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A FLUID DYNAMICS MODEL OF THE GROWTH OF PHOTOTROPHIC
BIOFILMS

F. CLARELLI1, C. DI RUSSO2

R. NATALINI 3, AND M. RIBOT4

ABSTRACT. A system of nonlinear hyperbolic partial differential equations is derived
using mixture theory to model the formation of biofilms. In contrast with most of the
existing models, our equations have a finite speed of propagation, without using artificial
free boundary conditions. Adapted numerical scheme will bedescribed in detail and
several simulations will be presented in one and more space dimensions in the particular
case of cyanobacteria biofilms. Besides, the numerical scheme we present is able to
deal in a natural and effective way with regions where one of the phases is vanishing.
Fluid dynamics model and Hyperbolic equations and Phototrophic biofilms and Front
propagationAMS : 92C17, 35L50, 65M06.

1. INTRODUCTION

A biofilm is a complex gel-like aggregation of microorganisms like bacteria,
cyanobacteria, algae, protozoa and fungi. They stick together, they attach to a surface and
they embed themselves in a self-produced extracellular matrix of polymeric substances,
called EPS. Even if a biofilm contains water, it is mainly in a solid phase. Biofilms
can develop on surfaces which are in permanent contact with water, i.e. on solid/liquid
interfaces or on different types of interfaces such as air/solid, liquid/liquid or air/liquid.

The term “biofilm” was proposed in 1978 by Costerton [9] to describe what is now
considered as the preferred form of microbial life in natural, industrial and hospital
environments. Some biofilms are useful, providing valuableservices to human society or to
the functioning of natural ecosystems. Bacteria in the subsurface normally grow as biofilms
on the soil matrix, for instance, and can help to remove contaminants from the soil or
ground waters. However, other biofilms are harmful, causingserious health and economic
problems. Their propensity for attachment causes problemsin many inrastructures, like
industrial pipelines, ship hulls, nuclear power stations,air conditioning systems, water
distribution systems. Hospitals are also susceptible to colonization by microorganisms
growing in biofilms [16]. Harmful biofilms often develop evenunder adverse conditions so
that removing them is often difficult. Since biofilms play a significant role in many natural
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and engineered systems, understanding the mechanisms of biofilm formation, growth, and
removal could be the key for promoting biofilms which have useful applications and also
for reducing deleterious biofilms.

Biofilms are not simply passive assemblages of cells, but they form structurally and
dynamically complex biological systems. Their development is often characterized as a
multistage process. First, some free-floating bacteria approach the surface and get attached.
Then, during a phase of colonization, bacteria loose flagella and produce EPS. During the
phase of growth, bacteria build a 3D structure, influenced bya variety of environmental
factors. In the end, a part of the biofilm may detach itself in order to colonize other parts
of the surface.

Since the topic is huge and of great interest, some mathematical models have already
been proposed. At the beginning, mathematical modeling of biofilm was mainly focused
on predicting growth balance, sometimes with practical applications in mind, as in
[30, 31, 32]. These are generally 1-D models with reaction-diffusion equations for nutrients
and other substrates, sometimes with a moving boundary. Thefirst multidimensional
models were discrete and based on cellular automata. For example, models proposed
by the Delft’s team [30] are mainly multidimensional, multispecies and multisubstrates
spatially discrete models, which have been solved by individual-based approach or cellular
automata. They are quite exhaustive from the biological point of view, at least qualitatively,
but not fully satisfactory, because in many cases it is hard to give well based ruled for all
the involved individuals, and for the difficulties to simulate large colonies of millions of
individuals with the discrete approach. Besides, it is not easy to predict the actual behavior
of the solutions. Fully continuous models have also been considered. The recent review
by Klapper and Dockery [18] focuses mainly on this kind of models, following the idea
of treating a biofilm as a viscoelastic material that expandsin response to growth-induced
pressure. A mathematical justification of these models was proposed by Overgaard [21]
using variational techniques. Among them, an important class of models, proposed by
Alpkvist and Klapper [1], is based on a multidimensional andmultispecies description,
where biofilms are divided into a biomass region and a liquid region separated by an
interface computed by moving fronts techniques. However, it is difficult to find a physical
law governing the evolution of the interface. More recently, Zang, Cogan, and Wang
[33] proposed a two phases model, considering the polymer network and the solvent, and
analyze numerically the case of detachment under differentinitial conditions. Another
continuous model, including more biological details, was proposed by Anguine, King and
Ward [3]. It concerns biofilms produced by thePseudomonas aeruginosa, a bacterium
that causes serious infections. In this multispecies PDEs model, four different phases
are considered: live cells, dead cells, EPS, and liquid. Theinfluence of nutrients is also
taken into account, as well as quorum sensing, one of the various signaling mechanism
of cells, and also some different medical treatments, like antibiotics and antiQS drugs.
Transport equations are introduced to model the four phasesand the behavior of nutrients,
antibiotics and antiQS are given by advection-diffusion equations. A common velocity for
bacteria, dead bacteria and EPS is assumed, while a different velocity is taken for the liquid.
The system is closed with the no-void condition, together with a supplementary relation
between the liquid and EPS, namely, a local increment of EPS causes a local increment of
liquid. Thanks to these hypotheses, no equation for the velocities is needed, but the model
works only in one space dimension.

In this paper, we propose a new approach, based on mixture theory, to the formation
and evolution of cyanobacteria biofilms in several space dimensions. We focus on
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their development on the stone surfaces of ancient monuments, as for instance fountains
walls, i.e.: on stone substrates and under a water layer. Thecolonization of external
surfaces of buildings, monuments and archaeological sitesby microorganisms creates an
unaesthetically appearance of staining of the stone surfaces [10, 11]. It produces also
extracellular polymeric substances that cause mechanicalstresses to the mineral structure
inside the pore system. This can lead to the alteration of pore size and distribution, together
with changes in moisture circulation patterns and temperature response. Microorganisms
may also alter the water permeability of the minerals by the deposition of surfactants.
Cyanobacteria, also known as blue-green algae, are a phylumof bacteria that obtain
their energy through photosynthesis, thanks to an elaborate and highly organized system
of internal membranes. Our model refers essentially to the order of Chroococcales, in
particular Gloeocapsa, which is a genus of photoautotrophic bacteria and a prokaryote,
which are relevant for stone damage analysis. In this paper,we assume that bacteria remain
attached to EPS and therefore that bacteria and EPS have a common velocity. This is the
case for Chroococcales cyanobacteria, since they secrete individual gelatinous capsules
which totally embed them (see [8, 12]). Even if our focus is onphototrophic species,
like cyanobacteria, most of the framework we are going to deal with in this paper can be
extended to other species and mixed colonies.

Our first goal is to introduce a model which keeps the physicalfinite speed of
propagation of the fronts. Starting from the ideas of the mixture theory [23, 5], we
write balance equations which contain the main assumptionscoming from biophysical
considerations : mass and momentum conservation, influenceof light. For simplicity
reasons, we will consider here that nutrients and temperature are not limiting factors
and that they do not play a significant role; however, it wouldbe simple to add their
dependence in further studies. We take particular care to keep the inertial terms in
the momentum equations, to guarantee the hyperbolicity of the system and so the finite
speed of propagation. Actually, in most of the models comingfrom the mixture theory
approach, as for instance [15], these terms are neglected tosimplify the analysis and the
numerical approximation, therefore producing diffusive terms which stabilize the fluid and
prevent possible breakdowns or other instabilities. However, this simplification introduces
a non physical infinite speed of propagation in the problem, and makes difficult to study
effectively the evolution of interfaces between the solid (biofilm) and the liquid (water)
phases. A possible solution is to use moving fronts techniques (see [1]), which lead to other
analytical and numerical difficulties and a further approximation in the model. Therefore,
we keep the inertial terms and we solve the full hyperbolic problem using robust numerical
schemes, as the Riemann Solver-free relaxation schemes [4]. There are two important
differences with respect to a usual hyperbolic system. First, since we are considering a
multiphase fluid, it is difficult to deal with regions where one of the phases may vanish.
This is usually solved by neglecting these regions, for instance by selecting adapted initial
conditions. In a biofilm this choice is not suitable, since itis important to model also the
regions made of biofilm alone or liquid alone. It turns out that it is possible to deal with this
problem of vanishing phases by using an Implicit-Explicit scheme in the approximation of
the source terms (see Section 3 for more details). The secondproblem arises from the
fact that our model is supplemented with a constraint term due to the mass conservation,
which implies that the average hydrodynamic velocity of themixture is divergence free.
This constraint is needed to compute the hydrostatic pressure. To enforce the divergence
free constraint, we use a fractional step approach similar to the Chorin-Temam projection
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scheme [6, 26] for the Navier-Stokes equations, with a quiteaccurate reconstruction of the
pressure term.

The plan of the paper is the following. In Section 2, we present a detailed derivation of
our fluid dynamics model, with a specific focus in the modelingof the influence of the light
on the growth of the biofilms. The numerical approximation scheme is presented in Section
3. Finally, in the last section, we present numerical tests,with the aim of illustrating the
power of our approach and also the influence of the various parameters. Our tests are
performed in one, two, and three space dimensions, for a domain with no flux conditions.
We study the influence of light on the system and how the estimate of the sound velocity of
the medium, which however is not really an easy task from the experimental side, affects
the final output and in particular the speed of the front.

2. THE FLUID DYNAMICS MODEL

To describe the complex structure of biofilms, we consider, as in [3], four different
components: Live cyanobacteria (B), Dead cyanobacteria (D), Extracellular matrix of
Polymeric Substances or EPS (E), and Liquid (L). We denote the concentration of biomass
by Cφ = ρφφ, whereρφ is the mass density of a phase in[g/cm3] andφ = B,D,E,L is the
volume fraction of the phases. We assume that the biomasses are incompressible, so that
ρB, ρD, ρL andρE are positive constants. We also assume that the phases have all the same
constant density, which is a good approximation in real biofilms. This is not a necessary
assumption for our model, but it simplifies the equations we consider.

We have reduced the living part of the biofilm, which usually includes many different
types of organisms, to one single specie of cyanobacteria, for instance belonging to the
Chroococcales order. The four components form a mixture, which can be described as
“mixed-state or condition, co-existence of different ingredients or of different groups that
mutually diffuse through each other” [23]. This approach has been already used by Preziosi
et al. to model the formation of vascular tumors [2].

2.1. Mass balance equations. Since EPS encompasses the cells for this class of
cyanobacteria, we can make the hypothesis that live cells, dead cells, and EPS have the
same transport velocity, calledvS. We denote instead byvL the velocity of liquid phase,
and byΓφ , with (φ = B,D,E,L), the mass exchange rates. Equations expressing the mass
balance are

∂tB+ ∇ · (BvS) = ΓB,(1a)

∂tD+ ∇ · (DvS) = ΓD,(1b)

∂tE+ ∇ · (EvS) = ΓE,(1c)

∂tL+ ∇ · (LvL) = ΓL.(1d)

We assume the following volume constraint :

(2) B+D+E+L = 1,

that is, the mixture is saturated and no empty space is left.
In addition to the balance of mass of each component, we also have the total

conservation of mass of the mixture :

(3) ΓB+ΓD +ΓE +ΓL = 0,



A FLUID DYNAMICS MODEL FOR BIOFILMS 5

which states that the mixture is closed, i.e. there is no net production of mass for the whole
mixture. Adding the four equations of system (1) and using (2) and (3) yields

(4) ∇ · ((B+D+E)vS+LvL) = ∇ · ((1−L)vS+LvL) = 0,

which means that the divergence of the average hydrodynamicvelocity is equal to zero.
This can be seen as an average incompressibility.

Observe that when the mass densities are different, but we are still assuming the total
mass conservation, we should modify the system by insertinga non null source term in
the equation of incompressibility (4) with some simple changes in the equation for mass
conservation (3).

2.2. Biomass growth rates. We assume that the mass production terms are of the
following form :

ΓB = kBLB− kDB,(5a)

ΓD = αkDB− kND,(5b)

ΓE = kELB− εE.(5c)

The termΓB, i.e. the mass exchange rate for the active bacterial cells,is the difference
between a birth term with ratekBL and a death term with ratekD. The birth of new cells at a
point depends on the quantity of liquid and of bacteria available in the neighborhood, more
precisely bacteria cannot reproduce themselves in absenceof liquid, nor of other bacteria.
Liquid is therefore a fundamental limiting factor; for simplicity reasons, we choose the rate
of the birth term as a linear function ofL. The death term in the expression ofΓB gives
rise to a creation term in the mass exchange rate for dead cells ΓD, with a coefficient of
proportionalityα , since a part of the active cells becomes liquid when the celldies. InΓD,
we also find a natural decay of dead cells with a constant decayratekN. The production of
EPS by active cells is represented by a term with growth ratekEL, while decays occurs at
a rateε. In principle, it should be possible to model the influence onthe EPS production
of the liquid fraction by using a non-dimensional functionf (L) with values between 0 and
1, but here we prefer to restrict our attention to a linear dependence.

We take the mass exchange rate of liquidΓL in order to enforce condition (3), that is,
ΓL = B((1−α )kD− kBL− kEL)+ kND+ εE. The dependence of the growth of biofilms
on light will be taken into account through the form of the constant ratekB as explained in
the following subsection.

2.3. Dependence on
light. Light is a fundamental variable for some types of cyanobacteria (photoautotrophic
cyanobacteria), allowing these organisms to photosynthesize inorganic compounds [22].
There also exist a range of temperature and a range of nutrient concentrations necessary
to their survival [19]. These environmental factors directly influence the specific growth
rates of involved components (B, E, D) and can reduce them when optimal values are not
reached (cf. [14, 29, 28]). We focus here on the dependence onlight; the same arguments
can be used to take into account the variations of temperature, and the influence of the
concentration of nutrients can be computed using classicalreaction-diffusion equations.
We feel, however, that light is the most important factor to deal with for cyanobacteria and
we consider for the moment that temperature and nutrients are not limiting factors; it is
foreseen to study their influence in a more complete study [7]. Besides, the experimental
results about biofilm growth we found in articles like [8, 12,25] are mainly obtained with
a constant temperature and a sufficient amount of nutrients.
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We write the coefficientkB depending on light intensityI as kB(x,y,z, t) = kB0 ·
g(I(x,y,z, t)), where kB0 is the optimal growth rate, andg(I) ∈ [0,1] is an efficiency
factor. We denote byI0(x,y) the light intensity on the upper surface of water, and by
I(x,y,z, t) the intensity in the water in the 3D case. We assume that the light intensity
is attenuated following the law of photon absorption in the matter [25] asI(x,y,z, t) =

I0(x,y, t)e
−∫ H

z µ(s)ds, whereµ = µ0 (1+ µh(B+E+D)) is the absorption coefficient,µ0 is
the absorption coefficient when the water is clear, andµh is a coefficient in the biomasses.
By experimental observations, an estimate isµ ≈ 0.9 m−1 if the water is turbid, and
µ ≈ 0.2 m−1 if the water is clear. We consider finally, following [28, 14], an efficiency
factor for algae growth of the form

(6) g(I) = 2w(1+β)
Î

Î2+2β Î +1
, whereÎ(x,y,z, t) =

I
Iopt

=
I0(t)
Iopt

e−
∫H
z µ(s,t)ds.

HereIopt is the optimal light intensity,w is the maximum specific growth rate andβ is a
parameter to be chosen. The functiong reaches its maximum value atIopt and vanishes at
zero and at infinity.

We also assume that the death rate for cyanobacteriakD, the EPS growth ratekE and the
decay rate for dead cellskN are independent ofI [20] in order to keep the model as simple
as possible in absence of experimental evidences.

2.4. Force balance equations. In order to find the suitable form of the force balance
equations, we follow the works by Preziosi [2, 5], where the theory of mixture is used to
model tumor growth.

Following [5], to determine the change of momentum of one single phase in a reference
volume, we have to take into account for four different contributions: the flux momentum
through the boundary of the volume, which is the inertial term φvφ⊗vφ; the internal forces
within one phase still through the boundary of the volume, given by the termT̃φ, which
is the partial stress tensor; the interaction forces among phases in the volume, which give
a term of the formm̃φ; and finally, the momentum supply related to phase changes inthe
volume, which gives the term of the formΓφvφ. In our case, for simplicity, we neglect the
external forces, which can be easily inserted at any time. Therefore, using the divergence
theorem, we can write the equation of force balance for the componentφ (φ = B,D,E,L)
as follows :

(7) ∂t(φvφ)+ ∇ · (φvφ⊗ vφ) = ∇ · T̃φ + m̃φ+Γφvφ.

From the theory of mixtures [5, 23], we take the standard decomposition of the interaction
forces asm̃φ =mφ+P∇ φ, namely, the sum of a friction termmφ between the phases and a
term orthogonal to the level curves of the phasesP∇ φ, whereP is the hydrostatic pressure.
This term is needed to enforce the saturation condition (2),since otherwise it should be
unclear how to verify (4) all the time. In practice, the function P is an unknown of the
problem, very much like the pressure in the classical Navier-Stokes equation, and it plays
the role of a Lagrange multiplier with respect to the saturation constraint. Following the
same idea, we decompose the partial stress tensor asT̃φ = −φPI +φTφ, whereTφ is the
excess stress tensor.

Equation (7) can be rewritten as

(8) ∂t(φvφ)+ ∇ · (φvφ⊗ vφ) = mφ −φ∇ P+ ∇ · (φTφ)+Γφvφ.
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The total conservation of momentum leads to

(9) ∑
φ
(m̃φ +Γφvφ) =∑

φ
(mφ+Γφvφ) = 0.

This equation means that the net momentum supply to the mixture due to all the
components is equal to zero. If the mixture is closed, we prove that the sum of interaction
forces and momentum transfers due to mass exchanges is null.Summing (8) forφ =
B,D,E altogether and using (2), (3) and (9), we find∑

φ6=L

mφ +Γφvφ = −mL −ΓLvL and

using (2) once again, we obtain

∂t((1−L)vS)+ ∇ · ((1−L)vS⊗ vS) =−(1−L)∇ P+ ∇ · (∑
φ6=L

φTφ)−mL −ΓLvL.

For the liquid phase we have

∂t(LvL)+ ∇ · (LvL⊗ vL) =−L∇ P+ ∇ · (LTL)+mL +ΓLvL.

To make assumptions on the form of the excess stress tensors,we recall the general form
for an elastic fluid, which is

φTφ =−(Σ(φ)−φλ(φ)∇ ·vφ)I+φµ(φ)
(

∇ vφ+(∇ vφ)
T) ,

(see for instance [5]), formula (39).
In absence of further biological information, we choose forthe solid part (φ = B,D,E)

to consider a constant stress and we neglect all the shear stress effects. Namely, we choose
λ (φ) = µ(φ) = 0 andΣ(φ) = γφ, with γ> 0 to indicate compression. ThereforeTφ =−γI
and so

∑
φ6=L

φTφ =−γ(1−L)I.

We also assume thatTL = 0, namely, that the excess stress tensor is only present in the
solid component and that we only find the hydrostatic pressure in the liquid; this means
that in absence of bacteria or EPS, the liquid is at rest. Thistype of assumption is usually
adopted in the theory of deformable porous media, where the excess stress tensorTL is
neglected in order to get Darcy like laws [23].

We finally assume that the interaction forces for the liquid follow the Darcy law [5]:
this is obtained takingmL proportional to the difference between the relative velocities of
fluid and of component, i.e.mL =−M(vL − vS), whereM is an experimental constant.

We can rewrite the equations for the velocities and using (1), (4), we obtain a closed
system of equations, including inertial terms :

(10)



















































∂tB+ ∇ · (BvS) = B(kBL− kD) ,

∂tD+ ∇ · (DvS) = αkDB− kND,

∂tE+ ∇ · (EvS) = kEBL− εE,

∂tL+ ∇ · (LvL) = B((1−α )kD−LkB− kEL)+ kND+ εE,

∂t((1−L)vS)+ ∇ · ((1−L)vS⊗ vS)+ (1−L)∇ P= ∇Σ +(M−ΓL)vL −MvS,

∂t(LvL)+ ∇ · (LvL⊗ vL)+L∇ P=−(M−ΓL)vL +MvS,

∇ · ((1−L)vS +L vL) = 0.

On the boundary, we impose Neumann conditions for the volumeratios and no-flux
boundary conditions for the velocities :

(11) ∇ B ·n|∂Ω = ∇ E ·n|∂Ω = ∇ D ·n|∂Ω = 0, vS ·n|∂Ω = vL ·n|∂Ω = 0.
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In the following section, we present the numerical scheme weuse and the numerical
difficulties we had to face to solve numerically this complexsystem of equations.

3. NUMERICAL SCHEME

We explain how to solve the complete system (10) by a finite difference method in space
and an explicit-implicit method in time in the two-dimensional case. This procedure can
be easily adapted to the three-dimensional case.

Consider a squareΩ = [0,L]× [0,L] and the discretization gridxα = (α1δx,α2δx),
whereα1, α2 are integers such that 0≤ α1, α2 ≤ N+1 andδx is the space step. Denote
by δt the time step and bytn = nδt, n∈ N the discretization times.

Hyperbolic system (10) can be written as

(12) ∂tW+ ∂x1A1(W)+ ∂x2A2(W) = Fmass+F f orce+Fpress,

where

W =





















B
D
E

(1−L)vS1
(1−L)vS2

LvL1
LvL2





















, Fmass=





















B(kBL− kD)
αkDB− kND
kEBL− εE

0
0
0
0





















,(13)

F f orce=





















0
0
0

(M−ΓL)vL1−MvS1
(M−ΓL)vL2−MvS2
−(M−ΓL)vL1+MvS1
−(M−ΓL)vL2+MvS2





















, Fpress=





















0
0
0

−(1−L)∂xP
−(1−L)∂yP

−L∂xP
−L∂yP





















,(14)

A1(W) =





















BvS1
DvS1
EvS1

(1−L)vS
2
1+ γ(1−L)

(1−L)vS1vS2
LvL

2
1

LvL1vL2





















, A2(W) =





















BvS2
DvS2
EvS2

(1−L)vS1vS2
(1−L)vS

2
2+ γ(1−L)

LvL1vL2

LvL
2
2





















,(15)

where we used the notationsvL = (vL1, vL2)
T and vS = (vS1, vS2)

T for the two-
components vectorsvS andvL. We split the source term in three different parts in order to
make the final scheme we use more readable.

We denote byWn,α the approximation ofW at pointxα ∈Ω ⊂R
2 and timetn. Our final

scheme is a modification of the following scheme, which is roughly speaking the Rusanov
scheme :

Wn+1,α = Wn,α − δt
2δx

2

∑
j=1

(A j(Wn,α j+1)−A j(Wn,α j−1))

+ λ
δt

4δx

2

∑
j=1

(Wn,α j+1−2Wn,α +Wn,α j−1)+δt Fn,α
mass+δt Fn,α

f orce+δt Fn,α
press,

(16)
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whereλ is a numerical velocity. This scheme is based on a relaxationscheme for the
spatial discretization of the transport part [4]. We set thenumerical velocityλ as the
maximum of the eigenvalues of the Jacobian matrices of the fluxesA1 andA2, namely,λ =
max{2vL1,vS1 −

√
γ,vS1 +

√
γ,2vL2,vS2 −

√
γ,vS2 +

√
γ}; space step is fixed, whereas

the time step varies and satisfies the stability conditionλ
δt
δx

≤ 1. We use the Neumann

boundary conditions (11) for the componentsB,D,E, and the no-flux boundary conditions
(11) for the velocitiesvS,vL; L is computed using (2).

This scheme is a standard one; however, considering system (10) and scheme (16), we
can notice that two difficulties require an original treatment, as explained in details in the
two following subsections. The first one deals with the vanishing phases problem, that is,L
may be equal to 0 or 1 at some points. Since the scheme computesthe quantities(1−L)vS
andLvL, it is not clear how to computevS or vL, which are needed in the friction terms.
The second one is the computation of the hydrostatic pressure P appearing in the source
term Fpress. We explain in the two following paragraphs how to modify scheme (16) in
order to face these difficulties.

The vanishing phases problem.Considering scheme (16) and the definition ofW
in (13), we note that the computation gives us the two quantities (1− Ln+1)vS

n+1 and
Ln+1vL

n+1, whereas we needvS
n+1 andvL

n+1 in order to compute at timetn+2 the four
last components ofFn+1,α

f orce in (14) . Therefore, ifLn+1 is equal to 1 (resp. 0), we cannot

calculatevS
n+1 (resp.vL

n+1 ). A naive solution would be to take the data in order to avoid
vanishing phases, like in most of the works in multiphasic gas dynamic, but those phases
are physically relevant in our case, since they correspond respectively to pure liquid or pure
biofilm.

Therefore, we propose to treat this problem by using an implicit time discretization
for the velocities of the source terms, leaving unchanged the discretization of mass
balance equations (1). This leads to replace in (16) the termFn,α

f orce by Fn+1,α
f orce . This

enables us to obtain some values for the velocities even in the particular cases when
one of the phases, liquid or solid, vanishes. The only drawback is that we have a
system of two non-linear equations to solve; this is always possible under the condition
(1−Ln+1, j)Ln+1, j +δt(M+(Ln+1, j −1)Γn+1, j

L ) 6= 0,which requires thatΓn+1, j
L 6=M. More

precisely, the condition holds true without any restriction if Γn+1, j
L < M, whereas we need

to imposeδt small enough whenΓn+1, j
L > M.

The pressure problem.We explain how to compute the termFpress. One naive solution
would be to find an elliptic equation forP, summing the two force balance equations in (10)
and using (4). However, the solution of this equation is not unique and it is not an efficient
way to compute the pressure. We will rather use a projection method as the one proposed
in [6, 26] to solve Navier-Stokes equations (see also [27]).The strategy is to use first a
prediction step to compute an estimated velocity and then, in a correction step, to solve
an elliptic equation that determines the pressureP, enforcing the divergence constraint (4).
The computation of the pressure then enables us to correct the values of the velocities. As
a first step, we compute

Wn+1/2,α =Wn,α − δt
2δx

2

∑
j=1

(A j(Wn,α j+1)−A j(Wn,α j−1))

+ λ
δt

4δx

2

∑
j=1

(Wn,α j+1−2Wn,α +Wn,α j−1)+δt Fn,α
mass+δt Fn+1/2,α

f orce .
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Note that the source termF f orce is treated implicitly as explained in the previous paragraph.
Then, we compute the quantity∇ Pn+1 which satisfies the following equation :

δt∆∇ Pn+1 = ∇∇ ·
(

(1−Ln+1)vS
n+1/2+Ln+1vL

n+1/2
)

,

with boundary condition∇ Pn+1 ·n= 0. The final step is to update velocities thanks to the
pressure as

vS
n+1 = vS

n+1/2−δt∇ Pn+1, vL
n+1 = vL

n+1/2−δt∇ Pn+1.

In the following section, we present numerical simulationsin 1D, 2D and 3D. These
simulations show the efficiency of our model to reproduce a front propagation for the
production of EPS and the growth of the biofilm structure.

4. NUMERICAL SIMULATIONS

4.1. Parameters estimates. In this section we discuss the values of parameters chosen
in our simulations. Some information can be found in [17], where a doubling time of
the culture of cyanobacteria of once every 10.5 hours is mentioned and [13], where a
maximum specific biofilm growth rate is assumed to be 5.88d−1, whered = day, while
in [28] the biofilm growth of the two models presented varies between 1 and 2d−1. We
choosekB0 = 1 d−1. According to [13], the decay rate coefficient is about 5% of the
growth coefficient and so we chosekD = 0.025kB0. Finally, the estimate of the EPS growth
ratekE depends on the specie of bacteria we study and the environmental conditions (see
for example [20]). Since we consider the behavior of Chroococcales cyanobacteria, in
absence of specific experiments, we assume that the order of magnitude of EPS growth is
comparable with the one of cyanobacteria growth.

To estimate the parameters, which are present in the law for the variation of light
intensity (6), we refer to [14, 28]. In [25], a law of absorption of light by water is proposed
as well as some estimates for the parameterµ0. The parameterµh is estimated indirectly
by some experimental results in [34], which link the height of the biofilm and the light
transmitted after a path in the biofilm. Experiments in [8, 12] suggest the value for the
optimal light intensityIopt. The parameterβ in (6) is estimated thanks to the evolution of
the growth as a function of light described in [34].

We did not find experimental estimates for the parameterγ in literature. Physically, the
value of

√γ plays the role of the sound speed of the mixture, namely, it isthe maximum of
the modulus of the eigenvalues of the Jacobians of the fluxes when we linearize the system
around zero velocities. So, it gives a good estimate of the speed of the front between the
solid and the liquid phases. Therefore, according to the experimental results in [34], we
considered an estimated growth of biofilms of 1 mm in 30 days, which nearly corresponds
to a growth of 10−4 cm in 1 hour. In consequence, for some of the tests we used the value
√

γ =
10−4

3600
[cm/sec] ≈ 2.7 · 10−8[cm/sec], which givesγ = 5 · 10−16

[

cm2/sec2
]

. Some

numerical estimates of the influence of different values ofγ on the growth of the biofilms
will be presented later.

4.2. Simulations. In this section we present numerical simulations in one, twoand three
space dimensions. The one-dimensional system is not a realistic model, but it is useful to
test our model on simple cases and to compare it with pre-existing models which have been
mostly written only in the 1D context. In this case, the closure law is also more natural
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TABLE 1. A list of (dimensional) parameters

Param. Value Indications Reference

kB0 8 ·10−6 [1/sec] Cyanob. growth rate [13, 28, 17]
kD 2 ·10−7 [1/sec] D growth rate [13],
kE 12·10−6 [1/sec] EPS growth rate [20]
ε 1 ·10−7 [1/sec] EPS death rate
kN 1 ·10−6 [1/sec] D consumption rate
γ 2.5−10·10−16

[

cm2/sec2
]

tensor coefficient
α 0.25 [dimensionless] fraction dead cells
M 10−8 [1/sec] tensor coefficient
Iopt 0.01

[

µmol·cm−2sec−1
]

optimal light intensity [8, 12]
I0 0.01

[

µmol·cm−2sec−1
]

average incident light [8, 12]
w 1 [dimensionless] constant light [14, 28]
β 0.1 [dimensionless] constant light [34]
µ0 0.002

[

cm−1
]

clear water coeff. [25]
µh 6 [dimensionless] biomasses coeff. [34]

than in other dimensions; it is also easier to derive an adapted numerical scheme which is
a good test case for our modeling and numerical approach.

In the whole section, we use the values of parameters listed in Table 1. The values found
for these parameters are only a first approximation; in a further study [7], we will analyze
the sensitivity of the solutions to all these parameters, showing that the most sensitive one
is kB0 which gives a variation of around 10% (below 1.5% for the other parameters) of the
volume of biofilms when it varies of 5%.

Finally, in the following subsections we study the influenceof light by comparing
results obtained with a constant optimal rate for bacteria growth kB = kB0 with a variable
kB = kB(I) which depends on light following the law given at section 2.3; in this case, light
intensity is taken as a sinusoid of time taking into account the variations between night and
day.

4.2.1. The one-dimensional case.In the one-dimensional case, the single variable space
accounts for the height, that is, we consider an homogeneousplanar biofilm. We study the
evolution of the biofilm after 60 days (see Figure 1). Our domain is the intervalL = [0,1]
(cm) and we take spatial steph equal to 0.001cm. We consider as initial data Heaviside
functions for cyanobacteria and EPS :B0 = 0.2 · χ[0,0.007], E0 = 0.008· χ[0,0.007] and the
other variables are initially equal to zero. Simulations are done comparing three different
values ofγ : γ1 = 10−16 (cm2/sec2), γ2 = 5·10−16(cm2/sec2) andγ3 = 10−15 (cm2/sec2)
(respectively on the top, in the middle and on the bottom of Figure 1) and two different
values ofkB : kB equal to the constantkB0 andkB depending on light intensity (respectively,
on the left and on the right side of Figure 1).

Let us see how the parameterγ, which is connected to the interaction force among cells
and EPS, influences the diffusion of the biomass, that is, theprocess is accelerated for
bigger values ofγ : for the biggest valueγ = 10−15 (cm2/sec2), the front propagation
reaches the highest height(≈ 0.3(cm)), while the heights reached with the valuesγ =
10−16 (cm2/sec2) andγ= 5·10−16 (cm2/sec2) are respectively≈ 0.1, 0.2. Computing the
height of the biofilm is particularly simple in the 1D case, since the sumB+D+E is null
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for space variablex large enough. A more careful study of the velocity of the front with
respect toγ will be performed in the 2D-case.

We can also observe the differences in the cyanobacteria growth using a constant
coefficientkB = kB0 or using a coefficientkB = kB(I) which depends on light, which
changes according to some periodic function of time. SincekB0 is the optimal growth
rate of cyanobacteria, the cyanobacteria growth is higher in the constant case than in the
variable light case. We can see in Figure 1 that comparing thecurves for a variable light
(on the right) and the curves for a constant light (on the left) for the same value ofγ, the
distribution of liquid is strictly the same. This means thatthe liquid, which is initially
present everywhere, is consumed by the biomass at the same rate in both cases. However,
we see a greater growth of EPS in the case of variable light which counterbalances the
lower growth of cyanobacteria.

4.2.2. The two-dimensional case.We simulate the biofilm growth in the two dimensional
case, during 30 days. In that case, space variables account for length and height,
considering that all functions are constant in width. We first study the change of behavior
of our model under the variations of light intensity.

Influence of light. We take forB as an initial condition the sum of three Gaussian
functions, centered respectively in 0.35, 0.5, and 0.7 (cm) with a total fraction of volume
for the cyanobacteriaBT0 = 1.0762·10−5. Results are presented in Table 2, where function
g is defined by (6). We choose an optimal light intensityIopt = 0.01(µmolcm−2sec−1) and
the incident light intensityI0 defined by (6) varies. The effect of light on the volume of
biofilms is not so easy to be determined, since the dependenceon the light in the model is
defined through the form of the coefficients. A plot of the volume fraction of cyanobacteria

TABLE 2. Numerical results in the 2D case : influence of light

Form ofkB Incident light intensityI0 Total fraction of Rate of volume growth

volume of cyanobacteria

kB0 0.0029 26950 %
kB0 ·g(I) 0.01 0.0019 17700 %
kB0 ·g(I) 0.003 0.0014 13060 %
kB0 ·g(I) 0.001 2.4481·10−4 2275 %

after 30 days is displayed in Figure 2. We observe that the light intensity propagation
in the biofilm phase is attenuated by the biofilm mass itself, as expected by the model
assumptions. It would be possible to fit the model with this attenuation with appropriate
experiments on cyanobacteria growth, measuring the numberof photons emitted and the
photons which pass through the biofilm with a light sensor under the biofilm.

Influence ofγ. The parameterγ also has a great and not simply predictable influence on
the behavior of the solutions. In Table 3 , we compare two extreme values ofγ (maintaining
constant all other parameters) for the same initial data as before.

Front velocity. We describe in this paragraph the biofilm front velocity behavior as a
function ofγ, using as initial condition a single Gaussian function centered in 0.5. In order
to define the biofilm front, we consider the ratio between the biofilm volume fraction (that
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FIGURE 1. Volume fractions of the biofilm components (bacteria in
blue, dead bacteria in green, EPS in black and liquid in red) as functions
of height (in cm) after 60 days for three different values ofγ, γ1 = 10−16

(cm2/sec2) (on the top ),γ2 = 5 · 10−16 (cm2/sec2) (in the middle),
γ3 = 10−15 (cm2/sec2) (on the bottom). On the left, we display the
results for an optimal constant ratekB = kB0 and on the right, for a
variable rate depending on light periodically in time.

TABLE 3. Numerical results in the 2D case : influence ofγ

γ Total fraction of Rate of volume growth

volume of cyanobacteria

1 ·10−16 0.0027 25000%
1 ·10−15 0.012 111500%
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FIGURE 2. Biofilm evolution, with coefficientγ = 10−15, (cm2/sec2) and initial
condition forB given by the sum of three Gaussian functions centered in 0.35, 0.5, and 0.7
(cm). On the left, we display the volume fraction of cyanobacteria as a function of length
and height after 30 days. On the upper right, we present the level curves for functionB as a
function of length and height and on the lower right, we show the level curves of the light
intensity variation (inµmol cm−2sec−1).

is, the sum ofB+D+E) and the maximum of this volume fraction at the same time.
We can define two regions, the first one composed of the points where the value of this
ratio is less than 0.5% and the second one composed of the points where the value of
this ratio is more than 0.5%. The biofilm front will be the boundary between these two
regions. We display the movement of the front as a function oftime for different values
of γ on Figure 3(a). Using a linear fit on the previous curves, we can find the velocity of
the front movement, and we plot it as a function of

√γ on the right of Figure 3(b). The
curve shows a nice linear behavior. This fact supports our previous claim that the sound
speed of the mixture

√γ yields a good estimate of the speed of the front of the solid phase.
Moreover, using a linear fit, we find a relation of the formvf = q1

√γ+q2, wherevf is the
front velocity,q1 = 1.8497 andq2 = 2.9143·10−8 (cm/sec). This approximation could be
compared with experimental data in order to estimate the parameterγ, once the values of
other parameters are known.

4.2.3. The three-dimensional case.In this last subsection, we consider the three
dimensional case on a domainΩ = [0,1]× [0,1]× [0,0.5] (cm3) with a sum of Heaviside
functions of amplitude 0.02 (cm), as an initial condition for the cyanobacteria volume
fraction B and parameterγ = 10−15(cm2/sec2). Numerical results of the evolution of
biofilm with respect to time are displayed in Figure 4 and we observe the formation of
an homogeneous layer of the solid components by a quick aggregation, which can be
compared with experiments proposed by the Delft’s team in [24]. On the right of Figure
4, we represent simultaneously the evolution of the light intensity I(x,y,z, t), which is
attenuated by the biofilm. Although it is not possible to compare our numerical results
with experimental data in a quantitative way, we may say thatthe order of the height of
biofilm we find after 30 days (around 1 mm) is in agreement with experiments performed
by biologists [12] on cyanobacteria biofilms under the same conditions of light and
temperature than our simulations (around 0.2 mm in [34] for slightly different biofilm
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FIGURE 3. On the top, we display the height of the biofilm (in cm) with
respect to time (in days) in order to see the biofilm front movement for
different values ofγ, i.e. γ = (1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5) ·
10−16 (cm2/sec2). On the bottom, we plot the front velocity (in cm/s) as
a function of

√γ (in cm/s), obtained by a linear fit of the curves on the
left.

composition). The qualitative behavior of our biofilm also fits what we know about the
evolution of cyanobacteria biofilm.

We present finally in Table 4 the computation times needed forthe simulations
mentioned above using the Matlab software. The space step isequal to 0.001 in the 1D
case and to 0.01 or 0.02 in the 2D or 3D cases. In the optimal rate case we mostly usedthe
variable time step, always respecting the CFL condition, which shortens the time needed
for the numerical simulations.
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FIGURE 4. Numerical simulation of the biofilm at three different times
(T = 15, 22, 30 days) with variable rate and withγ = 10−15(cm2/sec2).
On the left, we show the evolution of volume fraction of cyanobacteria
B and on the right, we present the light intensity variation. On the left,
the scale for the volume of cyanobacteria changes since the variation in
the volume of biofilms is important, whereas the scale for intensity is
fixed.

TABLE 4. Computational time for 30 days simulation performed on a
standard laptop in various cases

Dimension Time step Computational time (sec.)

1D 0.01 194.87
variable 9.55

2D 0.02 2386.34
0.1 684.61

variable 76.24

3D 0.02 6616.84
0.1 1284.44

variable 690.17
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5. CONCLUSION

We have proposed a new model of hyperbolic PDEs to describe the formation and
growth of a biofilm in a general setting and we have applied it to an environment mostly
inspired by the specific case of Chroococcales cyanobacteria. This model is based on the
mixture theory with the assumption that bacteria and EPS aremoving along together at the
same velocity; it naturally reproduces a clear front propagation that has been observed in
the development of biofilms, with a finite speed of propagation obtained thanks to inertial
terms, which are generally neglected.

A numerical scheme has been produced and tested, where we have treated in a simple
way the problems of vanishing phases and of the computation of the pressure term. In order
to obtain numerical simulations as realistic as possible, we have estimated the physical
parameters from the literature. However a main parameterγ, accounting for the stress
function, is missing. We have studied the effect of this parameter, proving that different
values give a great variation in the results. A natural and efficient way to calibrate it
will be to make a careful comparison with experimental data.We have also studied in
details the influence of light which is a crucial environmental factor in the development of
phototrophic biofilms. Although the influence of nutrients has been deeply studied in the
previous models, it is the first time to our knowledge that light is taken into account for
a biofilm model. Numerical simulations show clearly that thevariation of light intensity
influences the rate of growth of biofilms, which was not obvious from equations since the
dependence on the light appears only through the constants.

Finally, the simulations we have performed in the 3D case areclearly comparable with
what can be found in the experimental literature [12, 34] andgive a first validation of
our model. For instance, in [34], we can find some values of thethickness of the biofilm
for different values of the light irradiance. For the moment, no experiments have been
performed to compare explicitly the results of this model with experimental data. However,
the simplicity of the model would allow us to fit easily experimental results with the
parameters. We remark that an important assumption of the experimental data of [34] is the
homogeneity of the biofilm, whereas our model shows some morerealistic heterogeneities
in the biofilm formation.

Thanks to the generality of the model, we should be able in thefuture to extend it to
other applications, such as biofilms with co-existence of various species. Other interesting
perspectives would be the study of the influence of signalingbetween bacteria and also to
use the model for preventing infections in a biomedical setting.
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