Cristian Petrut Ene
email: cristiene85@yahoo.com

Mugurel Eliana-Dina Tirsa

Ionut Andreica
email: mugurel.andreica@cs.pub.ro

Nicolae Tapus
email: nicolae.tapus@cs.pub.ro

Cristian Petru1 Ene

Mugurel Eliana-Dina Tîr2a

Ionu1 Andreica

Nicolae

A Multicast Streaming Architecture Based On A Balanced Peer-To-Peer Tree Overlay

Keywords: Multicast, Streaming, P2P, Tree, Decentralized, Balanced

published or not. The documents may come

INTRODUCTION

Multicast streaming is an important data transfer mode, in which a stream of data needs to reach multiple destinations (clients). In the classical client-server model, the server provides the data stream and the clients connect individually to the server in order to receive the stream. This way, if N clients connect to the server simultaneously, the server will have to serve the stream N times in parallel. Peer-to-peer overlays can be employed in order to relieve the stress on the server and let the clients deliver the stream further to other clients (and not simply consume the stream).

In this paper we propose such a peer-to-peer system for application-level multicast streaming based on a tree overlay. All the nodes interested in receiving a stream join the overlay and, besides consuming the stream, they may also forward the stream to their overlay neighbors. In the overlay, every peer may dynamically become a content generator (i.e. publish its own stream) which may be received by the other peers. The tree overlay is maintained as balanced as possible (i.e. its diameter is minimized) and each peer has an upper limit on the number of overlay neighbors it may have. The rest of this paper is structured as follows. First, we present the architecture of the system and the main functions provided by each peer. Next, we discuss implementation details. Then, we present experimental results. Another contribution of this paper, of a more theoretical nature, is concerned with batch computations of aggregates, which may be performed in a multicast streaming system -we present this contribution closer to the end of the paper. Finally, we discuss related work, conclude and present future work.

SYSTEM ARCHITECTURE

The peer-to-peer overlay is organized as a tree. This structure facilitates multicast data transmission. Every peer can be a content producer. When a peer generates content, this content is sent through the overlay to all the other peers (whenever a peer receives a data packet, it forwards it to all of its neighbors, except for the one from where the packet was received). The tree structure ensures that no unnecessary packets are transmitted. By also imposing an upper limit on the number of tree neighbors of each peer we are able to limit the amount of bandwidth consumed by a peer, thus balancing the bandwidth consumption throughout the overlay. Each peer has a unique self-generated identifier (the id is generated by using a hash function on a sufficiently large number of bits) and considering several "nearly" unique attributes (e.g. time moment when the peer was started, etc.).

Gossiping

The overlay is maintained through gossiping. Periodically, peers send advertisements to all of their neighbors and to their neighbors' neighbors (i.e. the extended neighbors), to let them know that they are still alive (and within the system). This way, each peer will also know its extended neighbors. Each peer P periodically (re)computes for each neighbor V a set of values. We will denote by V P the set of neighbors of the peer P and by S(V,P) the subtree of the overlay containing the node P obtained by removing the edge (P,V). We will denote by MAX_DEGREE(P) the maximum number of neighbors peer P may have (it is possible for each peer to have a different maximum degree, though we will mainly consider that all peers have the same upper bound) and by DEGREE(P) the current number of neighbors of P. If DEGREE(P)<MAX_DEGREE(P) then we will say that P has at least one empty position (where a new node X may attach to the tree by connecting to the peer P). We denote by minDist(V,P)=the minimum distance in the overlay from V to an empty position in S(V,P). Moreover, we denote by maxDist(V,P)=the maximum distance from P to a leaf in S(V,P). We have:

1 2 1 3 4 1 5 1 6 7 ≠ ∈ + > = otherwise V}, X , V X | X) t(P, MIN{minDis 1 (P) E(P) MAX_DEGRE if 1, P) minDist(V, P DEGREE (1) © EUROSIS-ETI 1 2 1 3 4 1 5 1 6 7 ≠ ∈ + = = otherwise V}, X , V X | X) t(P, MAX{maxDis 1 1 DEGREE(P) if 1, P) maxDist(V, P (2)
These values are (re)computed at each gossiping period. While gossiping, besides the existence advertisement, each peer X sends to every neighbor P the values minDist(P,X) and maxDist(P,X) computed by the peer X. Then, at the next gossiping round, every peer P will recompute all the values minDist(V,P) and maxDist(V,P) for each of its neighbors V. The computation of these values is based on the results from [START_REF] Andreica | Data Distribution Optimization using Offline Algorithms and a Peer-to-Peer Small Diameter Tree Architecture with Bounded Node Degrees[END_REF], where a balanced multicast tree construction method was proposed. In the absence of new peers joining the system and old peers leaving the system, the values minDist(*,*) and maxDist(*,*) converge to their correct values after a number of gossiping rounds which is proportional to the diameter of the tree. The convergence proof is based on similar arguments to the proof presented in [START_REF] Andreica | Data Distribution Optimization using Offline Algorithms and a Peer-to-Peer Small Diameter Tree Architecture with Bounded Node Degrees[END_REF]) and, thus, we will not detail it here.

Joining the System

When a new peer joins the system, it will enter as a leaf in the tree overlay. The new peer must first know one other peer which is already inside the tree. Then, the new peer will contact the known peer, which will redirect the new peer step by step towards some peer in the tree, which will become the new peer's only neighbor. The redirection of a new peer is performed by using the values minDist(*,*) and maxDist(*,*). After the new peer P contacts an existing peer X, the peer X will redirect P to one of its neighbors Y for which maxDist(X,Y)>maxDist(Y,X). Then, P will contact Y and Y will proceed the same as X did previously. In this stage, P is redirected towards a peer which is close to the center of the tree. Eventually, P will contact a peer Z which has no neighbor Y such that maxDist(Z,Y)>maxDist(Y,Z). Then, the second stage of the joining process begins. If DEGREE(Z)< MAX_DEGREE(Z) then P will connect directly to Z. Otherwise, Z will select some neighbor Y for which minDist(Z,Y) is minimum (among all of Z's neighbors) and P will be redirected to Y. From there on, P will be redirected using the minDist(*,*) values (from the contacted peer to one of its neighbors according to the rule mentioned above), until P reaches a peer W with DEGREE(W)<MAX_DEGREE(W). Finally, P will connect to W in the tree.

Leaving the System

When a peer X leaves the system, it doesn't have to announce anyone. Its neighbors will detect its departure because no more advertisements will be received from X. Then, all of X's neighbors contact each other (as they are extended neighbors of each other). Each neighbor Y sends to all the other neighbors Z the value maxDist(X,Y). The neighbor with the largest sent value is selected as their representative (ties are broken deterministically, based on the peer identifiers). Then, the representative Y will contact the leaf which is furthest away from it in S(X,Y). This can be achieved by repeatedly traversing the peers in S(X,Y) (a similar procedure is discussed in [START_REF] Andreica | Data Distribution Optimization using Offline Algorithms and a Peer-to-Peer Small Diameter Tree Architecture with Bounded Node Degrees[END_REF]). Then, the selected leaf L will disconnect from the tree and reconnect in the place of the departed peer X (i.e. it will connect to all of X's former neighbors).

IMPLEMENTATION DETAILS

We implemented our system using the Java programming language. The code executed by each peer consists of several software modules, presented in Fig. 1. The communication module is responsible for the data transfer between a peer and its neighbors. The peers communicate through sockets (either TCP or UDP -this is configurable). We used the java.nio package [START_REF] Hitchens | Java NIO, First Edition[END_REF] for socket communication. Message writing and message processing is handled by a pool of worker threads. Thus, when another module sends a message, this message is handled to a worker which will write it on the corresponding socket. Moreover, when a new message is read from a socket, it is passed to a worker in order to process it. The communication module also stores the list of neighbors, together with their network addresses (and, if TCP is used, a list of open TCP sockets to the neighbors). A list of all the data streams (generated locally or received from other peers) is also stored by the communication module. The main task of a worker is the processing of the received messages and the sending of messages. However, it is also used for handling other tasks, such as:

• establishing a connection to a specified destination • creating and transmitting a data stream's messages to all the neighbors of the peer ; the source of the stream may be a file or a live capture (capturing live data from a camera was performed using the Java Media Framework API (Gordon and Talley 1999))

• retransmitting the messages of a data stream to all the peer's neighbors except the one from where the message was received

• handling the departure of a neighbor: when a neighbor is detected to have left, it will be removed from the data structures maintained by the peer and the extended neighbors (i.e. the neighbors of the departed peer) will be contacted in order to decide together a new peer which will replace the departed peer The Interface module is used for transmitting user commands to the communication module and for allowing the user to select which of the existing streams to visualize. The InfoDelivery module is responsible for gossiping, i.e. for periodically sending the needed information to the neighbors and advertisements (including the network address and identifier of the peer) to the neighbors and the extended © EUROSIS-ETI neighbors.

The Transmitter and Receiver sub-modules are responsible strictly for the stream data delivery and reception. The Player module plays the received streams which were selected by the user.

EXPERIMENTAL EVALUATION

Join and Leave Tests

We performed several validation tests in the following scenario. At first, 5 peers on 5 different machines were started. The maximum degree of a peer was set to 3. These 5 peers formed the overlay in Fig. 2. Then, peer 1 is removed from the system. Peer 1's neighbors detect its absence and communicate with each other in order to select a representative. Peer 5 is chosen as the replacement peer for peer 1. Peer 5 will disconnect from its current neighbors and take the place of peer 1 (as shown in Fig. 4).

Comparison to a client-server architecture

A live stream was published by a node and the other 5 nodes all wanted to see the live stream simultaneously. We computed the bit rate and frames per second of each of the 5 clients when the initial node acts as a server and when all the 6 nodes are interconnected in the multicast tree. Table 1 presents the results. Table 1: Comparison between the proposed system and a client-server architecture

Comparison to an unbalanced P2P tree overlay

Next, we considered the case when peers simply joined the tree at random positions (i.e. they still join the tree as leaves, but their initial neighbor is chosen randomly, instead of according to our rules).

We inserted 20 peers and we set the maximum peer degree to 3. Our system obtained a diameter of 6 (which is the minimum possible for 20 peers), while the random version obtained a diameter of 10. The structure of our system is presented in Fig. 5. Tree diameter has a direct influence on the playback delay between the stream generated by the source and the stream received at the peers -the larger the diameter, the larger the "lag" between the stream's position at the source and its position at the other peers will be.

BATCH COMPUTATIONS OF AGGREGATES

We consider a number N, an initial value val(1) and a noninvertible function f (such that f(x) can be computed in O(1) time for any value x). The values val(21i1N) are defined as: val(i)=f(val(i-1)). We define the values A(i) (11i1N) where A(i) is an aggregate of all the values val(i) (11i1N; i2N). the aggregate function aggf is a commutative but non-invertible function. We want to compute the N values A(*) efficiently. A space-optimal solution is based on the divide-and-conquer paradigm. Let's consider a function DC (i, j, val(i), outF), where outF is the aggregate of all the values outside of the interval of positions [i,j]. The initial function call will be DC (1, N, val(1), neutral element of The function DC works as follows. If i=j then we have A(i)=outF. Otherwise, let mid=(i+j) div 2 (integer division). We will compute the aggregate aggimid of all the values val(q) with i1q1mid (by generating these values starting from val(i)). We will also compute val(mid+1) at the end of these iterations. Then, we will call DC(mid+1,j,val(mid+1),aggf(aggimid,outF)). After returning from this call, we will compute aggmidj=the aggregate of all the values val(mid+1), …., val(j). Then, we will call DC (i, mid, val(i), aggf(outF, aggmidj)). Notice how the values A(i) are obtained in decreasing order of i. This solution uses O(log(N)) space, because it uses O(1) space on each of the O(log(N)) levels of the recursion stack. The overall time complexity is O(N•log(N)). A final solution with a linear time complexity (i.e. O(N)) and O(K+N/K) memory usage (where K is a function of N). is the following one. For simplicity, we will assume that N is a multiple of K (we can extend the array of values by values equal to the neutral element of the aggregation function). We will generate the values one by one and store the values in an array v. Whenever we reach a position i which is a multiple of K, we compute Ragg(i)=aggf(v(1), …, v(K)) and then we clear the array v. Then, for every position i which is a multiple of K (in descending order, starting from i=N-1), we set Ragg(i)=aggf(Ragg(i), Ragg(i+K)). So far, we used only O(K+N/K) memory and O(N) time.

Then we regenerate all the values starting from the first and add them to the array v. Whenever the current position i is a multiple of K we compute aggk=the aggregate of the values v(1), …, v(K), and then Lagg(i)=aggf(Lagg(i-K), aggk) (we consider Lagg(0)=the neutral element of the aggf function). Then, we will compute the values pvagg(11i1K)= aggf(pvagg(i-1), v(i)) (where we consider pvagg(0)=the neutral element of the aggf function) and svagg(11i<K)= aggf(svagg(i+1), v(i)) (where we consider svagg(K+1)=the neutral element of the aggf function). After this we can compute the values A(i-K+1), …, A(i), as follows: A(i-K+j)=aggf(Lagg(i-K), pvagg(j-1), svagg(j+1), Ragg(i+K)) (we consider Ragg(pos)=the neutral element of the aggf function if pos>N). Then, we clear the array v. As can be noticed, the time complexity of this solution is O(N) and its memory space is O(K+N/K). Choosing K=sqrt(N) makes the memory usage equal to O(sqrt(N)) (by sqrt(N) we denote the square root of N). The problem discussed in this section is mostly of theoretical interest and is related to the encoding of the data of a multicast stream.

RELATED WORK

JXTA [START_REF] Gong | JXTA: A Network Programming Environment[END_REF]) is a Java framework for developing peerto-peer applications. It contains all the basic functions required by such applications. However, we chose not to use JXTA for our system's implementation, for two reasons: (1) we did not need all the features JXTA provided ; (2) we needed full control over the overlay construction. Multicast streaming architectures based on peer-to-peer overlays have been the object of many previous research papers. Based on their overlay structure, they are mostly of two types: (1) with a tree overlay ; (2) with a mesh overlay. Considering another classification criterion, multicast systems with a tree overlay can be classified according to whether they use only one tree or multiple trees.

Single Tree Overlays

ZIGZAG [START_REF] Tran | ZIGZAG: An Efficient Peer-to-Peer Scheme for Media Streaming[END_REF] constructs and maintains a multicast tree whose diameter is O(log K (N)), where N is the total number of peers and K is their maximum degree. Scribe [START_REF] Kermarrec | Scribe: The Design of a Large Scale Event Notification Infrastructure[END_REF]) constructs a multicast tree embedded into a DHT overlay.

Multiple Tree Overlays

Multiple tree overlays, like Splitstream [START_REF] Castro | Splitstream: High-Bandwidth Multicast in a Cooperative Environment[END_REF], CoopNet [START_REF] Padmanabhan | The Case for Cooperative Networking[END_REF] and ChunkySpread [START_REF] Venkataraman | Chunkyspread: Multi-Tree Unstructured Peer-to-Peer Multicast[END_REF]) balance the data forwarding roles of the peers. In a single tree overlay, for instance, a leaf node only consumes content and does not forward it any further. When multiple trees are used, the chance of a peer being a leaf in each tree is very low and, thus, it contributes its resources more to the whole system. CoopNet uses MDC (multiple description coding), which encodes a media stream into multiple sub-streams. Splitstream and Chunkyspread also use such load balancing mechanisms. Compared to single tree overlays, these systems are more resilient to node failures and departures.

Mesh Overlays

Many P2P streaming platforms, like CoolStreaming [START_REF] Xie | Coolstreaming: Design, Theory, and Practice[END_REF], AnySee [START_REF] Liao | AnySee: Peer-to-peer Live Streaming[END_REF], PRIME [START_REF] Magharei | PRIME: Peer-to-Peer Receiver-Driven Mesh-based Streaming[END_REF] or DagStream [START_REF] Liang | DagStream: Locality Aware and Failure Resilient Peer-to-Peer Streaming[END_REF], construct and maintain a mesh overlay. These overlays are somewhat similar to a multiple tree overlay, however, unlike them, a data packet does not have a fixed (static) route in mesh overlays; instead, a packet is routed dynamically within the overlay. Moreover, periodically, peers may exchange data packets and may ask for packets proactively.

Hybrid Tree-Mesh Overlays mTreeBone [START_REF] Wang | mTreebone: A Hybrid Tree/Mesh Overlay for Application-Layer Live Video Multicast[END_REF]) uses a hybrid tree-mesh overlay, where a tree overlay is used as the backbone, on top of which a mesh architecture is added. The backbone contains stable peers and the mesh overlay contains the unstable peers (thus, churn affects mainly just the mesh overlay, thus being handled effectively).

CONCLUSIONS AND FUTURE WORK

In this paper we introduced a multicast streaming architecture based on a peer-to-peer tree overlay. Moreover, the tree is maintained as balanced as possible by making local decisions only (i.e. in a fully decentralized manner). Experimental results showed that the proposed system behaves significantly better than a client-server system. Our system can be employed successfully by Internet TV companies in order to deliver TV channels to the clients with reduced bandwidth costs (by making use of the clients' upload bandwidth) -in this case, the clients would have to install a dedicated application on their machines. The system could also be employed in order to facilitate synchronization, data dissemination and quick notifications between multiple servers of a content delivery network, between multiple offices of the same business company or even between different companies. Our system can be used wherever there is a stream of information which needs to be disseminated to multiple participants (for instance, trading prices at various places). As future work, we consider the possibility of dynamically reconfiguring the tree overlay. For instance, if a leaf peer were able to detect other peers containing empty positions which are closer to the center of the tree, the leaf could try to occupy that position, by asking for permission from the peer owning the empty position. If permission is granted, then the leaf peer will disconnect from the tree and will reconnect on the empty position. The paper also discussed a theoretical problem concerned with batch computations of aggregates of the values of a sequence given implicitly. A space-optimal O(N•log(N)) time algorithm and a time-optimal O(sqrt(N)) memory solution were proposed for the problem.

Figure 1 :

 1 Figure 1: Software architecture of a peer's program.

Figure 2 :

 2 Figure 2: Initial testing scenario. Then, peer 6 was inserted into the system. Peer 6 knows only peer 3 initially. Peer 6 is redirected as shown in Fig. 3.

Figure 3 :

 3 Figure 3: Peer redirection when a new peer joins the tree.Then, peer 1 is removed from the system. Peer 1's neighbors detect its absence and communicate with each other in order to select a representative. Peer 5 is chosen as the replacement peer for peer 1. Peer 5 will disconnect from its current neighbors and take the place of peer 1 (as shown in Fig.4).

Figure 4 :

 4 Figure 4: Peer 5 replaces the departed peer 1.

Figure 5 :

 5 Figure 5: Multicast tree overlay with 20 peers and maximum degree set to 3. If aggf were invertible, an easy solution is the following. First, we compute aggn as aggf(val(1), …, val(N)). Then, we generate the values val(i) again and, for each i, we have A(i)=aggn aggf -1 val(i). If the values A(*) need to be stored, then this solution uses O(N) memory. If they do not need to be stored, then they can be output as soon as they are computed and this solution uses only O(1) memory. The time complexity is O(N). Since aggf is not invertible, the most straightforward solution is to generate and store all the values val(i) (11i1N) and then compute each value A(i) independently. This approach takes O(N) memory space and O(N 2) time. A better solution with O(N) memory space is the following. After computing and storing all the values val(i) (11i1N), we will compute two arrays: Aleft(i)=aggf(val(1), …, val(i)) and Aright(i)=aggf(val(i+1), …, val(N)). We have Aleft(0)=Aright(N+1)=the neutral element of the aggregation function. Then, Aleft(11i1N)=aggf(Aleft(i-1), val(i)) and Aright(11i1N)=aggf(val(i), Aright(i+1)). Then, we have A(i)=aggf(Aleft(i-1), Aright(i+1)). This solution takes O(N) time. Some of the mentioned arrays can be computed one element at a time, but the solution still needs O(N) memory space.A space-optimal solution is based on the divide-and-conquer paradigm. Let's consider a function DC(i, j, val(i), outF), where outF is the aggregate of all the values outside of the interval of positions[i,j]. The initial function call will be DC(1, N, val(1), neutral element of The function DC works as follows. If i=j then we have A(i)=outF. Otherwise, let mid=(i+j) div 2 (integer division). We will compute the aggregate aggimid of all the values val(q) with i1q1mid (by generating these values starting from val(i)). We will also compute val(mid+1) at the end of these iterations. Then, we will callDC(mid+1, j, val(mid+1), aggf(aggimid, outF)). After returning from this call, we will compute aggmidj=the aggregate of all the values val(mid+1),…., val(j). Then, we will call DC(i, mid, val(i), aggf(outF, aggmidj)). Notice how the values A(i) are obtained in decreasing order of i. This solution uses O(log(N)) space, because it uses O(1) space on each of the O(log(N)) levels of the recursion stack. The overall time complexity is O(N•log(N)). A final solution with a linear time complexity (i.e. O(N)) and O(K+N/K) memory usage (where K is a function of N). is the following one. For simplicity, we will assume that N is a

ACKNOWLEDGEMENT

The work presented in this paper has been partially supported by the Sectoral Operational Programme Human Resources Development 2007-2013 of the Romanian Ministry of Labour, Family and Social Protection through the Financial Agreements POSDRU/89/1.5/S/62557 and POSDRU/6/1.5/S/16, and by CNCSIS-UEFISCDI under research grant PD_240/2010 (contract no. 33/28.07.2010), PN II -RU program.