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(Closed-form solutions for the
effective conductivity of
two-phase periodic
composites with spherical
inclusions

Q. 0.To, G. Bonnet and V. T. To
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Echelle, MSME UMR 8208 (NRS, § Boulesal d Descartes, TM54
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In this paper, we use approximate solutions o f Nemat-
Nasser ef al. to estimate the effective conductivity of

conductivities of the former are obtained in closed
form and compared with exact solutions from the
fast Fourier trarsformrbased methods. For systems
containing randomly distributed spherical inclusiors,
the solutions are shown to be directly related to the
expression in the infinitewv olume limit.

1. Introduction

Modelling composite materials and determining their
effective properties from the microstructure have always
been an active research area. Many analytical and
numerical tocls have been developed to solve the
Regarding the heat-conduction phencmena, analytical
works are based on the potential theory and series
of spherical harmonic functions [1-5). Homogenization
with numerical methods such as the finite-element
method, the boundary-element method, the fast Fourier
trareform (FFT), etc. have been reported in numerous
works [6-10]. For randomly heterogeneous materials,
also established (see [11,12] and references therein).
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In this paper, we estimate the effective conductivity for two-phase periodic composites with
for ¢* and its dual form (integral equation on g*),! and the Nemat-Nasser-Iw jazi
(NIH) approximation proposed by Nemat-Nasser ef al. [12]. Previous works [14,15] have shown
that the NIH approsdmation predicts the overall elastic coretants for a large range of volume
fractions f very well. The present work concerns the extension o f the solutions to heat-conduction
phenomena with applications in various practical cases. First, the cubic array amrangements
(simple cubic (SC), body-centred cubic (BCC) and face-centred cubic (FCC)) are considered. The
estimation of the conductivity involves infinite lattice sums that can be evaluated via continuous
integrals and reduced to a fully dosed form.

The second part of this work concerns the treatment of the random distribution case.
Interestingly, the ingredient of the solutions is the static structure factor 5(£) and the radial
distribution function (RDE, g(r)). Two particular hard-sphere distributions are studied (the well-
stirred and the Percus—Yevick (PY) distributions), and in the homogenization limit, the assodated
sclutions converge towards a dosed-form expression. Although the approximation is based
only on the RDFE, the results issued from this work are comparable with available solutions for
suspensions of spherical particles by Bormecaze & Brady [16,17]. In their works, a fully realistic
particle distribution is adopted via Monte Carlo simulation and effective conductivity is then
estimated using the moment expansion of the integral equation [16].

The paper is organized as follows. After the Introduction, §2 is dedicated to the formulation
of the periodic thermal problem with integral equations, discussion of the NTH approximation
and FFT-based numerical methods. Closed-form solutions and anal ytical expressions for effective
conductivity of different composite structures are given in §2. Section 4 focuses on the application
and comparison with FFT-based numerical solutions. Finally, conclusions and perspectives are
givenin §5

2. Homogenization of two-phase periodic composites

(a) Periodic thermal conduction problem and governing integral equations

We consider first a two-phase composite, periodic in three orthogonal directions x3, x2, 23 with
periods ay, @y, a3. Each phase is made of a homogeneous material whose thermal behaviour is
governed by Fourier's law,

qix) = Kixe(x), e(x)=—TT(x). @2n

In (2.1), q(x) is the flux vector, e(x) the (minus) temperature gradient and K(x) the second-order
local conductivity tensor. The latter can be either KM or K!, depending on which material, matrix
or inclusion, is found at location x. For isotropic materials, the conductivity tensors have the
KMaiul and K'=hl, (2.2)

with I being the identity tensor and ky, i1 the conductivities of both phases. In addition to (2.1),
the flux q must satisfy the energy conservation equation

divq=0. 23

To compute the effective conductivity K*¥, we apply a macroscopic temperature gradient E to the
periodic cell and find its relation to the average flux Q of the cell volume V,

Q=KYE and Q=igiy 2.4

'Definitions of «* and q* are given laber in §2.



In (2.4) and from now on, we use the notation {@ly to refer to the average of the quantity ¢ inside
the bracket over the volume V

mv-—[ #dx. 25

The localization problem can be reduced to finding the V-periodic perturbation terms eF*", TP
and qP** given by the expressions

ex) =mE+eP”, TmE-x+TF and q(x)=0Q +qf*. (2.6)
Based on the reference material with conductivity K°, we define a vector field * by the formula
qix) = K%e(x) — e*(x)). @2n

Owing to the V-periodicity, eF**, TP gF*’ ¢* admit the Fourier series representations
Aw');ime‘!“ and  A(E) = (Alx) e Ty, 28

in which A denotes &, TP qP* o* and A denotes their Fourier transform &P, Tpe gP* &%
The infinite sum in (2.8); involves all discorete wavevectors §, whose components £, satisfy the

- N
;,-T"', n=0,%1,.. +00, i=123 29

Because eF* TP gF* have zero averages in V, the first term associated with § = 0 in the Fourier
series (2.8) vanishes, i.e

P (0) =m0, TP*(0)=0 and §F<(0) =0 (210
Applying Fourier transform (2.8); to equations (2.1), (2.3) and (27) results in the following
relations between & (§), TF*(¥), gF " (§ 1

E (@B +1EQ) =0, EFF(E) = —ig T (§)
and 1EIQ + P (§) = K (1EE+ &F* (5) — &*(5)),

where 1(£) is the characteristic function such that 1(0) = 1 and 1(§ % 0) = 0. By some algebraic
calculations, we cbtain the expressions of 79 (£) and éF* (¥), which are valid for all £ %0,

(211

_4- K"e (t)

e | K%' (5) —
The last equation of (2.12) can be recast into
. ) K
) =S and SE) =2 K (213
e Sle(§ £ Wl_
The spatial form of &F** can then be written as a Fourier series involving &*(£),
T ix) = Y SiE)E g) e (214
=
or equivalently
e"'(x)-ZS(!) (%J e‘(x').ei"“'*)dt')‘ (215
120 .

Finally, substituting (2.15) into (2.1) and (2.7) yields an integral equation of e*(x)

l 1 ¥
(K - Kix) [E +3 8| = | et dy ] =K' (x. (216)
170 (V Jv )



A dual integral equation can also be cbtained based on the polarization q* instead of e*. For
thermal problems, the polarization field q* is defined by
e(x)=R%(q(x) —q*(x)), R%= (K", (217
where R? is the reference resistivity tersor. By comparing (2.17) and (2.7), we must have
etx)=Rlg*x) and &5 =R'G'#). (218
Applying Fourier transform to (2.17) and making use of (2.18) and (2.13), we obtain the

following expressions that are valid for £ & 0:

K' g2t
£ K%
Next, we repeat the same steps as those used for deriving the e*-based integral equation. First,

we can compute qF*"

o 1 . .
=Y LEg'E et =YL (— ) 8= )
qF"(x) ;2:0: €)q"(§) ‘2: ) vqu( )= 4y (2200

and then we obtain the dual integral equation for q*

FUE =L @), L =1-K 5@ K =l- (219

(R - Rix)) [Q +3 L) (%[ q'x )ei!-on--')dg‘):l =Rg*(x), (2.21)
t0 v

where tensor Rix) in (2.21) is the local resistivity tensor

(b) Fast Fourier transform-based numerical methods

It is noted that tensor S in (2.13) is related to the periodic Green tensor I' associated with the
reference material by
; 2 £EBE
SE) =) K, Fi)=-——, (2.22)
£ K%
and the infinite sum (2.14) is the Fourier series representation of the convolution involving the
periodic Green operator T,

Y S ) e =T o Klet ix). (229)

£20
Combining (2.14), (2.23) and (26) yields an integral equation for e,

e(x) = E =T o (Kix) = K"elx). (229
The dual formulation for flux q can be deduced in a similar way from (2.21),

qix) =Q — A « (R(x) —R)q(x), (225
with A being the Green operator for fluves. The representation of A in Fourier space is

Af) =Lig) - K' =K% - K% Feg) - K° (2.26)

Equations (2.24) and (2.25), and other related equations, are solved classically by iterative
numerical schemes based on the FFT. Three of the main schemes with their features are
sumunarnized in the following.

— Primal iterative scheme (P15) [9,14]: in the original method based on (2.24), the solution
e(x) is obtained by the recurrence process ¢! = E — I « (Ki(x) — K”)¢’ starting from the
initial value e! = E. The PIS is suitable when the contrast ratio ky/ky is not too high.



— Dual iterative scheme (DIS) [18]: the scheme is based on the dual form (2.25) and the
recurrence process is applied to the flux q, instead of e. The DIS can solve the problem
related to the high ratio k1/ky, but diverges when the ratio tends to 0.

— Polarization-based iterative scheme (PBIS): recently, Monchiet & Bornet [10,19] proposed
a PBIS based on a fictitious boundary-value problem where a uniform polarization field
is applied to the periodic cell. The approach has proved to work at any k1 /kag ratio.

These iterative schemes will serve as numerical benchmarks for evaluating analytical solutions
derived later in this paper.

(€) Nemat-Nasser—Iwakuma—Hejazi approximation

The ariginal approach of Nemat-Nasser f al. [12], abbreviated as NIH, was proposed for the
effective elastic behaviour of composite materials. Numerical examples issued from Hoang [15]
have shown that this approximation works well for composites with spherical inclusions of
significant volurme fractions . Expecting similar results in the case of heat-conduction problems,
we shall estimate the effective conductivity with the same procedure.

Taking the matrix as the reference material K” = K™, the effective conductivity can be
computed from the average value of e*. Indeed, averaging both sides of (2.7) over the cell volume
V and making use of the fact that &* vanishes in the matrix, we obtain

Q=KME-KMiet(x)lg, f= g, (227

where the average is performed on the volume of inclusions, and @ and f are, respectively, the
volume occupied by the indusion in the cell and its volume fraction. The effective conductivity
defined by (2.4) is then calculated by

KYakM K™ W and (e*(x)ig = WE (228

The evaluation of {e*(x)1n comes from the integral equation (2.16). Considering the matrix as the
reference material and averaging both sides of (2.29) over 2 yields

KM -xh [n +f Y sEre* ol we“‘";a] - KMie* (12 (229
)

The NIH approximation concerns the evaluation of je*(x)e=¥*); as
e g = et o™ 0. (230
In the limit case where the inclusion is an ellipsoid and f — 0, this approximation is exact
because ¢ is uniform inside the inclusion. This property is the corsequence of the thermal
Eshelby problem [20-25] conceming an ellipscidal inclusion embedded in an infinite matrix. For
finite £, the simplification (230) is expected to yield better prediction of K*¥ than schemes based
on Eshelby-type solutions. We define the two functions 1(£) (the shape coefficient) and P(§) as

IE)=2* "0 and PE) -ém M(—§). (231)

Substituting (2.31) into (2.29) and accounting for (2.28) and (230) yields an explicit expression for
the effective conductivity

-1
x"-x"-/x"-[x"-(x“-x‘)-zsuwm] - ™ - x5, (232)
£



A similar approximation can be applied to the dual forrmulation (2.21) with the matrix as the
reference material. Instead of computing {e*(x)} 5, we compute |q*(x)l 5 from (2.21),

-1
iq'(x)ig - [n“ - ®™-RrY- 21.(.:)9(4)] -R®M-RrY-Q (233
2

and find the effective resistivity, R = (K*¥)=! using the formula
R¥cwRM - RM . W and (q'(xip =W -Q. (234

The final result for the effective resistivity is given by

-1
RE M - RM. [n"-(n“-n‘)-):unmn] R - R (235
=]

3. Closed-form solutions for effective conductivity

(a) Cubic cell with spherical inclusions

In this section, we exploit (2.32) and (2.35) by corsidering some particular structures: the periodic
cell is a cube of dimension a, containing identical spherical inclusiors of radius R. Both matrix
and inclusions are made of isotropic thermal materials with conductivity by and k. To compute
analytically the shape coefficient I(§ ), we shall make use of the following results:

xR
3 ’

JV é'adx'w'wé“’ n=¢R E=Ifl Vo=

for a single sphere of volume V, centred at x_. As the matrix is thermally isotropic, the tersars
S(§) and L(§) defined by (2.12) and (2.19) admit simple forms,

(3.1)

v

SE)=i@f and LE)=1-E0EF i= (22)

;.
Let us denote by 8 the set containing all wavevectors described by (2.9).
1f P(§) and 8 comply with the conditions

— P(§)and § are invariant under a reflection transformation with respect to any of the three
planes OF €, (7,j=1,2,2),

Pi&), &, 6) = P(&f), 265, 281) and (26, 25, 26;)s8 (3.3

— P(§)and 8 are invariant after a permutation between any two variables &, £,

P(&).62,&)-?(61.53,&)-?(63,&.61)-ﬂ&f!;ﬁs)l 0.9

and (&, 62, &), (&, &, §2), (&2, 62, &), B2, £, &) < S,

then the infinite sumes 3~ S(£)P(£) and 3~ L(E\P(§ ) are reduced to the diagonal formes

1 2
3 sEPE) -Szpm and 3 LGEWPE) = = 3_Pig). (3.5
T £20 20 120
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Figure 1. Unitcells of cubic lattice structues: (a) simple cubic, (5) body-@ntred cubicand (c) face-centred cubic. (Dnlineversion
in@low.)

The proof of the diagonal form is presented as follows. The first condition (3.2) implies that the
non-diagonal terms vanish,
Y PR B =0, ig) (.6
£20

whereas from the second condition (34), we can deduce that all the diagonal terme are identical,
Y Ere e =Y Bra b e =Y Brn a0
£20 £ g0
1 =3 =y = 1
-5 L&+ +ENG bt =5 3 P (3.7
# 120

As a result, the effective material is isotropic with the conductivity ¥ given by (2.32),

- By
- - pTYI a9

or by (2.35),
o kv T — .
T=F 70 Oy = ) — (273 Ty g PUET) @9
The discrete vector set 8 specified by (2.9) depends uniquely on the dimension of the periodic
cell. As the latter is a cube, both conditions for 8 are automatically satisfied. The validity of
conditions for P(£) depends on the arrangement of the spheres inside the cell. However, for
structures conmidered in later sections, both conditions for P(¥) are also satisfied and allow us
to obtain an expression for ¥4 in a dosed form.

(b) Cubic lattice structures
(i) Simple cubic

In SC structures, the inclusion sphere is located at the centre of the periodic cell (figure 12). Owing

to (2.1), both functiors I(£) and P(§ ) are reduced to functions of its modulus £ only,

1) = (=) = 1(8) = 2121 — S0 1)

(2100

9 (n cos 5 — sin )
"6 , n=§K,

and thus verify both conditions (3.2) and (2.4). The remaining work is to evaluate in a closed form

the infinite sum 37, P(£) in (3.8).

and PE)=Pif)=
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Figure 2. Grid of & in two dimensions. The lattice sum in the volime element 0 is approcimated by o [, A(£) dV.

First, we remark that the §'s form a regular grid with spacing 2x/a as illustrated in figure 2.
Taking a sufficiently large volume eement dV, the total number dN of the grid points in dV can
be estimated by multiplying dV with the grid density o,

o

dN-pdV, P-W. (3.11)
Atlarge &, P(£) varies slowly, and we can calculate T, P(£) in the region dV/
Y. Pi§)=PE)dN =PE)pdV, (2.12)
Fe(dVns)

or even in arbitrary remote domain D by the integral

3 m)-pj Pig)dv. (212
$6(DrS) -

Atsmall £, P(¢) fluctuates strongly, and the above approximation was found to be erroneous in
previous tests. To obtain acaurate approximations of the infinite sum, we keep several initial terms
ofthe sum and estimate the remainder analytically with the integral. The infinite sum ¥, P(§) can
be estimated by the formula

PRI mewf,rmxe’ds, (3.14)
120 Oc || b ol

in which £, is the cut-off distance for §, which defines the number of initial terms accounted for
in this new expression. By changes of variable, the integral in (3.14) is rewritten as

@ 22 6 [* [gccan —singf
EIL PiEX d:-;J: o dng, n=£R ne=&R (215
The primitive integral is given by the analytical expression
[ycony—sing]? . cos2qy 1_ 1 1 sin2y  cosly
[T S s - -+ S+ 5, 619
where Si(n) is the sine integral

.
Si(y) = L “:_f'dq'. (217



We can now obtain the new expression for the infinite sum (2.14),

) P+ = :"2"‘ 2ee? "‘-“"i"‘-?mnx‘ (2.18)

In most practical examples, keeping up to four initial terms can generate satisfactory results.
For the SC lattice case, these four terms correspond to § lying within a cut-off distance £ = 2¢/R
(here, ¢ = 27 R /a). We can easily find that

1 (6cose -chc)z ﬁ‘oooﬂ‘ m\/fl)z
52”")3’[” P Bt

2 W co.,/zs';‘:-inv&)’ . 18(250031:“-‘-':\2‘)2]

LA [3-«»4‘ 2sin?2% 2sinds

=T = e Tt
When substituting (3.19) back into (3.8) and (39), we obtain closed-form sclutions for %,

- 25de) + x] . (219

(ii) Body-centred cubic

In BOC structures, one sphere is located at the centre of the periodic cubic cell and eight others
(each ome counting for one eighth) at the eight corners (figure 15). Making use of (2.1) and (2.31),
function P(§ ) is given by the expression

9f [ncos  — sing)?
kel Lk I

PIE) = [t + comxing + =3 +n3)] (2200

This form of P(¥) satisfies both conditions (3.2) and (2.4), and we continue to estimate the
infinite sum of P(£) in (3.8) with the same procedure as the one established previously for the
SC lattice. We remark that the term [1 + cos x (3 + 2 + #3)F can take either one of values D or 4
with the same probability: it depends whether ny + n3 + 113 is even or odd. On average, we can
estimate the sum of P(£) in domain dV,

3 ns=phg)dv, (3:21)
[e1dVrs)
where Pi£ ) is the average value
5 oy 9 [ncosg —sing]® [l 1 9 [y cos y — sin 5]
PlE)m — 0+ -—d|=- . (2.22)
1 3773072 P
Theinﬁ:itemr‘#l’(f)mwbecomu
):nsw Y. P+ rnm’de (.23
O<|f| <t

Flnally,bybecpingﬁwrumalmwuhtlymgmthm&-ﬁ/&theinﬁnitcsumcmbe
computed with the following closed-form formula:

- 2 - i 2
ZP(U-I[ (\/icou/i:‘ dnv2%) (2:00-2;‘6“2‘)
n(J&cosﬁc --im/&)’ (sﬁsoouﬁs sin 8¢)?
216" 512¢%

1[3-:«4@ 2sin®2¢%  2sindy3e

| T vy 2vae R 2&(«/‘2)4-:] —



Figure 3. Randomly distibuted spheses in a penodic cell Dnline version in colour)

(iii) Face-centred cubic

In FCC lattice structures, eight spheres (each one counting for one eighth) are located at the
comers and six others (each one counting for ane half) at the centres of the cubic face (figure 1)
Applying the same procedure as the one described in §28ii)) and keeping four initial terms, we
obtain

1 g g (VI 08T —sin TP (2 cos26 —an2e
3?;.““" [ze 274 b 64s°
(/B¢ cos /B — sin Be)? (116 cos /T1e — sin /116
T 51268 e [ETPS ]

.,.L 3 - cos 2y 11 +2-'.112J1_lc _unyﬁc
A V1l (V11:)? (W1le 2

- 25i(2v11¢) +x] . (325

(c) Randomly distributed spheres

(i) Relations to structure factor

In this subsection, we consider the case where a cube of dze a contains a large number N of
identical, nom-overlapping spheres of radius R (figure 3). The shape functions I(¥) and M)
becomme

3y cosn —dng) e
e ) B
'

V, 9[ncosy — sing)* 1 L 2. al -
and P - ':" N2 eh);e i (2.26)

where x, is the location of the sphere numbered i in the cell. As long as the ergodic media
hypothesis is valid, at the infinite-volume limit, we can replace the volume average (e*)p (or



19*)0) and the double sum in P(§) by their ensemble averages [12], and remark that

S(8) -% (}: i~ ):e-*!"-) . (327

As suggested, the notation {1, in (227) indicates the ensemble average and S(§) is the
static structure factor, a statistical mechanics tool used for studying the local particle distribution
[26-28). The structure factor 5(£) is related to the RDF g(r) by

Si) =1+n [v e [g(r) — 1], (2.28)

where n is the particle dersity. Regarding the particle density, it is related to the volume fraction
fby

n. (229

When g(r) is isotropic and V — oo, 5(£) is a function of § only. By changes of variable while
accounting for (2.29), (3.28) becomes

20 . -
sm-waf[o "%lgm-um, e (330

r
i.
Finally, we can rewrite the new form for P(§) using the static structure factor (&)

12x —sing)? R\’
Pi§) = ["°°'”"' sin 1] (:) S(£). (231)

The infinite sum of P(¢) can be evaluated either analytically with the procedure descaribed in
the previous section, i.e

- sinnl?

Yo ¥ P(E)-t-%rmgm—"]sﬁ)dm 232)
£20 O<lfl<te " !

or computed numerically. Although equation (3.22) is obtained from the relation between g(»)

and 5(&), which is valid in the infinite-volume limit (ie. R/a — 0), it can be used to determine, as

an approximation, the effective conductivity for finite-volume cases. Finally, for a given volume

fraction f, k¥ depends on the cell size, via the parameter R /a.

(ii) Effective conductivity in the infinite-volume limit

To obtain the effective conductivity in this case, we compute the infinite sum of P(¢) for a finite
volume V and consider the following limit when V — oo,

lim 3" Pig). (333)
R[o—oo'#
When the ratio R /o tends to 0, the £'s grid becomes denser. For any given domain D in § space

(figure 2), it is filled with an infinitely large number of grid points § with infinitesimally small
spacing. Thus, equation (2.13) should hold for all D as long as B/a — 0,

tim Y Pig) =~ IP dv, ¥D. 3
‘f'*s;n €)zp | PiE) (234)
The infinite sum of P(£) can now be evaluated by a continuous integral,

. 6 [*[neosn—singf
x’l&‘);m) o ;f = S(6) da, (335



sructure fador S(5)

n=%R
Figure 4. Staticstructwe factor §(£ ) at £ = 0.1 for hard-sphese systems as given by (341)and (3.46). Dashed line represents

wel strred and sobd line represants Pesaus—Yewidk. (Ondine version in mlowr.)
or explicitly,
. 6 ™ [uoo-n--inolz[ J"‘
limn Ptz — 1
lﬁ'-oog ©=z Jo C vy 0

It can be noticed that for non-overlapping spheres, g(r) =0 when 7 < 2, and the following
property holds:

"’; lgtr) — 1];4;] d. (3.36)

20 - 2
[o ("“"’ns'““" sin(giddn =0, ¥iz2. (237
Therefore, we can deduce that the infinite integral or the infinite sum of (¢ ) is given by
limn Pigy=1-f. 3
R-f~°;§ §re1-f (3.38)

Substituting (2.38) back into (2.8) or (3.9), we obtain

fen

o bt~ T T - A= ®9
which is the Clausius-Mossotti equation (or Maxwell approximation formula, Hashin-Shtrikman
bound) for conductivity [11]. It is interesting to remark that the NTH approcdmation in the
homogenization limit gives results depending on iy, i1, £, but not on the local structure of the
particles g(r), §&). The acauracy of (339 for suspensions of spherical particles was discussed in
Bormecaze & Brady [16]. It was shown that (2.39) predicts very well the effective conductivities of
these random composite materials when the contrast ratio i1 kg s not too high and the particles
are more or less separated. In extreme situations, the interaction between the particles is much
stronger and the NTH approximation can be erroneous. These effects can be viewed dearly from

the percolation theory and should be studied by an adequate analysis [16,29].
To provide numerical proof to the infinite-volume solution (2.39), we carry out the convergence
study of (2.33) as R /& — 0 for two systems with different local structures (figure 4): the well-stirned




25r

n=4R

Figure 5. Static structure factor S(& ) for hard-sphese systems at differnt volume fractions £ (dashed line, £ = 0,12, solid ling
f=04) asgven by (346] (Dnline version in colour)

(iii) Well-stirred distribution
The first case under consideration is a structureless system whose RDF function is expressed by
the Heaviside function

glr) = H(z = 2). (3400

This distribution is called the well-stirred distribution [30,21]. Combining (3.20) and (2400
leads to the following analytical form of S(£) and Py¢):

—desl? 72N\S L
and pm_ux[qooq sin 1) (5) [H_gfhcoo&r))3 -n(2q)].
7 @ n
Markov & Willis [21] showed that the well-stirred distribution is only realistic for volume fraction
f<§0ﬁmmhmwﬁmmdhwmmmmuw

(241)

(iv) Percus—Yevick distribution for hard spheres

As shown previously, the well-stirred distribution is a simple /crude approximation and only
valid for f < }. Wie shall use now a mare realistic and sophisticated distribution. In the framework
of statistical mechanics, Percus & Yevick [22] proposed an integral equation to determine the pair
correlation function of interacting particles. Wertheim [32] solved the PY equation for the case of
hard spheres and Drugan & Willis [30] used Werthein's solution to determine the minimal size
of a representative volume element. The following calculation is based on Wertheim's solution
presented by Drugan & Willis [30].
The solution of Wertheim [32] for g(r) is given as the Laplace transform of the RDF function,

- ;4 25L(25) 1
e -
L () =1e WLizs) + M2 es] = G2



in which Lif) and M) are polynomials defined by

L(r)-lzj[(lﬁ-%)w(l +zf)] I

and Mit) = (1 =7 +6f(1 = Hf +18F% — 12f(1 + 2).

There is o explidt dosed-form formula for gir), but we can compute 5(£) using (2.30) and
(3.42), and the connection between the Laplace transform and the Fourier transform. Considering
a special case where s is purely imaginary, say s = iy, we can prove that

(242

W - .
#wn-nlw--m[%E;{m-ue-‘vd;l. (244
Combining (3.42) and (3.44), we can cbtain 5(£) in closed form,
2L2ix) ]
L(2iq) + M2in) e2m |

The variation of 5(£) with respect to volume fraction f is shown in figure 5. The infinite sum of
¥ P(£) now becomes

12x[ncosy —sing)® (R ’[ ~ l 2L2in) ]]
igm"g T (.) A= LiZig) + M(2in) e | | .

(345
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4. Numerical applications

(a) Cubic lattice structures

The closed-form sclutions obtained previously are based on the approximations to the governing
integral equations of e* (or q*). In this section, these solutions will be compared with
exact numerical solutions issued from the full FFT method using Neumann's series. The
indusion /matrix conductivity ratio value iy /by ranges from 10~ to 10°, and the volume fraction
f from 0 to 90 per cent of the maximal value fn... Regarding numerical FFT iterative schemes,
we adopt a resolution of 128 x 128 x 128 and control the difference between the consecutive
steps at 1073, For the numerical evaluation of lattice sums in NIH approximations, a value
N_ =128 is also used, i.e sum over all », such that |n,| < N_. Preliminary tests show that the given
parameters generate satisfactory results with a reasorable computation time. The symunetry of
the £'s grid with respect to nine planes §, =0 and § = ££ (i, j = 1,2, 3) is also exploited to increase

From figures 6-9, we find an excellent agreement between NIH approsdmations and the dosed-
form expressions for all volume fractions and lattice structures at iz /kay = 10. When compared
with FFT-based solutions, figures 6-9 also showed a good agreement up to f =06/ . Both
FFT methods, PIS and PEIS, give the same results, while the deviation between the NIH-based
and the FFT-hased solutions is more noticeable at higher valume fractions. Despite the presence
of different dosed-form expressions, solutions based on e* and q* are very dose to each other
(figure 10).

Figure 10 shows a higher discrepancy for high i1/l ratics (k /i = 10°) between the NIH-
based solution and the FFT solution, whereas a very good agreement between them is observed
for small iy flyg =107,

(b) Randomly distributed spherical inclusions

The ingredient of analytical solutions for these randomly heterogeneous systerms P(&) in (241)
and (3.46) depend on the ratio /s and f. The former reflects the size-dependence effect, and we
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are interested in the convergence of the results in the infinitev olume limit, ie. R/a— 0. In this
paper, the following parameters are used: ky/lyy = 10, f ranging from 0 to 0.5, R/a from 0 to 0.3,

For low R/a ratios, a higher resclution, N = 1024, is required to ersure the convergence of the
lattice sum.
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(Online version n colow.)

Regarding the convergence at R/a—0, from figures 11 and 12, we cbserve that the
conductivity curves for both the PY and the well-stirred distribution become stable at B/a = 0.1,
and coincide with the analytical solution at R/ = 0, the Hashin-Shtrikman bound (3.29),

uiexmmeiconsr v pmgrsnzs I
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5. Condusions

In this paper, we have derived analytical expressions for effective conductivity of two-phase
composites with spherical indusions. Different arrangements of inclusions have been considered,
approximations of solutions of integral equations, cdlosed-form results for lattice structures agree
very well with numerical FFT solutions for a large range of volume fractions. Regarding systems
with randomly distributed spheres, the analytical solutions depend on the structure factor, and
are size dependent. A convergence study at the infinitevolume limit was also carried out to find
the effective conductivity:

Simdlar closed-form expressions can also be obtained in the case of andsctropic ellipscidal
incdusions. For random distribution cases, it will be of interest to compare with rumerical or
experiment results. These extensions will be the subjects of future works.

References

1. Cheng H, Torquato 5. 1997 Effective conductivity of periodic arrays of spheres with interfacial
resistance. Proc. R. Soc. Lond. A 453, 145-161. (doi: 10,1098 /rspa. 1997 .0009)

2. McPhedran RC, McKenzie DR. 1978 The conductivity of lattices of spheres. L. The simple cubic
lattice. Proc. R. Soc. Lowd. A 359, 45-63. (doi:10.1098 /rspa. 1978.0021)

3. McKenzie DR, McPhedran RC, Derrick G. 1978 The conductivity of lattices of spheres.
II. The body centred and face centred cubic lattices. Proc. R Soc. Lond. A 362, 211-222.
(doi:10.1098 /rspa. 1978.0129)

4. Rayleigh RS 1892 Om the influence of cbstacles arranged in rectargular order upon the
properties of a medium. Philos. Mg, 34, 481-502. (doi: 10,1080/ 14786 449208620264

5. Sangani AS, Acrivos A. 1982 The effective conductivity of a periodic array of spheres. Proc. R.
Soc. Lond. A 386, 263-275. (doi: 10,1096 /rspa. 1982.0026)

6. Eyre D], Milton GW. 1999 A fast numerical scheme for computing the respornse of composites

using grid refinement. Ewr Phys. | Appl. Pls. 6, 4147, (doi: 10,1051/ epjap: 19991500



7. Kaminski M. 1999 Boundary element method homogenization of the periodic linear elastic
fiber composites. Eng. Asal. Bownd. Elon. 23, 815-822. (doi:10.1016/ S0955-7997(9900029-6)

8. Liu Y], Nishimura N, Otand Y, Takahashi T, Chen XL, Munakata H. 2006 A fast boundary
element method for the analysis of fiber-reinforced composites based on a rigid-inclusion
model. [ Appl. Meck. 72, 115-128. (doi:10.1115/1.1825436)

9. Michel ], Moulinec H, Suquet P. 1999 Effective properties of composite materials with periodic
microstructure: ampmnmnlapprouh.Cmd Method Appl. Meck. Exg. 172, 109-143.
(doi:10.1016 /S0045-T825 98 00227-8)

10. Monchiet V, Bornet G. 2012 A polarization-based FFT iterative scheme for computing the
effective properties of elastic composites with arbitrary contrast. Int. . Numer: Method Exg. 89,
1419-1436. (doi: 101002/ nure 2295)

11. Milton GW. 2002 The theory of commposites. New York, NY: Cambridge University Press.

12. Torquato S, 2001 Randomn heterogencous matevials. New York, NY: Springer.

12, Nemat-Nasser S, Iwakuma T, Hejazi M. 1982 On composites with periodic structure. Meck.
Mater. 1, 239-267. (doi:10.1016 /016 7-6636(82)9001 7-5)

14. Bormet G. 2007 Effective properties of elastic periodic composite media with fibers. [ Meck.
Phiys. Solids 55, 881-899. (doir10.1016 /j jmps.2006.1 1.007)

15. Hoang DH. 2011 Contribution & lhomogénéisation de matériaux hétérogénes viscoflastiques.
Milicux aléatoires et périodiques et prise en compte des interfaces. PhD thesis, Marne la
Vall&e, Université Paris Est Mame la Vallée, Paris, France.

16. Bormecaze KT, Brady JE 1991 The effective conductivity of random suspensions of spherical
particles. Proc. R Soc. Lond. A 432, 445-465. (doir10.1098 /rspa.1991 0025)

17. Bormecaze RT, Brady JE 1990 A method for determining the effective conductivity of
dispersions of particles. Proc. R. Soc. Lowd. A 430, 285-312, (doi: 10,1098/ repa. 1990, 0092)

18. Bhattacharya K, Suguet PM. 2006 A model problem concerning recoverable strains of shape-
memory polyerystals. Proc. R, Soc. A 461, 2797-2816. (doi:10. 1088/ rspa. 2005, 1492)

19. Monchiet V, Bonnet G. In press. A polarization-based fast numerical method for computing
the effective conductivity of composites. Int. J. Numer. Method Heat Fluid Flow.

20. Eshelby JD. 1957 The determination of the elastic field of an ellipscidal inclusion, and related
problemes. Proc. R. Soc. Lond. A 241, 276-296. (doi: 10,1098 /repa 1957 .0122)

21. Kellogg O. 1929 Foundations of potential theory. New York, NY: Frederick Ungar Publishing
Company:

22, Maxwell JC. 1873 A treatise on electricty and magnetisom. Oxford, UK: Clarendon Press.

23, Qsborn JA. 1945 Demagnetizing factors of the general ellipsoid. Phys. Ren. 67, 351-257.
(doi:10.1103 /PhysRe w67 351)

24. Poisson SD. 1826 Second mémoire sur la théorie du magnétisme. Mémoires de I Académie Royale
des Sciences de 'Institut de France 5, 488-523.

25. Stoner EC. 1945 The demagnetizing factors for ellipscids. Philos. Mag. 36, 802820,

26. Chandler D. 1987 Introduction fo modemn statistical mechanics. Oxford, UK: Oxford Undversity
Press.

27. Hansen JP, McDonald IR. 2006 Theory of singple liguids. New York, NY: Academic Press.

28, McQuarrie DA 2000 Statistical mechanics. New York, NY: Undversity Sdence Books.

29. Batchelor GK, O'Brien RW. 1977 Thermal or electrical conduction hrough a gramular material.
Proc. R Soc. Lond. A 355, 313-323. (doi:10.1098 /rspa.1977.0100)

0. Drugan W], Willis JR. 1996 A micomechanics-based nonlocal comstitutive equation and
estimates of representative volume element size for elastic composites. | Mech. Phys. Solids
4, 497-524. (doi:10.1016 /0022-5096(96 X0007-5)

3l Markov KZ, Willis JR. 1998 Omn the two-point correlation function for dispersions
of nonoverlapping spheres. Math. Model Method App. Sci. 8, 359-377. (dei10.1142/
SO218202598000159)

32, Percus JK, Yevick GJ. 1958 Analysis of classical statistical mechanics by means of collective
coordinates. Phys. Rees 110, 1-13. (doi:10.1103 /PhysRew110.1)

23, Wertheim MS. 1962 Exact solution of the Percus—Yevick integral equation for hard spheres.
Pleys. Rew. Lett. 10, 321-322. (doi:10.1102 /PhysRevLett. 10.221)



