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Abstract— For performance evaluation and dimensioning of 

packet-based networks, engineers need simple, efficient and 

realistic traffic models. The traffic volume on a packet link, 

observed at different time scales t, has previously been modeled 

as a stationary stochastic process based on the Coefficient of 

Variation CoV(t). In this paper we try to supply the missing 

information about the shape of the distribution functions, 

required to fully characterize the traffic in network links. 

Applying the maximum entropy principle, we show that the 

knowledge about the mean rate µ and the value of CoV(t), 

associated with the information about the link capacity C, gives 

truncated Gaussian distributions that are bathtub-shaped at 

short time-scales and bell-shaped at long-time-scale, leading to 

quite accurate modeling of the traffic volume distributions at 

all time-scales t. We illustrate this with some real traffic and 

some simulated traffic.
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I.  INTRODUCTION 

For performance evaluation and correct dimensioning of 
future packet-based transport networks, engineers need 
accurate but simple traffic models ([1]). In a previous work 
[2], we proposed a traffic model that balances the simplicity 
of use and the accuracy with real traffic, based on the mean 

rate µ and the coefficient of variation CoV(t) of the traffic 
volume at different time scales t. Using few parameters, it 
considers the self-similar nature of the observed Internet 
traffic at long time scales [3], like the Fractional Brownian 
Motion model [4], and it was validated on real traffic traces 
from [5]. An approximation procedure superposing ON/OFF 
sources was derived from this CoV(t)-based traffic model to 
generate traffic for performance evaluation. 

In [2], a justification for the use of CoV(t)-based traffic 
model was that, in transport networks, numerous individual 
flows are aggregated, so the knowledge of the first two 
statistical moments is enough with a Gaussian distribution 
assumption. But what happens with a smaller number of 
flows ? Moreover, the traffic is transported in a link with 
fixed-capacity C. Thus at very short time-scales, the traffic 
volume distribution is ON/OFF, which is very different from 
the Gaussian distribution. So, in this paper, we try to answer 
the following question: is CoV(t)-based modeling sufficient 
for traffic characterization in network links ?  

                                                           
This work was done in the framework of the INRIA and Alcatel-Lucent 

Bell Labs Joint Research Lab on Self Organized Networks. 

The paper is organized as follows. After summarizing in 
Section §II the CoV(t)-based traffic model of [2], we use the 
maximum entropy principle [6] to derive the most probable – 
or “expected” – distributions given the knowledge we have 

(mean rate µ, CoV(t), link capacity C). They are simply 
truncated Gaussian-type that could be bathtub-shaped or 
bell-shaped according to the value of CoV(t). In Section §IV 
we show that the distributions from real traffic [5] are close 
to the “expected” distributions. In Section §V, we 
demonstrate by simulations that the traffic generator defined 
in [2], when constrained in a link of capacity C, gives also 
similar distributions. Finally, we conclude in Section §VI . 

II. COV(T)-BASED TRAFFIC MODELING 

In this section we summarize the general CoV(t)-based 
traffic model and the simplified version as defined in [2]. 

A. General CoV(t)-based Model 

Considering the traffic volume X(t) generated in a period 
of time-scale t, CoV(t)-based traffic models require only the 

first two statistical moments: mean m(t) and variance σ2(t). 

With stationarity, m(t) = µ × t with the mean rate µ. The 
variance is linked to the Coefficient of Variation (CoV): 

 ( ) ( ) ( )tmttCoV σ= . (1) 

B. Simplified CoV(t)-based Model 

For short time scales, the traffic behaves like an ON/OFF 

source. So, with the link utilization ratio ρ = µ / C, one has: 
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while at long time scales t, σ(t) increases like tH, where 

H∈[0.5,1[ is the Hurst parameter (see [3], [4]), so one has: 
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The simplified CoV(t)-based traffic model of [2] joins 
these two asymptotic behaviors at the transition time scale t0: 
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This traffic model is represented on Fig. 1 in log-log 
scales. Its parameters can be derived from experiments or 
deduced from the type of application generating the traffic. 

  

Figure 1.  Simplified CoV(t)-based traffic model 

III. APPLICATION OF MAXIMUM ENTROPY PRINCIPLE 

In this section, we apply the Maximum Entropy Principle 
(MEP) with the limited knowledge of the CoV(t)-based 
traffic model to derive the most probable – or “expected” – 
distributions of the traffic volume at different time-scales. 

A. Maximum Entropy Principle (MEP) for Networks 

The MEP method, as described in chapter 11 of [6], dates 
back to Gibbs who laid the foundations of thermodynamics, 
derived from statistical mechanics. It is useful when one has 
limited knowledge about a complex system to derive the 
“expected” or "most likely" probability distributions of the 
states of this system. For example, in a system of many 
atoms to be described from a mechanical point of view, only 
the mean energy per atom may be known. The MEP method 
derives the distribution of energies that is overwhelmingly 
the most likely one, namely the Maxwell-Boltzmann 
(exponential) distribution which has the temperature as its 
parameter. 

Transport networks are also very complex systems, with 
too many parameters to control (numerous traffic flows, 
users, nodes, applications,  protocols, etc.), so one cannot 
have the full knowledge about the traffic transported in the 
network. MEP can help us to estimate what are the most 
probable (“expected” in the following) distributions of the 
traffic volumes, with the limited knowledge we have.  

B. Knowledge with CoV(t)-based Traffic Model 

At any time-scale t, using the CoV(t)-based traffic model 

of §II.A, we know the mean traffic volume m(t) = µ × t and 

the variance σ2(t) with (1). Using only this knowledge 
without any assumption about bounds, the MEP method 
leads to a pure Gaussian distribution ([6]), which is not 
realistic because it predicts negative traffic volumes. Indeed, 
we also knows that the traffic volume X(t) generated over a 
period of duration t is positive and limited by the capacity C 
of the link:  

 ( ) tCtXt .0, ≤≤∀ . (5) 

C. “Expected” Traffic VolumeDistributions  

Knowing the inputs of m(t), σ2(t), and (5), we apply the 
MEP method described in chapter 11 of [6]. The solving is 
straightforward and leads to Gaussian-type distribution 
truncated to the range of (5). With the normalizations 

x = X(t)/(C.t) ∈ [0,1] and η = CoV(t)/CoV(0) ∈ ]0,1], the 
“expected” probability distribution of the traffic volume for 

given ρ and η values is: 
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with parameters β1 and β2 verifying: 
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The study of (6), (7) and (8) leads to the following results: 

• (½ -ρ) and β1 have the same sign,  

• the shapes are symmetrical when changing ρ by 1-ρ,  

• if ρ = 1/2 and η = η0(½) = 1/3 then β1 = β2 = 0, 
giving the uniform distribution,  

• if ρ ≠ 1/2 and η = η0(ρ) with 
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• then β1 ≠ 0, β2 = 0, giving an exponential 
distribution, 

• if η < η0(ρ) then β2 > 0, giving a truncated concave 
(bell, exp[-x²]) Gaussian distribution, which tends to 
the pure Gaussian distribution obtained by removing 

the input (5) in the MEP method, when η → 0, 

• if η > η0(ρ) then β2 < 0, giving a truncated convex 
(bathtub, exp[+x²]) Gaussian distribution that tends 

to the discrete ON/OFF distribution when η → 1. 

 
Figure 2. Shape of the traffic volume distributions according  

          to the utilisation ratio ρ and η = CoV(t)/CoV(0) 

In Fig.2, we identified the regions where the distributions 
are bell-shape or bathtub-shaped, respectively to the values 

of ρ and η, the frontier being given by (9). In Fig.3 and 

Fig.4, we represented the values of pρ,η(x) for ρ = 0.5 and  

ρ = 0.2, for some values of η. For ρ = 0.8, the distribution 
shapes are the left-right mirror images of the ones of Fig.4. 
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Figure 3.   Expected traffic volume distributions for  ρ = 0.5 

 
Figure 4.  Expected traffic volume distributions for  ρ = 0.2 

IV. MEASURED REAL TRAFFIC 

In this section we analyze the traffic volume distributions 
at different time-scales t on a measured real-traffic trace, to 
compare them with the bathtub or bell shapes of expected 
distributions in section §III.  

A. Measured Real Traffic Trace 

The traffic trace was measured by the University of 
Stuttgart ([5]) on a 100 Mbit/s Ethernet link in the “Selfnet” 
network, on October 31st, 2004, from 18:00 to 22:00. It has 
been used in [2] to validate the simplified CoV(t)-based  
traffic model (see this paper for more details). We divided 
the 4-hour trace into 240 minutes, on which we evaluate the 
traffic volume distributions at different time-scales t. 

B. Measured Traffic Volume Distributions 

The 240 different minutes show similar behavior for the 
distributions of traffic volume according to the time-scales t. 
Here we represent the distributions of traffic volume for 

18:29 (Fig. 5) with utilization ratio close to 0.5 (ρ = 0.502), 

and for 19:28 (Fig. 6) with utilization ratio close to 0.2 (ρ = 
0.192), about the same values as figures of Section §III. In 
both cases the shapes are similar to the theoretically expected 
ones of Fig. 3 and Fig. 4, with: 

• bell shapes for t ≥ 2.5 ms,  

• bathtub shapes for t ≤ 1 ms, tending to the ON/OFF 
distribution at t = 0.01 ms, 

• transition through the constant distribution in Fig. 5 
and an exponential distribution in Fig. 6 as expected 

for respectively ρ = 0.5 and ρ =  0.2, in both cases 
between 1 ms and 2.5 ms. 

 
Figure 5.  Measured traffic volume distributions at 18:29 (ρ = 0.50) 

 
Figure 6.  Measured traffic volume distributions at 19:28 (ρ = 0.19) 

For t ≤ 1 ms, some regular peaks appear in the 
distribution, strongly visible at t = 0.4 ms. When considering 
the line-rate, the time-scale value and the positions of the 
peaks, the first one corresponds to the case of one single 
1500B packet in the time-scale window, the second one to 
two such packets, etc. Thus the packet size distribution has 
an impact on the distributions of the traffic volumes at short 
time-scales. One can also note for long time-scales a slight 
asymmetry in the shape that is not in the “expected” 
distributions of section §III. Despite this asymmetry and the 
effect of the dominant packet size, we can conclude that the 
measured distributions are globally like the ones 
theoretically expected from the maximum entropy principle. 

V. SIMULATED TRAFFIC 

In this section, by constraining the CoV(t)-based traffic 
model generator of [2] with the link capacity C, we compare 
the simulated traffic volume distributions with the expected 
ones of Section §III and the measured ones of Section §IV. 

A. CoV(t)-based Traffic Model Generator 

A fitting procedure was described in [2] that emulates the 
simplified CoV(t)-based traffic model with a set of ON/OFF 

sources, over the time-scale range [0, 10N×t0], t0 being the 
transition time-scale and N the number of decades for fitting 
self-similar behavior. It uses the four parameters of the 
simplified CoV(t)-based traffic model, plus the number n+1 
of the ON/OFF sources to superpose and the target number N 
of decades for fitting self-similar behavior. As shown in [2], 
this procedure gives the right CoV(t) values over the desired 
time-scale range. But has this generated traffic the expected 
shapes of the traffic volume distributions ? 
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For t → 0, because the generator superposes n+1 ON-
OFF sources, it has not the expected 2 levels of a pure ON-
OFF source, but it has 2n+1 levels, some of which exceeding 
the link-capacity bound. To repair this effect, we filter this 
emulated traffic through buffering, with a fixed output 
transmission rate equal to the link capacity C, and a 
minimum output packet duration set to a fraction of the 
transition time-scale t0. In this paper, we simplify the packet 
generation to cells of fixed size. One may easily emulate a 
packet size distribution closer to that of real traffic. 

B. Simulated Traffic Volume Distributions 

Fig. 7 and Fig. 8 represent the distributions of the traffic 

volume at different time-scales t, for utilization ratio ρ = 0.5 

and ρ = 0.2, like for the expected (Section §III) and the 
measured (Section §IV) distributions. Hurst parameter is 
H = 0.7, close to the values measured on the real traces (see 
[2]). The packet size is 1/100th of the transition time-scale t0.  

 

Figure 7.  Simulated traffic volume distributions for ρ = 0.5 

Figure 8.  Simulated traffic volume distributions for ρ = 0.2 

Like with real traffic traces, we obtain shapes similar to 
the theoretically expected ones. Compared to measured 
traffic volume distributions, the unique packet size makes 
more visible the peaks that also occur in simulated traffic 
volume distributions at small time-scales. Like in Section 
§IV, for long time-scales, there is the asymmetry in the shape 
that is not modeled in the expected distributions of Section 
§III. Nevertheless, we can conclude that the simulated 
distributions are globally like the expected ones. Most 
important, they are very similar to the ones measured on real 
traces, for all time-scales t, with peaks due to the packet size 
distribution and with the similar asymmetry. This validates 
the use of such traffic generators for simulations to evaluate 
network and node performance. 

VI. CONCLUSION 

In this paper, we used the maximum entropy principle 
(MEP) to determine in Section §III the “expected” 
probability distributions of the traffic volume at different 
time-scales t, under limited knowledge about the traffic: 

mean rate µ , coefficients of variation  CoV(t) and fixed link 
capacity C. These are the inputs of the CoV(t)-based traffic 
model defined in the previous work [2]. We compared the 
expected truncated Gaussian-type distributions with the ones 
observed on real traffic in Section §IV and on simulated 
traffic in Section §V. To answer the initial question of this 
paper, we can say that CoV(t)-based traffic model appear to 
be sufficient for traffic characterization in network links, for 
at least the following reasons:  

• for short time-scales, it gives traffic distributions that 
differ a lot from pure bell-shaped Gaussian, the 
“expected” distributions being bathtub-shaped 
tending to the ON/OFF traffic, 

• for all time-scales, the expected bell-shaped or 
bathtub-shaped distributions are close to the real-
traffic ones, despite some peaks at short time-scales 
(explained by packet size distribution) and a slight 
asymmetry at long time-scale (still to be explained!), 

• and it leads to a CoV(t)-based traffic generator that 
is able to accurately emulate real traffic both for the 
observed additional peaks and the asymmetry. 

This CoV(t)-based traffic model generator comes from 
the one of [2], modified with adequate filtering (rate limited 
to capacity C of the input link and discrete packet size 
generation). It is accurate for network simulations not only 
because the values of CoV(t) is very close to real traffic over 
the desired time-scale range as shown in [2], but also 
because the shape of the traffic volume distributions are very 
close to the ones of real traffic over the desired time-scales. 

For further work, one may investigate why we observed a 
slight asymmetry in both measured and simulated traffic. 
Can we add pieces of knowledge in the MEP method in 
order to recover such kind of asymmetry ? 
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