fγ(y |x) = (1 − y)γ(x) for all y ∈ [0, 1]. In the

semiparametric setting (SP ), F(· |x) can be written as

∀ y ∈ [0, 1], F(y |x) = C(x)Fα(y |x) +D
(
x, (1− y)−1

)
Fα+β(y |x).

Pick x ∈ Ω, and set

Mn(pn, x) :=

∫

Ω

f(v)C(v) gpn(v)Khn
(x− v)

[
pn

∫ ∞

0

ypn−1Fα(y | v) dy
]
dv (7)

=

∫

B

(fCgpn)(x− hnu) pn b(pn, α(x − hnu) + 1)K(u) du

where b(x, y) =

∫ 1

0

tx−1 (1 − t)y−1 dt is the Beta function. With these notations, the high order

moment µpn
(x) can be rewritten as

µpn
(x) = Mn(pn, x)[1 + εn(pn, x)] where εn(pn, x) =

En(pn, x)

Mn(pn, x)
(8)

and with

En(pn, x) :=

∫

B

(fgpn)(x− hnu) pn Iα+β,D(pn, x− hnu)K(u) du (9)

Iα+β,D(pn, v) :=

∫ 1

0

ypn−1 Fα+β(y | v)D
(
v, (1− y)−1

)
dy. (10)

Lemma 8 and (8) entail

sup
x∈Ω

∣∣∣∣
µpn

(x)

Mn(pn, x)
− 1

∣∣∣∣→ 0 as n → ∞.

It is therefore enough to show that

sup
x∈Ω

∣∣∣∣∣
Mn(pn, x)

f(x)C(x) Γ(α(x) + 1) gpn(x) p
−α(x)
n

− 1

∣∣∣∣∣→ 0 as n → ∞.

Lemma 5 establishes that

sup
x∈Ω

∣∣∣∣
Mn(pn, x)

f(x)C(x)α(x) gpn (x) b(pn + 1, α(x))
− 1

∣∣∣∣→ 0 as n → ∞.

Finally, Lemma 4 gives

sup
x∈Ω

∣∣∣∣∣
α(x) b(pn + 1, α(x))

Γ(α(x) + 1) p
−α(x)
n

− 1

∣∣∣∣∣→ 0 as n → ∞

and the result is proven.

Since the expression of our frontier estimator involve ratios such as µ̂pn
(x)/µ̂pn+1(x), we shall then

compute an asymptotic expansion of µpn
(x)/µpn+1(x):

10



Proposition 3. Assume that (SP ), (K) and (A1 −A2) hold. If pn h
ηg
n → 0, then

sup
x∈Ω

{
1

h
ηg

n ∨ p−1
n hηα

n ∨ p
−β(x)−1
n

∣∣∣∣
µpn

(x)

µpn+1(x)
− 1

g(x)

[
1 +

α(x)

pn + 1

]∣∣∣∣

}
= O(1).

Proof of Proposition 3. Remark that, with the notations of Proposition 2 above, we have

µpn
(x)

µpn+1(x)
=

Mn(pn, x)

Mn(pn + 1, x)
[1 + τn(pn, x)] (11)

where τn(pn, x) :=
εn(pn, x)− εn(pn + 1, x)

1 + εn(pn + 1, x)
.

Recall then the notations of Lemma 5 and write

sup
x∈Ω

∣∣∣∣∣∣∣∣

{
1

g(x)

[
1 +

α(x)

pn + 1

]}−1
Mn(pn, x)

Mn(pn + 1, x)
−

∫

B

Ln(pn, x, u)K(u) du
∫

B

Ln(pn + 1, x, u)K(u) du

∣∣∣∣∣∣∣∣
= O

(
hηg
n ∨ hηα

n

pn

)
.

Since Ln(pn + 1, x, u) > 0, it follows that

sup
x∈Ω

∣∣∣∣∣∣∣∣

∫

B

Ln(pn, x, u)K(u) du
∫

B

Ln(pn + 1, x, u)K(u) du

− 1

∣∣∣∣∣∣∣∣
≤ sup

x∈Ω
sup
u∈B

∣∣∣∣
Ln(pn, x, u)

Ln(pn + 1, x, u)
− 1

∣∣∣∣ = O

(
hηg

n ∨ hηα
n

pn

)
.

Lemma 5 entails

sup
x∈Ω

∣∣∣∣∣

{
1

g(x)

[
1 +

α(x)

pn + 1

]}−1
Mn(pn, x)

Mn(pn + 1, x)
− 1

∣∣∣∣∣ = O

(
hηg

n ∨ hηα
n

pn

)
.

Besides, applying Lemma 8 yields sup
x∈Ω

∣∣∣pβ(x)+1
n τn(pn, x)

∣∣∣ = O(1). Replacing in (11) concludes the

proof of Proposition 3.

We can now give a proof of Theorem 2.

Proof of Theorem 2. Since, by Theorem 1, sup
x∈Ω

|ĝn(x)− g(x)| → 0 almost surely, it is enough to

prove that

wn sup
x∈Ω

∣∣∣∣
1

ĝn(x)
− 1

g(x)

∣∣∣∣ = O(1) almost surely as n → ∞.

Introducing

1

Gn(x)
=

1

apn

[
((a+ 1)pn + 1)

µ(a+1)pn
(x)

µ(a+1)pn+1(x)
− (pn + 1)

µpn
(x)

µpn+1(x)

]
and ξn(x) =

1

ĝn(x)
− 1

Gn(x)

the quantity of interest can be expanded as

1

ĝn(x)
− 1

g(x)
= ξn(x) +

[
1

Gn(x)
− 1

g(x)

]
.

Both terms are considered separately. The bias term is readily controlled by Proposition 3:

wn sup
x∈Ω

∣∣∣∣
1

Gn(x)
− 1

g(x)

∣∣∣∣ = O

(
wn

{
hηg

n ∨ hηα
n

pn
∨ p

−β−1
n

})
= O(1)
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in view of the hypotheses on (pn) and (hn). Let us now consider the random term ξn(x). Lemma 6

shows that

ξn(x) =
1

apn

[
ζ(1)n (x)− ζ(2)n (x) +

(
µpn+1(x)

µ̂pn+1(x)
− 1

)
ζ(1)n (x) −

(
µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)
− 1

)
ζ(2)n (x)

]
.

In view of Proposition 1, it is therefore sufficient to show that

wn

pn
sup
x∈Ω

∣∣∣ζ(1)n (x)
∣∣∣ = O(1) and

wn

pn
sup
x∈Ω

∣∣∣ζ(2)n (x)
∣∣∣ = O(1) (12)

almost surely as n → ∞. We shall only prove the result for ζ
(1)
n (x), since the result will then

be obtained for ζ
(2)
n (x) by replacing pn with (a + 1)pn. To this end, we mimick the proof of

Proposition 1. For all n ∈ N \ {0}, let Ωn be a finite subset of Ω such that:

∀x ∈ Ω, ∃χ(x) ∈ Ωn, ‖x− χ(x)‖ ≤ n−η and ∃ c > 0, |Ωn| = O(nc) ,

where η = d−1 + η−1
K

[
1 + α−1

]
and assume that n is large enough so that χ(x) ∈ B(x, hn) for all

x ∈ Ω. Pick ε > 0 and an arbitrary positive sequence (δn) converging to 0, and let

T1, n := P

(
δn

wn

pn
sup
x∈Ω

∣∣∣ζ(1)n (x) − ζ(1)n (χ(x))
∣∣∣ > ε

2

)

and T2, n :=
∑

ω∈Ωn

P

(
δn

wn

pn

∣∣∣ζ(1)n (ω)
∣∣∣ > ε

2

)
.

The goal is then to show that both series
∑

n T1, n and
∑

n T2, n converge. Without loss of generality,

we shall assume that δn

√
n p−α

n hd
n/ logn → ∞. Let first

T3, n := P

(
δn wn sup

x∈Ω

∣∣∣∣
µpn

(χ(x))

µpn+1(χ(x))

[
µ̂pn

(x)

µpn
(x)

− µ̂pn
(χ(x))

µpn
(χ(x))

]∣∣∣∣ >
ε

16

)
,

T4, n := P

(
δn wn sup

x∈Ω

∣∣∣∣
µpn

(χ(x))

µpn+1(χ(x))

[
µ̂pn+1(x)

µpn+1(x)
− µ̂pn+1(χ(x))

µpn+1(χ(x))

]∣∣∣∣ >
ε

16

)
,

T5, n := P

(
δn wn sup

x∈Ω

∣∣∣∣
[

µpn
(x)

µpn+1(x)
− µpn

(χ(x))

µpn+1(χ(x))

] [
µ̂pn

(x)

µpn
(x)

− 1

]∣∣∣∣ >
ε

16

)
,

and T6, n := P

(
δn wn sup

x∈Ω

∣∣∣∣
[

µpn
(x)

µpn+1(x)
− µpn

(χ(x))

µpn+1(χ(x))

] [
µ̂pn+1(x)

µpn+1(x)
− 1

]∣∣∣∣ >
ε

16

)
,

so that for all sufficiently large n, T1, n ≤ T3, n + T4, n + T5, n + T6, n. A proof similar to the one of

Proposition 1 gives the bound

sup
x∈Ω

∣∣∣∣
µ̂pn

(x)

µpn
(x)

− µ̂pn
(χ(x))

µpn
(χ(x))

∣∣∣∣ ≤ κ

[
n−η

hn

]ηK 1

hd
n

sup
x∈Ω

pα(x)n

for n large enough, where κ is a positive constant. Remark that n p−α
n → ∞ and nhd

n → ∞ yield

pn

[
n−η

hn

]ηK

=

[
1

n p−α
n

]1/α [
1

nhd
n

]ηK/d
1

n
= o

(
1

n

)
.

Recalling that, from Proposition 1,

vn =

√
nhd

n

logn
inf
x∈Ω

µpn
(x)

gpn(x)

12



Proposition 2 yields wn = pn vn and therefore, applying Proposition 3, T3, n = 0 and T4, n = 0

eventually as n → ∞, so that
∑

n T3, n and
∑

n T4, n converge. Furthermore, since χ(x) ∈ B(x, hn),

Proposition 3 entails

sup
x∈Ω

∣∣∣∣
µpn

(x)

µpn+1(x)
− µpn

(χ(x))

µpn+1(χ(x))

∣∣∣∣ = O

(
hηg

n ∨ hηα
n

pn
∨ p

−β−1
n

)
. (13)

Using once again the equality wn = pn vn and (13) together with Proposition 1 shows that
∑

n T5, n

and
∑

n T6, n converge. As a consequence,
∑

n T1, n converges.

To control T2, n, we shall, as in the proof of Proposition 1, show that there exists a positive constant

cε such that for all sufficiently large n,

∀ω ∈ Ωn, P

(
δn

wn

pn

∣∣∣ζ(1)n (ω)
∣∣∣ > ε

2

)
≤ exp

(
−cε

logn

δ2n

)
.

Pick ω ∈ Ωn and let us consider the random variables

Sn, i(ω) = Y pn

i

[
−1 +

µpn
(ω)

µpn+1(ω)
Yi

]
Khn

(ω −Xi), i = 1, . . . , n

such that

ζ(1)n (ω) =
pn + 1

µpn+1(ω)

1

n

n∑

i=1

Sn, i(ω). (14)

Let now Un, i(ω) = Yi

/
sup

B(ω, hn)

g , so that Un, i(ω) ≤ 1 given {Xi ∈ B(ω, hn)}. It follows that

hd
n

sup
B(ω, hn)

gpn
Sn, i(ω) = Upn

n, i(ω)

[
−1 + sup

B(ω, hn)

g
µpn

(ω)

µpn+1(ω)
Un, i(ω)

]
K

(
ω −Xi

hn

)
.

Using Proposition 3, the Hölder continuity of g and the fact that pn h
ηg

n → 0 therefore yields, for n

sufficiently large,

(pn + 1) sup
ω∈Ωn

∣∣∣∣∣∣∣

hd
n

sup
B(ω, hn)

gpn
Sn, i(ω)− Upn

n, i(ω) [Un, i(ω)− 1]K

(
ω −Xi

hn

)
∣∣∣∣∣∣∣
≤ κ′

where κ′ is a positive constant. Some straightforward real analysis shows that

(pn + 1) sup
u∈[0, 1]

upn(1− u) =

[
1− 1

pn + 1

]pn

→ e−1 < ∞.

Consequently, there exists a positive constant κ′′ such that, for n large enough,

(pn + 1) sup
ω∈Ωn

∣∣∣∣∣∣∣

hd
n

sup
B(ω, hn)

gpn
Sn, i(ω)

∣∣∣∣∣∣∣
≤ κ′′.

The random variables

Zn, i(ω) = (pn + 1)
hd
n

sup
B(ω, hn)

gpn
Sn, i(ω), i = 1, . . . , n
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are therefore uniformly bounded, centered, independent and identically distributed. Let

τn(ω) :=
ε

2κ′′

pn
δn wn

nµpn+1(ω)h
d
n

sup
B(ω, hn)

gpn

and λn(ω) :=
εκ′′

2

pn
δn wn

µpn+1(ω)h
d
n

sup
B(ω, hn)

gpn

1

Var(Zn, 1(ω))

=
εκ′′

2

pn
δn wn

µpn+1(ω) sup
B(ω, hn)

gpn
(pn + 1)−2 h−d

n

E|Sn, 1(ω)|2
.

Recalling (14), Bernstein’s inequality yields, for all ε > 0 and n large enough,

∀ω ∈ Ωn, P

(
δn

wn

pn

∣∣∣ζ(1)n (ω)
∣∣∣ > ε

2

)
≤ exp

(
− τn(ω)λn(ω)

2(1 + λn(ω)/3)

)
.

Proposition 2, equation (4) and the equality wn = pn vn entail

inf
ω∈Ωn

τn(ω) ≥
ε

4κ′′
inf
Ω

g

√
logn

δn

√
n p−α

n hd
n

for large enough n. Moreover, straightforward computations yield

∀ y ∈ [0, 1], sup
x∈Ω

sup
u∈B

∣∣∣∣−1 +
µpn

(x)

µpn+1(x)
g(x− hnu) y

∣∣∣∣ ≤ (1− y) +
α(x)y + νn(y)

pn
,

with νn being a sequence of Borel functions converging uniformly to 0. Lemma 9 thus shows that

sup
x∈Ω

∣∣∣∣∣
E|Sn, 1(x)|2

g2pn(x) p
−α(x)−2
n h−d

n

∣∣∣∣∣ = O(1) as n → ∞.

Consequently, applying Proposition 2 to µpn+1(ω) entails

sup
ω∈Ωn

1

λn(ω)
= O


δn

√
n p−α

n hd
n

logn




as n → ∞. Thus, using once again the fact that the function x 7→ 1/[2(x+ 1/3)] is decreasing on

R+, we get that there exists a constant cε > 0 such that for all n large enough,

∀ω ∈ Ωn, P

(
δn

wn

pn

∣∣∣ζ(1)n (ω)
∣∣∣ > ε

2

)
≤ exp

(
−cε

logn

δ2n

)
.

As a consequence,
∑

n T2, n converges, (12) is proven, and the proof of Theorem 2 is complete.

Appendix: Auxiliary results and proofs

We start by a technical result we shall need to examine the properties of mpn
(x) and µpn

(x) in

Lemma 2 below. It essentially shows that the computation of a conditional high order moment is

controlled by the behavior of the conditional survival function F(· |x) in a neighborhood of 1.

Lemma 1. Let h be a positive bounded Borel function on (0, 1), and let pn → ∞. If (NP1 −NP2)

hold, then for all ε ∈ (0, 1− y0),

sup
x∈Ω

∣∣∣∣∣∣∣∣∣

∫ 1

1−ε

ypn−1 h(y)F(y |x) dy
∫ 1

0

ypn−1 h(y)F(y |x) dy
− 1

∣∣∣∣∣∣∣∣∣
→ 0 as n → ∞.
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Proof of Lemma 1. Let ε ∈ (0, 1− y0), x ∈ Ω and consider the expansion

∫ 1

0

ypn−1 h(y)F(y |x) dy =

∫ 1

1−ε

ypn−1 h(y)F(y |x) dy


1 +

∫ 1−ε

0

ypn−1 h(y)F(y |x) dy
∫ 1

1−ε

ypn−1 h(y)F(y |x) dy


 .

Since, for all y ∈ [1 − ε, 1], the function x 7→ F(y |x) is positive and continuous on Ω, it is clear

that inf
x∈Ω

F(y |x) > 0. Consequently

0 ≤ sup
x∈Ω

∣∣∣∣∣∣∣∣∣

∫ 1−ε

0

ypn−1 h(y)F(y |x) dy
∫ 1

1−ε

ypn−1 h(y)F(y |x) dy

∣∣∣∣∣∣∣∣∣
≤ sup

x∈Ω

∣∣∣∣∣∣∣∣∣

(1− ε) sup
(0, 1)

h

∫ 1

1−ε

[
y

1− ε

]pn−1

h(y)F(y |x) dy

∣∣∣∣∣∣∣∣∣

≤
(1− ε) sup

(0, 1)

h

[
1− ε/2

1− ε

]pn−1 ∫ 1

1−ε/2

h(y) inf
x∈Ω

F(y |x) dy
.

Remarking that

[
1− ε/2

1− ε

]pn−1

→ ∞ as n → ∞, we get the desired result.

The following lemma examines the behavior of the conditional high order moment mpn
(x) and its

smoothed version µpn
(x) in the nonparametric context.

Lemma 2. Assume that (NP1 −NP3) and (A1) hold. Let K be a probability density function on

R
d with support included in B. If pn h

ηg

n → 0 as n → ∞, then

(i) sup
x∈Ω

∣∣∣∣
µpn

(x)

f(x)mpn
(x)

− 1

∣∣∣∣→ 0 as n → ∞,

(ii) sup
x∈Ω

∣∣∣∣
mpn+1(x)

mpn
(x)

− g(x)

∣∣∣∣→ 0 as n → ∞,

(iii) sup
x∈Ω

∣∣∣∣
µpn+1(x)

µpn
(x)

− g(x)

∣∣∣∣→ 0 as n → ∞.

Proof of Lemma 2. (i) Let us remark that

µpn
(x) =

∫

B

K(u) f(x− hnu)mpn
(x − hnu) du,

so that
µpn

(x)

f(x)mpn
(x)

=

∫

B

K(u)
f(x− hnu)

f(x)

mpn
(x − hnu)

mpn
(x)

du.

Besides,

mpn
(x− hnu)

mpn
(x)

=
gpn(x− hnu)

gpn(x)

∫ 1

0

ypn−1F(y |x− hnu) dy

∫ 1

0

ypn−1F(y |x) dy
.

From (2), (4) and hypothesis (NP3), it follows that

µpn
(x)

f(x)mpn
(x)

→
∫

B

K(u) du = 1
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uniformly in x ∈ Ω as n → ∞, which proves (i).

(ii) Similarly, we have

mpn+1(x)

mpn
(x)

= g(x)

[
1 +

1

pn

]
∫ 1

0

ypnF(y |x) dy
∫ 1

0

ypn−1F(y |x) dy
.

Note that

1−

∫ 1

0

ypnF(y |x) dy
∫ 1

0

ypn−1F(y |x) dy
=

∫ 1

0

ypn−1(1− y)F(y |x) dy
∫ 1

0

ypn−1F(y |x) dy

and let ε ∈ (0, 1− y0). Lemma 1 shows that, for all n large enough,

sup
x∈Ω

∣∣∣∣∣∣∣∣
1−

∫ 1

0

ypnF(y |x) dy
∫ 1

0

ypn−1F(y |x) dy

∣∣∣∣∣∣∣∣
≤ (1 + ε) sup

x∈Ω

∣∣∣∣∣∣∣∣∣

∫ 1

1−ε

ypn−1(1− y)F(y |x) dy
∫ 1

1−ε

ypn−1F(y |x) dy

∣∣∣∣∣∣∣∣∣
≤ ε(1 + ε)

and the result follows.

(iii) is a consequence of (i) and (ii).

The third lemma of this section establishes a uniform control of the relative oscillation of µpn
.

Lemma 3. Assume that (NP1 −NP3), (K) and (A1) hold. Let (εn) be a sequence of positive real

numbers such that εn ≤ hn. If pn h
ηg
n → 0 as n → ∞, then

sup
x∈Ω

sup
z∈B(x, εn)

∣∣∣∣
µpn

(z)

µpn
(x)

− 1

∣∣∣∣ = O

([
εn
hn

]ηK
)
.

Proof of Lemma 3. For all x ∈ Ω and z ∈ B(x, εn), we have

|µpn
(x)− µpn

(z)| ≤ E (Y pn |Khn
(x−X)−Khn

(z −X)|) .

Hypothesis (K) and the inclusion B(z, hn) ⊂ B(x, 2hn) now entail

|Khn
(x−X)−Khn

(z −X)| ≤ cK
hd
n

[‖x− z‖
hn

]ηK

1l{X∈B(x, hn)∪B(y, hn)}

≤ cK
hd
n

[
εn
hn

]ηK

1l{X∈B(x, 2hn)}.

Let V be the volume of the unit ball in R
d, K = 1lB/V be the uniform kernel on R

d and let

Kh(u) = h−d K(u/h). The oscillation of µpn
(x) is controlled as

sup
z∈B(x, εn)

|µpn
(x)− µpn

(z)| ≤ 2d cKV E (Y pn K2hn
(x −X))

[
εn
hn

]ηK

. (15)

Note that K is a probability density function on R
d with support included in B. Therefore,

Lemma 2(i) yields

sup
x∈Ω

∣∣∣∣
E (Y pn K2hn

(x−X))

f(x)mpn
(x)

− 1

∣∣∣∣→ 0 as n → ∞.
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Applying Lemma 2(i) once again gives

sup
x∈Ω

∣∣∣∣
E (Y pn K2hn

(x −X))

µpn
(x)

− 1

∣∣∣∣→ 0 as n → ∞

which, together with (15), yields the result.

Lemma 4 below is a useful tool in establishing uniform expansions for ratios of Gamma functions:

Lemma 4. For all z, z′ > 0, one has

log
Γ(z)

Γ(z′)
=

(
z − 1

2

)
log z −

(
z′ − 1

2

)
log z′ − (z − z′) + O

(∣∣∣∣
1

z
− 1

z′

∣∣∣∣
)
.

Proof of Lemma 4. From (6.1.50) in Abramovitz and Stegun (1965), p.258, one has

log Γ(z) =

(
z − 1

2

)
log z − z +

1

2
log 2π + 2

∫ ∞

0

arctan(t/z)

e2πt − 1
dt.

Now, since x 7→ arctanx is a Lipschitz function on R, it follows that

∣∣∣∣
∫ ∞

0

arctan(t/z)

e2πt − 1
dt−

∫ ∞

0

arctan(t/z′)

e2πt − 1
dt

∣∣∣∣ ≤
∣∣∣∣
1

z
− 1

z′

∣∣∣∣
∫ ∞

0

t

e2πt − 1
dt

Remarking that the integral on the right-hand side is convergent yields

∣∣∣∣
∫ ∞

0

arctan(t/z)

e2πt − 1
dt−

∫ ∞

0

arctan(t/z′)

e2πt − 1
dt

∣∣∣∣ = O

(∣∣∣∣
1

z
− 1

z′

∣∣∣∣
)

and the result follows.

The next result of this section is a generalisation of Lemma 2 in Girard et al. (2012). It provides a

uniform expansion of Mn(pn, x), see (7) in the proof of Proposition 2, which is the key to the proof

of Proposition 3.

Lemma 5. Assume that (K) and (A1 −A2) hold. For all x ∈ Ω, u ∈ B and n ∈ N \ {0}, let

Ln(pn, x, u) =
(fC)(x− hnu) Γ(α(x− hnu) + 1)

(fC)(x) Γ(α(x) + 1)
exp

[
pn

∆g
n(x, u)

g(x)
− log(pn)∆

α
n(x, u)

]
,

Λn(pn, x) =
Mn(pn, x)

f(x)C(x) gpn(x)
.

If pn h
ηg
n → 0, then

sup
x∈Ω

∣∣∣∣
Λn(pn, x)

α(x)b(pn + 1, α(x))
− 1

∣∣∣∣→ 0

and

sup
x∈Ω

∣∣∣∣
Λn(pn, x)

α(x)b(pn + 1, α(x))
−
∫

B

Ln(pn, x, u)K(u) du

∣∣∣∣ = O

(
hηg

n ∨ hηα
n

pn

)
.

Proof of Lemma 5. Introducing

Qn(x, u) =
(fC)(x − hnu) Γ(α(x− hnu) + 1)

(fC)(x) Γ(α(x) + 1)
, (16)
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we have

Λn(pn, x)

α(x) b(pn + 1, α(x))
=

∫

B

Qn(x, u)
Γ(pn + 1 + α(x))

Γ(pn + 1 + α(x − hnu))

gpn(x− hnu)

gpn(x)
K(u) du. (17)

Since f, C and α are continuous on the compact set Ω, they are uniformly continuous on Ω.

Furthermore, since α is bounded on Ω and Γ is continuous on (0, ∞), the function x 7→ Γ(α(x)+1)

is uniformly continuous on Ω, so that

sup
x∈Ω

sup
u∈B

|Qn(x, u)− 1| → 0 (18)

as n → ∞. Moreover, since pn h
ηg

n → 0, we get

sup
x∈Ω

sup
u∈B

| log(pn)∆α
n(x, u)| = O(hηα

n | log pn|) = O

([
hηg

n pn

]ηα/ηg | log pn|
p
ηα/ηg

n

)
→ 0

as n → ∞ and Lemma 4 yields

sup
x∈Ω

sup
u∈B

∣∣∣∣exp(log(pn)∆
α
n(x, u))

Γ(pn + 1 + α(x))

Γ(pn + 1 + α(x− hnu))
− 1

∣∣∣∣ = O

(
hηα
n

pn

)
. (19)

Besides,
gpn(x − hnu)

gpn(x)
= exp

[
pn log

(
1 +

∆g
n(x, u)

g(x)

)]
(20)

where

sup
x∈Ω

sup
u∈B

pn

∣∣∣∣
∆g

n(x, u)

g(x)

∣∣∣∣→ 0

as n → ∞, see (3). Replacing (18), (19) and (20) in (17) gives both results.

The aim of Lemma 6 below is to linearise the random variable ξn(x) appearing in the proof of

Theorem 2:

Lemma 6. The random variable ξn(x) can be expanded as

ξn(x) =
1

apn

[
ζ(1)n (x) − ζ(2)n (x) +

(
µpn+1(x)

µ̂pn+1(x)
− 1

)
ζ(1)n (x)−

(
µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)
− 1

)
ζ(2)n (x)

]

where

ζ(1)n (x) = (pn + 1)
µpn

(x)

µpn+1(x)

[
µ̂pn+1(x)

µpn+1(x)
− µ̂pn

(x)

µpn
(x)

]

and ζ(2)n (x) = [(a+ 1)pn + 1]
µ(a+1)pn

(x)

µ(a+1)pn+1(x)

[
µ̂(a+1)pn+1(x)

µ(a+1)pn+1(x)
− µ̂(a+1)pn

(x)

µ(a+1)pn
(x)

]
.

Proof of Lemma 6. Straightforward computations yield

apn ξn(x) = D(1)
n (x)−D(2)

n (x) (21)

with

D(1)
n (x) := (pn + 1)

µpn
(x)

µpn+1(x)

µpn+1(x)

µ̂pn+1(x)

[
µ̂pn+1(x)

µpn+1(x)
− µ̂pn

(x)

µpn
(x)

]
,

D(2)
n (x) := [(a+ 1)pn + 1]

µ(a+1)pn
(x)

µ(a+1)pn+1(x)

µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)

[
µ̂(a+1)pn+1(x)

µ(a+1)pn+1(x)
− µ̂(a+1)pn

(x)

µ(a+1)pn
(x)

]
.
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This leads to

D(1)
n (x) =

µpn+1(x)

µ̂pn+1(x)
ζ(1)n (x) and D(2)

n (x) =
µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)
ζ(2)n (x);

replacing in (21) concludes the proof of Lemma 6.

We shall next take a closer look at the behavior of the functions εn(pn, x), see (8) in the proof of

Proposition 2. We first introduce some tools necessary for this study. For an arbitrary set S, F(S)

is the set of all sequences of functions un : N × S → R, denoted by un(t, x). Let C(S) ⊂ F(S) be

the subset of all the elements u ∈ F(S) such that u meets the following requirements:

(Q1) For all t ∈ N, sup
n∈N

sup
x∈S

|un(t, x)| < ∞.

(Q2) For all t, t′ ∈ N, pn sup
n∈N

sup
x∈S

|un(t
′, x)− un(t, x)| < ∞.

Finally, D(S) is a subset of C(S) whose elements are bounded from below:

D(S) = {u ∈ C(S) | ∀ t ∈ N, ∃M(t) > 0, inf
n∈N

inf
x∈S

un(t, x) ≥ M(t)}.

Lemma 7 lists some properties of the sets C(S) and D(S).

Lemma 7. Let S be an arbitrary set. Then:

(i) C(S) is a linear subspace of F(S) which is stable under multiplication.

(ii) D(S) is closed under multiplication and division.

(iii) Let u ∈ F(S) such that there exists a sequence of uniformly bounded real functions (δn) on S

with

∀ t ∈ N, sup
x∈S

∣∣∣∣un(t, x) −
[
1 +

δn(x)

pn + t

]∣∣∣∣ = o

(
1

pn

)
.

Then u ∈ D(S).

(iv) If S′ is a set endowed with a finite measure µ and if u ∈ C(S × S′) (resp. D(S × S′)), then

(n, t, x) 7→
∫

S′

un(t, (x, x
′))µ(dx′) ∈ C(S) (resp. D(S)).

Proof of Lemma 7. (i) Since it is straightforward that C(S) is a linear subspace of F(S), it

is enough to prove that C(S) is closed under multiplication. Let u, v ∈ C(S) and let wn(t, x) =

un(t, x) vn(t, x). One has, for all x ∈ S and t, t′ ∈ N:

wn(t
′, x) − wn(t, x) = un(t

′, x)[vn(t
′, x)− vn(t, x)] + vn(t, x)[un(t

′, x) − un(t, x)].

Since u and v satisfy requirements (Q1) and (Q2), this equality therefore shows that w satisfies

(Q2), and (i) is proven.
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(ii) Stability under multiplication is a direct consequence of (i). It is then enough to prove that if

u ∈ D(S), then 1/u ∈ D(S). Let w = 1/u: w clearly satisfies (Q1) and for all t ∈ N, the sequence(
inf
x∈S

wn(t, x)

)
is bounded from below by a positive constant. Finally, for all t, t′ ∈ N,

pn sup
n∈N

sup
x∈S

∣∣∣∣
1

un(t, x)
− 1

un(t′, x)

∣∣∣∣ ≤
1

M(t)M(t′)
pn sup

n∈N

sup
x∈S

|un(t
′, x) − un(t, x)| < ∞.

This is enough to conclude that w ∈ C(S), and thus w ∈ D(S), which concludes the proof of (ii).

(iii) Just note that 1/(pn + t) = 1/pn + o(1/pn), from which (iii) readily follows.

(iv) Let u ∈ C(S × S′) and

v : (n, t, x) 7→
∫

S′

un(t, (x, x
′))µ(dx′) ∈ F(S).

Then, for all t ∈ N, since µ is a finite measure on S′, it follows that

sup
n∈N

sup
x∈S

|vn(t, x)| ≤ sup
n∈N

sup
(x, x′)∈S×S′

|un(t, (x, x
′))|
∫

S′

µ(dx′) < ∞.

Besides, for all t′ ∈ N,

pn sup
n∈N

sup
x∈S

|vn(t′, x)− vn(t, x)| ≤ pn sup
n∈N

sup
(x, x′)∈S×S′

|un(t
′, (x, x′))− un(t, (x, x

′))|
∫

S′

µ(dx′) < ∞

so that v ∈ C(S). Letting u ∈ D(S × S′), there exists M(t) > 0 such that

inf
n∈N

inf
x∈S

vn(t, x) ≥ M(t)

∫

S′

µ(dx′) > 0

so that v ∈ D(S), and (iv) is proven.

Lemma 8 below essentially gives the order of magnitude of Mn(pn + t, x) and the error term

En(pn + t, x) in the expansion of µpn
(x):

Lemma 8. Assume that (A1 −A2) hold, and pn h
ηg

n → 0 as n → ∞. Then

(i) (n, t, x) 7→ (pn + t)α(x)
Mn(pn + t, x)

gpn+t(x)
∈ D(Ω).

(ii) (n, t, x) 7→ (pn + t)[α+β](x)En(pn + t, x) ∈ C(Ω).

Proof of Lemma 8. (i) Recalling the notations of Lemma 5, we have

Mn(pn, x)

α(x) b(pn + 1, α(x)) (fCgpn)(x)
=

∫

B

Qn(x, u)
Γ(pn + 1 + α(x))

Γ(pn + 1 + α(x− hnu))

gpn(x− hnu)

gpn(x)
K(u) du.

Since

(pn + t)α(x) b(pn + t+ 1, α(x)) =
(pn + t)α(x)+1

α(x)
b(pn + t, α(x) + 1),

Lemma 4 and Lemma 7(iii) yield

(n, t, x) 7→ (pn + t)α(x) b(pn + t+ 1, α(x)) ∈ D(Ω). (22)
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Consequently, it is enough to show that

(n, t, x) 7→
∫

B

Qn(x, u)
Γ(pn + t+ 1 + α(x))

Γ(pn + t+ 1 + α(x− hnu))

gpn+t(x− hnu)

gpn+t(x)
K(u) du ∈ D(Ω).

From (19) and in view of

Γ(pn + 2 + α(x))

Γ(pn + 2 + α(x − hnu))
− Γ(pn + 1 + α(x))

Γ(pn + 1 + α(x− hnu))
=

Γ(pn + 1 + α(x))

Γ(pn + 1 + α(x − hnu))

−∆α
n(x, u)

pn + 1 + α(x− hnu)
,

it follows by induction that

(n, t, (x, u)) 7→ Γ(pn + t+ 1 + α(x))

Γ(pn + t+ 1 + α(x − hnu))
∈ D(Ω×B). (23)

Then, using the relation

gpn+1(x− hnu)

gpn+1(x)
− gpn(x− hnu)

gpn(x)
=

gpn(x− hnu)

gpn(x)

∆g
n(x, u)

g(x)

along with (20) gives, by induction,

(n, t, (x, u)) 7→ gpn+t(x − hnu)

gpn+t(x)
∈ D(Ω×B). (24)

As a consequence of Lemma 7iv), (i) is proven.

(ii) First and foremost, recall that from (9),

En(pn + t, x) =

∫

B

(
fgpn+t

)
(x− hnu) (pn + t) Iα+β,D(pn + t, x− hnu)K(u) du.

In view of Lemma 7(iv), it is then enough to show that

(n, t, (x, u)) 7→ (pn + t)[α+β](x)+1 gpn+t(x− hnu)

gpn+t(x)
Iα+β,D(pn + t, x− hnu) ∈ C(Ω×B).

Using (24), we shall only prove that

(n, t, (x, u)) 7→ (pn + t)[α+β](x)+1 Iα+β,D(pn + t, x− hnu) ∈ C(Ω×B).

Since

(pn + t)[α+β](x)+1 = p[α+β](x)+1
n (1 + t/pn)

[α+β](x)+1

and since (n, t, x) 7→ (1 + t/pn)
[α+β](x)+1 ∈ D(Ω), in view of Lemma 7(i) and (ii), it is sufficient to

show the latter property for the function defined by

wn(t, (x, u)) = p[α+β](x)+1
n Iα+β,D(pn + t, x− hnu). (25)

For all t ∈ N \ {0}, let Rt : [1, ∞) → [0, ∞) be the function defined by

∀ y ≥ 1, Rt(y) = y

{
1−

[
1− 1

y

]t}
.

For all t ∈ N \ {0}, Rt is a bounded Borel function on [1, ∞), and one has, for all t < t′ ∈ N,

pn[wn(t
′, (x, u))− wn(t, (x, u))] = −p[α+β](x)+2

n Iα+β+1, DRt′−t
(pn + t, x− hnu). (26)
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Remark that for all j, t ∈ N, (x, u) ∈ Ω×B and every bounded Borel function H on Ω× [1, ∞),

|Iα+β+j,H(pn + t, x− hnu)| ≤ b(pn + t, [α+ β](x − hnu) + j + 1) sup
Ω×[1,∞)

|H |.

Finally, Lemma 4 shows that

sup
x∈Ω

∣∣∣∣∣
b(pn + t, [α+ β](x) + j + 1)

Γ([α+ β](x) + j + 1) p
−[α+β](x)−j−1
n

− 1

∣∣∣∣∣→ 0.

The result follows from (25) and (26).

The final result is particularly useful for providing a uniform asymptotic bound of the second-order

moments that appear when computing the rate of convergence in the proof of Theorem 2. This

result is an analogue of Lemma 4 in Girard et al. (2012).

Lemma 9. Assume that (SP ), (K), (A1 − A2) hold and pn h
ηg

n → 0 as n → ∞. Let (bn, 0) and

(bn, 1) be sequences of Borel functions on Ω such that there exist sequences of Borel functions (Hn, 0)

and (Hn, 1), uniformly bounded on [0, 1] with

∀ y ∈ [0, 1], sup
x∈Ω

sup
u∈B

|bn, 0(x) + bn, 1(x) g(x− hnu) y| ≤ Hn, 0(y) (1− y) +
Hn, 1(y)

pn
.

Then, the sequence of random variables

Sn(x) = Y pn [bn, 0(x) + bn, 1(x)Y ]Khn
(x−X)

is such that

sup
x∈Ω

∣∣∣∣∣
E|Sn(x)|2

g2pn(x) p
−α(x)−2
n h−d

n

∣∣∣∣∣ = O(1) as n → ∞.

Proof of Lemma 9. Conditioning on X yields

E|Sn(x)|2 =

∫

Ω

E

[
Y 2pn |bn, 0(x) + bn, 1(x)Y |2

∣∣∣ X = v
]
K2

hn
(x− v) f(v) dv

= h−d
n

∫

B

E

[
Y 2pn |bn, 0(x) + bn, 1(x)Y |2

∣∣∣ X = x− hnu
]
K2(u) f(x− hnu) du.

Now, given X = x − hnu, we have Wn(x, u) := Y/g(x− hnu) ≤ 1. Introducing the bounded

sequence

cn := 2 sup
[0, 1]
n∈N

{
|Hn, 0|2, |Hn, 1|2

}
sup
x∈Ω

sup
u∈B

∣∣∣∣
g2pn(x− hnu)

g2pn(x)

∣∣∣∣ ,

Hölder’s inequality entails, given {X = x− hnu},

Y 2pn |bn, 0(x) + bn, 1(x)Y |2 ≤ cn g
2pn(x)W 2pn

n (x, u)

[
(1−Wn(x, u))

2 +
1

p2n

]
.

It is therefore sufficient to prove that, for all j ∈ N:

sup
x∈Ω

sup
u∈B

∣∣∣∣∣
E
(
W 2pn

n (x, u)(1−Wn(x, u))
j
∣∣ X = x− hnu

)

p
−α(x)−j
n

∣∣∣∣∣ = O(1) . (27)
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Integrating by parts yields

E
(
W 2pn

n (x, u)(1−Wn(x, u))
j
∣∣ X = x− hnu

)
=

∫ 1

0

d

dy

[
y2pn (1 − y)j

]
F(y |x− hnu) dy

≤ 2pn

∫ 1

0

y2pn−1 (1− y)j F(y |x− hnu) dy

since, given {X = x − hnu}, Wn(x, u) has survival function F(· |x − hnu). To conclude, observe

that if γ is a positive Hölder continuous function on R
d, then

∫ 1

0

y2pn−1 Fγ(y |x− hnu) dy = b(2pn, γ(x− hnu) + 1).

From (19) and Stirling’s formula, it follows that

sup
x∈Ω

sup
u∈B

∣∣∣∣p
γ(x)+1
n

∫ 1

0

y2pn−1 Fγ(y |x− hnu) dy

∣∣∣∣ = O(1)

because pn h
ηg
n → 0 as n → ∞. Finally, for all y ∈ [0, 1],

F(y | v) = C(v)Fα(y | v) +D
(
v, (1− y)−1

)
Fα+β(y | v),

and Lemma 8(ii) yields (27), which ends the proof of Lemma 9.
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