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A FLUID DYNAMICS MODEL OF THE GROWTH OF PHOTOTROPHIC
BIOFILMS

F. CLARELLIZ, C. DI RUSSG
R. NATALINI 3, AND M. RIBOT#

ABSTRACT. A system of nonlinear hyperbolic partial differential egjons is derived

using mixture theory to model the formation of biofilms. Innt@st with most of the
existing models, our equations have a finite speed of prajpagavithout using artificial

free boundary conditions. Adapted numerical scheme willdbscribed in detail and
several simulations will be presented in one and more spacendions in the particular
case of cyanobacteria biofilms. Besides, the numericalnsehee present is able to
deal in a natural and effective way with regions where onehefhases is vanishing.
Fluid dynamics model and Hyperbolic equations and Phatbim biofilms and Front
propagatiol@AM S : 92C17, 35L 50, 65M 06.

1. INTRODUCTION

A biofilm is a complex gel-like aggregation of microorgangnike bacteria,
cyanobacteria, algae, protozoa and fungi. They stick tagethey attach to a surface and
they embed themselves in a self-produced extracellularixnait polymeric substances,
called EPS. Even if a biofilm contains water, it is mainly in @i¢ phase. Biofilms
can develop on surfaces which are in permanent contact vatbrni.e. on solid/liquid
interfaces or on different types of interfaces such asaidsliquid/liquid or air/liquid.

The term “biofilm” was proposed in 1978 by Costertoh [9] to atése what is now
considered as the preferred form of microbial life in naturadustrial and hospital
environments. Some biofilms are useful, providing valuabtgices to human society or to
the functioning of natural ecosystems. Bacteria in thestiase normally grow as biofilms
on the soil matrix, for instance, and can help to remove cuimntants from the soil or
ground waters. However, other biofilms are harmful, causargpus health and economic
problems. Their propensity for attachment causes problemsany inrastructures, like
industrial pipelines, ship hulls, nuclear power statioais,conditioning systems, water
distribution systems. Hospitals are also susceptible tonization by microorganisms
growing in biofilms [16]. Harmful biofilms often develop evander adverse conditions so
that removing them is often difficult. Since biofilms play grsficant role in many natural
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and engineered systems, understanding the mechanisnafibhidormation, growth, and
removal could be the key for promoting biofilms which havefukapplications and also
for reducing deleterious biofilms.

Biofilms are not simply passive assemblages of cells, buyt thm structurally and
dynamically complex biological systems. Their developtrisroften characterized as a
multistage process. First, some free-floating bacteriacgmh the surface and get attached.
Then, during a phase of colonization, bacteria loose flagait produce EPS. During the
phase of growth, bacteria build a 3D structure, influenced ariety of environmental
factors. In the end, a part of the biofilm may detach itselfriden to colonize other parts
of the surface.

Since the topic is huge and of great interest, some mathemhatiodels have already
been proposed. At the beginning, mathematical modelingadilin was mainly focused
on predicting growth balance, sometimes with practicalliapfions in mind, as in
[30,31/32]. These are generally 1-D models with reactiffugslon equations for nutrients
and other substrates, sometimes with a moving boundary. fifgtemultidimensional
models were discrete and based on cellular automata. Fonpeamodels proposed
by the Delft's team[[30] are mainly multidimensional, msftecies and multisubstrates
spatially discrete models, which have been solved by iddi&i-based approach or cellular
automata. They are quite exhaustive from the biologicalfmfiview, at least qualitatively,
but not fully satisfactory, because in many cases it is haugite well based ruled for all
the involved individuals, and for the difficulties to simtddarge colonies of millions of
individuals with the discrete approach. Besides, it is rastydo predict the actual behavior
of the solutions. Fully continuous models have also beersidened. The recent review
by Klapper and Dockery [18] focuses mainly on this kind of ralsd following the idea
of treating a biofilm as a viscoelastic material that expandaesponse to growth-induced
pressure. A mathematical justification of these models wapgsed by Overgaard [21]
using variational techniques. Among them, an importargclaf models, proposed by
Alpkvist and Klapper[[l], is based on a multidimensional andltispecies description,
where biofilms are divided into a biomass region and a liqeigian separated by an
interface computed by moving fronts techniques. Howevés difficult to find a physical
law governing the evolution of the interface. More receniigng, Cogan, and Wang
[33] proposed a two phases model, considering the polynterank and the solvent, and
analyze numerically the case of detachment under diffdretigl conditions. Another
continuous model, including more biological details, wegpgosed by Anguine, King and
Ward [3]. It concerns biofilms produced by tlseudomonas aerugingsa bacterium
that causes serious infections. In this multispecies PDEdet four different phases
are considered: live cells, dead cells, EPS, and liquid. ilmfieence of nutrients is also
taken into account, as well as quorum sensing, one of thewasignaling mechanism
of cells, and also some different medical treatments, lkbatics and antiQS drugs.
Transport equations are introduced to model the four pharséthe behavior of nutrients,
antibiotics and antiQS are given by advection-diffusionaopns. A common velocity for
bacteria, dead bacteria and EPS is assumed, while a diffeiecity is taken for the liquid.
The system is closed with the no-void condition, togethehwi supplementary relation
between the liquid and EPS, namely, a local increment of EERSes a local increment of
liquid. Thanks to these hypotheses, no equation for theciteds is needed, but the model
works only in one space dimension.

In this paper, we propose a new approach, based on mixtuoeyttte the formation
and evolution of cyanobacteria biofilms in several spaceedsions. We focus on
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their development on the stone surfaces of ancient monwnastor instance fountains
walls, i.e.: on stone substrates and under a water layer. colmization of external
surfaces of buildings, monuments and archaeological biteaicroorganisms creates an
unaesthetically appearance of staining of the stone ssffd),[11]. It produces also
extracellular polymeric substances that cause mechastiesses to the mineral structure
inside the pore system. This can lead to the alteration & pigze and distribution, together
with changes in moisture circulation patterns and tempegatesponse. Microorganisms
may also alter the water permeability of the minerals by thpadgition of surfactants.
Cyanobacteria, also known as blue-green algae, are a phefupacteria that obtain
their energy through photosynthesis, thanks to an eladarad highly organized system
of internal membranes. Our model refers essentially to tideroof Chroococcales, in
particular Gloeocapsa, which is a genus of photoautotmbpéacteria and a prokaryote,
which are relevant for stone damage analysis. In this pameassume that bacteria remain
attached to EPS and therefore that bacteria and EPS haveraarowelocity. This is the
case for Chroococcales cyanobacteria, since they secditédual gelatinous capsules
which totally embed them (sekl[8,112]). Even if our focus isptmtotrophic species,
like cyanobacteria, most of the framework we are going td dd in this paper can be
extended to other species and mixed colonies.

Our first goal is to introduce a model which keeps the physfoate speed of
propagation of the fronts. Starting from the ideas of thetorix theory [23] 5], we
write balance equations which contain the main assumptionsing from biophysical
considerations : mass and momentum conservation, influehtight. For simplicity
reasons, we will consider here that nutrients and temperaite not limiting factors
and that they do not play a significant role; however, it wobésimple to add their
dependence in further studies. We take particular care ép kbe inertial terms in
the momentum equations, to guarantee the hyperbolicith@®siystem and so the finite
speed of propagation. Actually, in most of the models conifing the mixture theory
approach, as for instande [15], these terms are neglectschidify the analysis and the
numerical approximation, therefore producing diffusises which stabilize the fluid and
prevent possible breakdowns or other instabilities. Hatehis simplification introduces
a non physical infinite speed of propagation in the problemd, makes difficult to study
effectively the evolution of interfaces between the sobifilm) and the liquid (water)
phases. A possible solution is to use moving fronts teclesgsee [1]), which lead to other
analytical and numerical difficulties and a further appnoation in the model. Therefore,
we keep the inertial terms and we solve the full hyperbolabpem using robust numerical
schemes, as the Riemann Solver-free relaxation schermeslfire are two important
differences with respect to a usual hyperbolic system.t,Fsiace we are considering a
multiphase fluid, it is difficult to deal with regions whereeonf the phases may vanish.
This is usually solved by neglecting these regions, forinseé by selecting adapted initial
conditions. In a biofilm this choice is not suitable, sincesitmportant to model also the
regions made of biofilm alone or liquid alone. It turns outthe possible to deal with this
problem of vanishing phases by using an Implicit-Explicheme in the approximation of
the source terms (see Sectldn 3 for more details). The squaidem arises from the
fact that our model is supplemented with a constraint teretduthe mass conservation,
which implies that the average hydrodynamic velocity of mhizture is divergence free.
This constraint is needed to compute the hydrostatic pres§w enforce the divergence
free constraint, we use a fractional step approach sinal#iré Chorin-Temam projection
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schemel[d, 26] for the Navier-Stokes equations, with a cqagtirate reconstruction of the
pressure term.

The plan of the paper is the following. In Section 2, we préseatfetailed derivation of
our fluid dynamics model, with a specific focus in the modeththe influence of the light
on the growth of the biofilms. The numerical approximatidmesoe is presented in Section
3. Finally, in the last section, we present numerical tesith the aim of illustrating the
power of our approach and also the influence of the variouanpaters. Our tests are
performed in one, two, and three space dimensions, for a itlomitn no flux conditions.
We study the influence of light on the system and how the einfahe sound velocity of
the medium, which however is not really an easy task from ¥peemental side, affects
the final output and in particular the speed of the front.

2. THE FLUID DYNAMICS MODEL

To describe the complex structure of biofilms, we considsrina[3], four different
components: Live cyanobacteria (B), Dead cyanobacter)a ERtracellular matrix of
Polymeric Substances or EPS (E), and Liquid (L). We den@edtimcentration of biomass
by Cy = pp@, Wherep,, is the mass density of a phasegicn?] andg = B,D, E, L is the
volume fraction of the phases. We assume that the biomassé@scampressible, so that
P8, Pp, PL andpg are positive constants. We also assume that the phaseslhiénesame
constant density, which is a good approximation in real iefi This is not a necessary
assumption for our model, but it simplifies the equations aes@er.

We have reduced the living part of the biofilm, which usuatigludes many different
types of organisms, to one single specie of cyanobactendn$tance belonging to the
Chroococcales order. The four components form a mixturéchwban be described as
“mixed-state or condition, co-existence of different iedients or of different groups that
mutually diffuse through each othef”[23]. This approachk heen already used by Preziosi
et al. to model the formation of vascular tumars [2].

2.1. Mass balance equations. Since EPS encompasses the cells for this class of
cyanobacteria, we can make the hypothesis that live cedlsd dells, and EPS have the
same transport velocity, calleag. We denote instead by the velocity of liquid phase,

and byl'y , with (¢ = B,D, E,L), the mass exchange rates. Equations expressing the mass
balance are

(1a) 6B+ 0-(Bvs) =Tg,
(1b) D+ 0-(Dvs) =Tp,
(1c) GE+0-(Evs) =TE,
(1d) aL+0-(Lvy) =TL.

We assume the following volume constraint :
2 B+D+E+L=1,

that is, the mixture is saturated and no empty space is left.
In addition to the balance of mass of each component, we as@ lthe total
conservation of mass of the mixture :

(3) MNe+lp+Te+M =0,
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which states that the mixture is closed, i.e. there is no regtyction of mass for the whole
mixture. Adding the four equations of systelm (1) and udifaa(®i [3) yields

4) O-(B+D+E)vs+Lv )=0-((1-L)vs+Lv_ ) =0,

which means that the divergence of the average hydrodynastocity is equal to zero.
This can be seen as an average incompressibility.

Observe that when the mass densities are different, but evstiéirassuming the total
mass conservation, we should modify the system by inseaingn null source term in
the equation of incompressibilit{Zl(4) with some simple a@sin the equation for mass
conservation(3).

2.2. Biomass growth rates. We assume that the mass production terms are of the
following form :

(5a) s = kgLB — kpB,
(5b) Mo = akpB — kD,
(5¢) MNe = kglLB— €E.

The termlg, i.e. the mass exchange rate for the active bacterial éelthe difference
between a birth term with ratgL and a death term with rakg. The birth of new cells at a
point depends on the quantity of liquid and of bacteria add in the neighborhood, more
precisely bacteria cannot reproduce themselves in abséfigeid, nor of other bacteria.
Liquid is therefore a fundamental limiting factor; for sitigity reasons, we choose the rate
of the birth term as a linear function &f The death term in the expressionlaf gives
rise to a creation term in the mass exchange rate for deallggliwith a coefficient of
proportionalitya, since a part of the active cells becomes liquid when thedéedl. Inlp,
we also find a natural decay of dead cells with a constant detalgy. The production of
EPS by active cells is represented by a term with growthkatte while decays occurs at
a ratee. In principle, it should be possible to model the influenceleEPS production
of the liquid fraction by using a non-dimensional functibfi.) with values between 0 and
1, but here we prefer to restrict our attention to a linearetej@nce.

We take the mass exchange rate of lighijdin order to enforce conditiof}(3), that is,
M. =B((1—a)kp — kgL —kelL) + knD + €E. The dependence of the growth of biofilms
on light will be taken into account through the form of the stamt ratekg as explained in
the following subsection.

2.3. Dependence on
light. Light is a fundamental variable for some types of cyanob&c{photoautotrophic
cyanobacteria), allowing these organisms to photosyizbésorganic compounds [22].
There also exist a range of temperature and a range of nutd@ecentrations necessary
to their survival [19]. These environmental factors dilgatfluence the specific growth
rates of involved componentB,(E, D) and can reduce them when optimal values are not
reached (cf.[[14. 29, 28]). We focus here on the dependentighinthe same arguments
can be used to take into account the variations of temperatund the influence of the
concentration of nutrients can be computed using classieadtion-diffusion equations.
We feel, however, that light is the most important factor éaldvith for cyanobacteria and
we consider for the moment that temperature and nutrieet®atr limiting factors; it is
foreseen to study their influence in a more complete studyBekides, the experimental
results about biofilm growth we found in articles liké [8] 5] are mainly obtained with
a constant temperature and a sufficient amount of nutrients.
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We write the coefficienkg depending on light intensity as kg(x,y,zt) = Kgo -
g(l(x,y,z1t)), wherekgp is the optimal growth rate, and(l) € [0,1] is an efficiency
factor. We denote byp(X,y) the light intensity on the upper surface of water, and by
[(x,y,zt) the intensity in the water in the 3D case. We assume that g ilntensity
is attenuated following the law of photon absorption in thatter [25] asl (x,y,zt) =
lo(x,y.t)e 2 K9S wherep = pio (14 pn (B + E + D)) is the absorption coefficientp is
the absorption coefficient when the water is clear, gn@ a coefficient in the biomasses.
By experimental observations, an estimateuisz 0.9 m! if the water is turbid, and
u ~ 0.2 m1 if the water is clear. We consider finally, following [28.]114in efficiency
factor for algae growth of the form

, wherel (x,y,z,t) = b lo®) o g usus

6) g(l)=2w(1+pB) m lopt  lopt

Herelop is the optimal light intensityw is the maximum specific growth rate afids a
parameter to be chosen. The functpreaches its maximum value gt and vanishes at
zero and at infinity.

We also assume that the death rate for cyanobadigrtae EPS growth ratie= and the
decay rate for dead celky, are independent df[20] in order to keep the model as simple
as possible in absence of experimental evidences.

2.4. Force balance equations. In order to find the suitable form of the force balance
equations, we follow the works by Prezios| [2, 5], where theary of mixture is used to
model tumor growth.

Following [5], to determine the change of momentum of onglgiphase in a reference
volume, we have to take into account for four different citmitiions: the flux momentum
through the boundary of the volume, which is the inertiattgv, @ v,; the internal forces
within one phase still through the boundary of the volumeegiby the term'T'q), which
is the partial stress tensor; the interaction forces amdages in the volume, which give
a term of the formmy,; and finally, the momentum supply related to phase changé®in
volume, which gives the term of the forityv,,. In our case, for simplicity, we neglect the
external forces, which can be easily inserted at any timerdfbre, using the divergence
theorem, we can write the equation of force balance for timepmmentp (¢ = B,D, E, L)
as follows :

(7) (@) + 0 (@@ V) = 0- Ty + Mg+ V.

From the theory of mixture§[5, 23], we take the standard ogsition of the interaction
forces ashy = my, + POg, namely, the sum of a friction term,, between the phases and a
term orthogonal to the level curves of the pha3eg, whereP is the hydrostatic pressure.
This term is needed to enforce the saturation condifibnsiBe otherwise it should be
unclear how to verify[(#) all the time. In practice, the fuootP is an unknown of the
problem, very much like the pressure in the classical NaStekes equation, and it plays
the role of a Lagrange multiplier with respect to the sataratonstraint. Following the
same idea, we decompose the partial stress tens:bd; as—@Pl + ¢Ty, whereT, is the
excess stress tensor.

Equation[(¥) can be rewritten as

(8) G (Qvg) + - (Ve Ve) = My — @UP + - (9T ) + T gV
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The total conservation of momentum leads to
(9) Z(m(p+r(pv(p) == Z(m(p+ r(pV(p) = 0
[7 [7

This equation means that the net momentum supply to the reixtwe to all the

components is equal to zero. If the mixture is closed, we @tbat the sum of interaction

forces and momentum transfers due to mass exchanges is Suthming [8) forg =

B, D, E altogether and using](2).1(3) ard (9), we firg Mg+ MgV = —my — v, and
oA

using [2) once again, we obtain
dt((l— L)Vs) +0- ((1— L)V5®Vs) = —(1— L)Dp-l- 0. ( ;¢T¢) —mp—Tpv,.
¢

For the liquid phase we have
S (Lvy )+ 0O (Lv ®V|_) =-—L0OP+0- (LTL) +mp+Tpve.

To make assumptions on the form of the excess stress temsorggcall the general form
for an elastic fluid, which is

PTp=—(Z(0) — PA(@)T- Vo)l + @ (¢) (Dvg+ (Ovy)T),
(see for instancé[5]), formula (39).
In absence of further biological information, we choosetfa solid part ¢ = B,D, E)
to consider a constant stress and we neglect all the sheas gifects. Namely, we choose
A (@) = u(@) =0andz(@) = y@ with y > 0 to indicate compression. Therefdrg = —y!

and so
;quq) =—y(1-L)I.
®

We also assume thdl = 0, namely, that the excess stress tensor is only presengin th
solid component and that we only find the hydrostatic presguthe liquid; this means
that in absence of bacteria or EPS, the liquid is at rest. fijpis of assumption is usually
adopted in the theory of deformable porous media, wheretbess stress tensai. is
neglected in order to get Darcy like lavis [23].

We finally assume that the interaction forces for the liquitiofv the Darcy law[[5]:
this is obtained takingn. proportional to the difference between the relative veiesiof
fluid and of component, i.en. = —M(v_ — vs), whereM is an experimental constant.

We can rewrite the equations for the velocities and udihg @) we obtain a closed
system of equations, including inertial terms :

0B+0- (Bvs) = B(ksL —kp),

6D+ 0O-(Dvs) = akpB — knD,

GE+0O-(Evs) = keBL—€E,

(20) oL+0-(Lvy) =B((1—a)kp — Lkg — keL) + knD + €E,
a((1-L)vs)+0-((1—-L)vs®vs)+ (1-L)OP=F +(M—T)v. —Muvs,
d[(LVL)-f— O-(Lvp ®vL)+LOP=—(M—TL)vL +Mvs,
O-((1-L)vs+Lv )=0.

On the boundary, we impose Neumann conditions for the voluaties and no-flux
boundary conditions for the velocities :

(11) 0OB-nlgg =OE-n[go =0D-njsgg =0, Vs-N|gg =VL -N|sq =0.
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In the following section, we present the numerical schemeaugeesand the numerical
difficulties we had to face to solve numerically this compdgstem of equations.

3. NUMERICAL SCHEME

We explain how to solve the complete systéni (10) by a finifedihce method in space
and an explicit-implicit method in time in the two-dimens& case. This procedure can
be easily adapted to the three-dimensional case.

Consider a squar® = [0,L] x [0,L] and the discretization gridy = (010X, a20Xx),
wherea;, a, are integers such that0 a1, a; < N+ 1 anddx is the space step. Denote
by dt the time step and by, = ndt, n € N the discretization times.

Hyperbolic systen{{10) can be written as

(12) oW + axlAl(W) + aszZ(W) = Fmasst+ Fforce+ Fpress
where
B B(ksL —kp)
D akpB —knD
E kEBL eE
(13) W=| (1-L)vs; |, Fmass= ,
(1-L)vs 0
Lvi 1 0
Lvo 0
0
0 O
0 0
(14) Frorce= (M—TL)vL1—Mvg; . Fpress= | —(1—-L)oP [,
(M =TV —Mvs, 1 L)o,P
—(M—=Tp)vL1+Mvs; —de
—(M =T)vL2+ Mvs, —LayP
BVS]_ BVSZ
DVS]_ DVSZ
EVS]_ EVSZ
(W) = | (1-Lvsi+y(l-L) [, Ay(W)= (1—L)vsiVsz :
(1—-L)vsVsy (1-L)vgd+y(1-L)
Lv % Lviavi o
Lv, 1VL2 Lvp %

where we used the notationg = (vi 1,V )" and vs = (vsy,Vsp)' for the two-
components vectorss andv, . We split the source term in three different parts in order to
make the final scheme we use more readable.

We denote byV™? the approximation 0@V at pointxy € Q € R? and timet,,. Our final
scheme is a modification of the following scheme, which igidy speaking the Rusanov
scheme:

Wn+1C{ wna i 2 (A_(Wn,ajJrl)_A_(Wn,ajfl))
20x JZ1 ) !
(16)
5 2

+A 15 _Zl(w”’“ﬁl — 2WME L W) 4 Bt FRE o Bt F g et Ot s
J:
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whereA is a numerical velocity. This scheme is based on a relaxatteme for the
spatial discretization of the transport part [4]. We set tluenerical velocityA as the
maximum of the eigenvalues of the Jacobian matrices of ey andA,, namelyA =

max{2vi1,Vs; — /V,Vs1 + VY, 2VL2,Vsy — /Y, Vso + 1/Y}: space step is fixed, whereas
ot
the time step varies and satisfies the stability conditiesr < 1. We use the Neumann

boundary condition§(11) for the componeBt®, E, and the no-flux boundary conditions
(I2) for the velocitiews, v ; L is computed usmg[[Z).

This scheme is a standard one; however, considering syd@naid schemé(16), we
can notice that two difficulties require an original treatth@s explained in details in the
two following subsections. The first one deals with the Viainig phases problem, that Ls,
may be equal to 0 or 1 at some points. Since the scheme contpatgsantitieg1 —L)vs
andLvy, it is not clear how to computes or v, which are needed in the friction terms.
The second one is the computation of the hydrostatic pressappearing in the source
termFpress We explain in the two following paragraphs how to modify ecte [16) in
order to face these difficulties.

The vanishing phases problenConsidering schemé_(116) and the definition\uf
in (I3), we note that the computation gives us the two quastit. — L™*)vs"** and
L1y, "1 whereas we needs" ! andv, "1 in order to compute at timg'2 the four

last components dﬂg}cg in (T4) . Therefore, iLL""! is equal to 1 (resp. 0), we cannot

calculatevs™? (resp.v. "t1). A naive solution would be to take the data in order to avoid
vanishing phases, like in most of the works in multiphasis dgnamic, but those phases
are physically relevant in our case, since they correspesyiactively to pure liquid or pure
biofilm.

Therefore, we propose to treat this problem by using an titgiime discretization
for the velocities of the source terms, leaving unchanged discretization of mass
balance equation§l(1). This leads to replace[ (16) the &}fh, by FTics. This
enables us to obtain some values for the velocities evendnptticular cases when
one of the phases, liquid or solid, vanishes. The only drakha that we have a
system of two non-linear equations to solve; this is alwayssjble under the condition
(1= LB 4 5t (M (L™ — 1)) £ 0, which requires thalf! ™! £ M. More
precisely, the condition holds true without any restrintibFEH’J < M, whereas we need

to imposedt small enough WheﬁnJrlJ > M.

The pressure problenwe explam how to compute the terfpress One naive solution
would be to find an elliptic equation f&, summing the two force balance equationgid (10)
and using[(¥). However, the solution of this equation is maque and it is not an efficient
way to compute the pressure. We will rather use a projectiethod as the one proposed
in [6l [26] to solve Navier-Stokes equations (see dlso [2THe strategy is to use first a
prediction step to compute an estimated velocity and them, ¢orrection step, to solve
an elliptic equation that determines the pres®jrenforcing the divergence constraint (4).
The computation of the pressure then enables us to coregtthes of the velocities. As
a first step, we compute

2
Wn+l/2,a —Who _ % Z Wn a,+l Aj (Wn,aj—l))

5 2 41 1 n+1/2,a
g 2, W 2N W OGO
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Note that the source terRy e is treated implicitly as explained in the previous parabrap
Then, we compute the quantifyP"** which satisfies the following equation :

StAOPYL — 7 . ((1_ Ln+1)vsn+1/2+ LMy, n+1/2) ’

with boundary conditiomIP™.n = 0. The final step is to update velocities thanks to the
pressure as

VSn+1 _ VSn+1/2 _ 5t|]Pn+1, VL n+1_ VL n+1/2 _ StopPhL.

In the following section, we present numerical simulatiomd D, 2D and 3D. These
simulations show the efficiency of our model to reproducecatfipropagation for the
production of EPS and the growth of the biofilm structure.

4. NUMERICAL SIMULATIONS

4.1. Parameters estimates. In this section we discuss the values of parameters chosen
in our simulations. Some information can be found[in| [17],enha doubling time of
the culture of cyanobacteria of once every 10.5 hours is imeed and[[18], where a
maximum specific biofilm growth rate is assumed to 8881, whered = day, while

in [28] the biofilm growth of the two models presented variesaeen 1 and @ 1. We
choosekgy = 1d~1. According to [13], the decay rate coefficient is about 5% haf t
growth coefficient and so we cholsg = 0.025g,. Finally, the estimate of the EPS growth
rateke depends on the specie of bacteria we study and the enviraahoemditions (see
for example[[20]). Since we consider the behavior of Chraoates cyanobacteria, in
absence of specific experiments, we assume that the ordeagffitnde of EPS growth is
comparable with the one of cyanobacteria growth.

To estimate the parameters, which are present in the lawhfowvariation of light
intensity [6), we refer td [14, 28]. In [25], a law of absomptiof light by water is proposed
as well as some estimates for the paramgterThe parametep, is estimated indirectly
by some experimental results in[34], which link the heighthe biofilm and the light
transmitted after a path in the biofilm. Experiments[in[[8] &2ggest the value for the
optimal light intensitylop. The parameteB in (@) is estimated thanks to the evolution of
the growth as a function of light described in[34].

We did not find experimental estimates for the paramgtetliterature. Physically, the
value of,/y plays the role of the sound speed of the mixture, namelyflitdsnaximum of
the modulus of the eigenvalues of the Jacobians of the flukeswre linearize the system
around zero velocities. So, it gives a good estimate of teedpf the front between the
solid and the liquid phases. Therefore, according to the®xpental results in [34], we
considered an estimated growth of biofilms of 1 mm in 30 daysckvnearly corresponds
toa growt? of 10 cmin 1 hour. In consequence, for some of the tests we usedithe v
VY= %)[cm/seq ~ 2.7-10 ®[cm/sed, which givesy = 5- 1016 [cn?/sed]. Some
numerical estimates of the influence of different valueg of the growth of the biofilms
will be presented later.

4.2. Simulations. In this section we present numerical simulations in one,dwd three

space dimensions. The one-dimensional system is not atieaiodel, but it is useful to
test our model on simple cases and to compare it with prekegisodels which have been
mostly written only in the 1D context. In this case, the cleslaw is also more natural
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TABLE 1. Alist of (dimensional) parameters

Param. Value Indications Reference
keo 8-1076[1/sed Cyanob. growth rate [13,28,117]
kp 2-1077 [1/sed D growth rate 113,
ke 12-10°°[1/sed EPS growth rate [120]

£ 1-1077[1/sed EPS death rate
kn 1-10°%[1/sed D consumption rate
y  25-10-101%[cn?/sed]  tensor coefficient
a 0.25 [dimensionlegs fraction dead cells
M 1078 [1/sed tensor coefficient

lopt 0.01 [umol-cm?sec?]  optimal lightintensity ~ [8[1P]
lo 0.01 [umol-cm?sec?|  average incidentlight  [8,12]

w 1 [dimensionlegs constant light [[14.28]
B 0.1 [dimensionlegs constant light [[34]
o 0.002[cm ] clear water coeff. [125]
Un 6 [dimensionlegs biomasses coeff. [134]

than in other dimensions; it is also easier to derive an agpimerical scheme which is
a good test case for our modeling and numerical approach.

In the whole section, we use the values of parameters list€aldle_1l. The values found
for these parameters are only a first approximation; in daé&urstudy[[7], we will analyze
the sensitivity of the solutions to all these parameterswaig that the most sensitive one
is kgo which gives a variation of around 10% (belovb% for the other parameters) of the
volume of biofilms when it varies of 5%.

Finally, in the following subsections we study the influerafelight by comparing
results obtained with a constant optimal rate for bactemavth ks = kgp with a variable
ks = kg(I) which depends on light following the law given at secfiort 1:3his case, light
intensity is taken as a sinusoid of time taking into accobemariations between night and
day.

4.2.1. The one-dimensional casé the one-dimensional case, the single variable space
accounts for the height, that is, we consider an homoger@anar biofilm. We study the
evolution of the biofilm after 60 days (see Figlite 1). Our donigthe intervall = [0, 1]
(cm) and we take spatial stédpequal to 000lcm We consider as initial data Heaviside
functions for cyanobacteria and EP85 = 0.2 X|0,0.007, Eo = 0.008: X|0 0,007 and the
other variables are initially equal to zero. Simulations done comparing three different
values ofy : y1 = 10716 (cn?/sed), y» = 5-10718(cn?/sed) andys = 10~ 1° (cn? /sed)
(respectively on the top, in the middle and on the bottom gfiFé[1) and two different
values ofkg : kg equal to the constakgy andkg depending on light intensity (respectively,
on the left and on the right side of Figure 1).

Let us see how the parametewhich is connected to the interaction force among cells
and EPS, influences the diffusion of the biomass, that isptbeess is accelerated for
bigger values ofy : for the biggest valug/ = 10~1° (cn?/sed), the front propagation
reaches the highest heigbt 0.3(cm)), while the heights reached with the valugs-
10716 (cn?/sed) andy =5-10716 (cn?/se?) are respectively: 0.1, 0.2. Computing the
height of the biofilm is particularly simple in the 1D caseycg the sunB+ D + E is null
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for space variable large enough. A more careful study of the velocity of the fraith
respect toy will be performed in the 2D-case.

We can also observe the differences in the cyanobacteriatigrosing a constant
coefficientkg = kgo or using a coefficienkg = kg(l) which depends on light, which
changes according to some periodic function of time. Siggeis the optimal growth
rate of cyanobacteria, the cyanobacteria growth is highéné constant case than in the
variable light case. We can see in Figlire 1 that comparinguinees for a variable light
(on the right) and the curves for a constant light (on the feft the same value of, the
distribution of liquid is strictly the same. This means tla liquid, which is initially
present everywhere, is consumed by the biomass at the s#arie bith cases. However,
we see a greater growth of EPS in the case of variable lightlwbounterbalances the
lower growth of cyanobacteria.

4.2.2. The two-dimensional cas&Ve simulate the biofilm growth in the two dimensional
case, during 30 days. In that case, space variables accournérfgth and height,
considering that all functions are constant in width. We tady the change of behavior
of our model under the variations of light intensity.

Influence of light. We take forB as an initial condition the sum of three Gaussian
functions, centered respectively ir88, 05, and 07 (cm) with a total fraction of volume
for the cyanobacteriBTo = 1.0762- 10~°. Results are presented in Table 2, where function
gis defined by[(b). We choose an optimal light intensity = 0.01 (umolcn?sect) and
the incident light intensityo defined by[(b) varies. The effect of light on the volume of
biofilms is not so easy to be determined, since the dependentte light in the model is
defined through the form of the coefficients. A plot of the wvo&ifraction of cyanobacteria

TABLE 2. Numerical results in the 2D case : influence of light

Form ofkg Incident light intensitylg Total fraction of Rate of volume growth
volume of cyanobacteria
Kso 0.0029 26950 %
keo-a(l) 0.01 0.0019 17700 %
kso-g(l) 0.003 0.0014 13060 %
kso-g(l) 0.001 24481-10°4 2275 %

after 30 days is displayed in Figué 2. We observe that th ligtensity propagation
in the biofilm phase is attenuated by the biofilm mass itsalfexpected by the model
assumptions. It would be possible to fit the model with thisratation with appropriate
experiments on cyanobacteria growth, measuring the nuofh@rotons emitted and the
photons which pass through the biofilm with a light sensoreuttide biofilm.

Influence ofy. The parametey also has a great and not simply predictable influence on
the behavior of the solutions. In Talble 3 , we compare tweeenérvalues of (maintaining
constant all other parameters) for the same initial date&wé.

Front velocity. We describe in this paragraph the biofilm front velocity bebaas a
function ofy, using as initial condition a single Gaussian function eezd in 0.5. In order
to define the biofilm front, we consider the ratio between tioéilm volume fraction (that
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FIGURE 1. Volume fractions of the biofilm components (bacteria in
blue, dead bacteria in green, EPS in black and liquid in reddiactions

of height (in cm) after 60 days for three different valueyof, = 1016
(c?/sed) (on the top ),y» = 5-10716 (cn?/sed) (in the middle),

ys = 1071% (cn?/se@) (on the bottom). On the left, we display the
results for an optimal constant rakg = kgg and on the right, for a
variable rate depending on light periodically in time.

TABLE 3. Numerical results in the 2D case : influenceyof

y Total fraction of Rate of volume growth
volume of cyanobacteria

1-10°16 0.0027 25000%
1-10°15 0.012 111500%

13
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FIGURE 2. Biofilm evolution, with coefficienty = 10-15, (cn?/se@) and initial
condition forB given by the sum of three Gaussian functions centered3®, @5, and 07
(cm). On the left, we display the volume fraction of cyanobaetes a function of length
and height after 30 days. On the upper right, we presentieédearves for functiorB as a
function of length and height and on the lower right, we shioevlevel curves of the light
intensity variation (inumol cnm2sec?).

is, the sum oB+ D + E) and the maximum of this volume fraction at the same time.
We can define two regions, the first one composed of the poinesemhe value of this
ratio is less than 8% and the second one composed of the points where the value of
this ratio is more than.8%. The biofilm front will be the boundary between these two
regions. We display the movement of the front as a functiotineé for different values

of y on Figurg 3(d). Using a linear fit on the previous curves, weftal the velocity of
the front movement, and we plot it as a function,@f on the right of Figur¢ 3(®). The
curve shows a nice linear behavior. This fact supports oevipus claim that the sound
speed of the mixturg/y yields a good estimate of the speed of the front of the solabph
Moreover, using a linear fit, we find a relation of the fovim= q1./y+ 02, wherevy is the
front velocity,q; = 1.8497 andy, = 2.9143 108 (cmy/seq. This approximation could be
compared with experimental data in order to estimate thampatery, once the values of
other parameters are known.

4.2.3. The three-dimensional casén this last subsection, we consider the three
dimensional case on a domdh= [0, 1] x [0, 1] x [0,0.5] (cn?) with a sum of Heaviside
functions of amplitude @2 (cm), as an initial condition for the cyanobacteria vodum
fraction B and parametey = 10%(cn?/se@). Numerical results of the evolution of
biofilm with respect to time are displayed in Figlile 4 and weeshe the formation of
an homogeneous layer of the solid components by a quick ggtioa, which can be
compared with experiments proposed by the Delft's tearh 4. [®n the right of Figure
[, we represent simultaneously the evolution of the lighensity | (x,y,zt), which is
attenuated by the biofilm. Although it is not possible to camgpour numerical results
with experimental data in a quantitative way, we may say thatorder of the height of
biofilm we find after 30 days (around 1 mm) is in agreement wiihegiments performed
by biologists [12] on cyanobacteria biofilms under the saroediions of light and
temperature than our simulations (around 0.2 mntin [34] fighdly different biofilm
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L
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(a) Front movement.

ront velocity (cisec)

V2 (emisec)

(b) Front velocity.

FIGURE 3. Onthe top, we display the height of the biofilm (in cm) with
respect to time (in days) in order to see the biofilm front nmogst for
different values ofy, i.e. y=(1.5,2.5,3.5,4.5,55,6.5,7.5, 85, 9.5) -
10716 (cn? /sed). On the bottom, we plot the front velocity (in cm/s) as
a function of,/y (in cm/s), obtained by a linear fit of the curves on the
left.

composition). The qualitative behavior of our biofilm alsis fivhat we know about the
evolution of cyanobacteria biofilm.

We present finally in Tabl€]l4 the computation times neededttier simulations
mentioned above using the Matlab software. The space se&qgual to 0001 in the 1D
case and to.01 or Q02 in the 2D or 3D cases. In the optimal rate case we mostly theed
variable time step, always respecting the CFL conditiorictvishortens the time needed
for the numerical simulations.
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FIGURE 4. Numerical simulation of the biofilm at three different &m
(T = 15, 22, 30 days) with variable rate and with= 10"15(cn? /sed).

On the left, we show the evolution of volume fraction of cybacteria
B and on the right, we present the light intensity variatiom tBe left,
the scale for the volume of cyanobacteria changes sincesttigion in
the volume of biofilms is important, whereas the scale foeristty is
fixed.

TABLE 4. Computational time for 30 days simulation performed on a
standard laptop in various cases

Dimension Time step Computational time (sec.)

1D 0.01 194.87
variable 9.55
2D 0.02 2386.34
0.1 684.61
variable 76.24
3D 0.02 6616.84
0.1 1284.44

variable 690.17
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5. CONCLUSION

We have proposed a new model of hyperbolic PDEs to describdottmation and
growth of a biofilm in a general setting and we have applied & environment mostly
inspired by the specific case of Chroococcales cyanobact€his model is based on the
mixture theory with the assumption that bacteria and EP $argng along together at the
same velocity; it naturally reproduces a clear front pratiag that has been observed in
the development of biofilms, with a finite speed of propagatibtained thanks to inertial
terms, which are generally neglected.

A numerical scheme has been produced and tested, where wérbated in a simple
way the problems of vanishing phases and of the computatitve gressure term. In order
to obtain numerical simulations as realistic as possible,have estimated the physical
parameters from the literature. However a main parameteccounting for the stress
function, is missing. We have studied the effect of this peeter, proving that different
values give a great variation in the results. A natural arigieft way to calibrate it
will be to make a careful comparison with experimental datée have also studied in
details the influence of light which is a crucial environrmagffactor in the development of
phototrophic biofilms. Although the influence of nutrientsstbeen deeply studied in the
previous models, it is the first time to our knowledge thahtigs taken into account for
a biofilm model. Numerical simulations show clearly that #agiation of light intensity
influences the rate of growth of biofilms, which was not obgifnom equations since the
dependence on the light appears only through the constants.

Finally, the simulations we have performed in the 3D caseka@ly comparable with
what can be found in the experimental literaturel [12, 34] give: a first validation of
our model. For instance, i [34], we can find some values ofhiwkness of the biofilm
for different values of the light irradiance. For the momem experiments have been
performed to compare explicitly the results of this moddéhwixperimental data. However,
the simplicity of the model would allow us to fit easily expaental results with the
parameters. We remark that an important assumption of {eremental data of [34] is the
homogeneity of the biofilm, whereas our model shows some neatestic heterogeneities
in the biofilm formation.

Thanks to the generality of the model, we should be able ifuhee to extend it to
other applications, such as biofilms with co-existence obue species. Other interesting
perspectives would be the study of the influence of signdietgveen bacteria and also to
use the model for preventing infections in a biomedicalsgitt
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