
HAL Id: hal-00764262
https://hal.science/hal-00764262v1

Submitted on 12 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regenerating Codes: A System Perspective
Steve Jiekak, Anne-Marie Kermarrec, Nicolas Le Scouarnec, Gilles Straub,

Alexandre van Kempen

To cite this version:
Steve Jiekak, Anne-Marie Kermarrec, Nicolas Le Scouarnec, Gilles Straub, Alexandre van Kem-
pen. Regenerating Codes: A System Perspective. Dependability Issues in Cloud Computing (DIS-
CCO 2012), Oct 2012, Irvine, California, United States. pp.436-441, �10.1109/SRDS.2012.58�. �hal-
00764262�

https://hal.science/hal-00764262v1
https://hal.archives-ouvertes.fr

Regenerating Codes: A System Perspective

Steve Jiekak∗†, Anne-Marie Kermarrec‡, Nicolas Le Scouarnec∗, Gilles Straub∗ and Alexandre Van Kempen∗

∗Technicolor, Rennes, France
†EPFL, Lausanne, Suisse

‡INRIA Rennes - Bretagne Atlantique, France

Abstract—The explosion of the amount of data stored in cloud
systems calls for more efficient paradigms for redundancy. While
replication is widely used to ensure data availability, erasure
correcting codes provide a much better trade-off between storage
and availability. Regenerating codes are good candidates for they
also offer low repair costs in term of network bandwidth. While
they have been proven optimal, they are difficult to understand
and parameterize. In this paper we provide an analysis of
regenerating codes for practitioners to grasp the various trade-
offs. More specifically we make two contributions: (i) we study
the impact of the parameters by conducting an analysis at the
level of the system, rather than at the level of a single device; (ii)

we compare the computational costs of various implementations
of codes and highlight the most efficient ones. Our goal is to
provide system designers with concrete information to help them
choose the best parameters and design for regenerating codes.

I. INTRODUCTION

As cloud-based solutions for backup and sharing are being

offered to users, the amount of storage needed for cloud

services keeps increasing. In order to lower the costs (e.g.,

hardware, energy) for operating such systems, it is important to

rely on efficient paradigms. Currently, many systems still rely

on well-proven replication [1] to provide high availability from

non-reliable devices. While easy to understand and implement,

replication is far from being optimal with respect to the

trade-off between storage and availability [2]–[4]. Arguably,

erasure correcting codes can significantly lower the amount

of storage needed in data-centers. However, with classical

erasure codes (e.g., Reed-Solomon), repairing after a device

failure generates many I/Os and requires transferring a large

amount of information over the network. In large-scale multi-

site data-centers, the background network traffic due to repairs

can become prohibitive for large amounts of data stored.

In this paper, we focus on an attractive alternative, namely

regenerating codes [5], to lower such network costs.

Regenerating codes offer the same properties as erasure

correcting codes with respect to storage and availability. Yet,

as opposed to erasure correcting codes, regenerating codes sig-

nificantly lower the network traffic upon repairs. The seminal

paper [5] on regenerating codes applies network coding to

storage systems and defines the optimal trade-off between the

amounts of data stored and transferred. Regenerating codes,

designed to be as generic as possible, rely on many parameters,

difficult to grasp in practice where device availability vary

from a system to another; let alone the fact that many variants

of regenerating codes exist (e.g., [6]–[10]).

In order to help choose the right parameters and coding

scheme, we make the following contributions:

• We study the influence of the various parameters at the

system level, depending on storage device availability. We

show that the optimum at device level does not always

apply at system level. (Section III)

• We compare the computational costs of various cod-

ing schemes for regenerating codes (random codes [6],

product-matrix codes [8], and exact linear codes [7]) to

the costs of classical erasure correcting codes (Reed-

Solomon codes). (Section IV)

Previous practical work on regenerating codes focused ei-

ther only on random codes [11] while we consider several

other codes; or on a specific system with a specific code [12],

[13] while we study several codes and give conclusions that

can be applied broadly.

II. MODEL AND BACKGROUND

We consider a system of n devices connected by a network.

The system stores files of size M that are immutable (i.e., data

is appended to the system and once written cannot be modified,

as in [14]). Devices are available with a probability p due

to temporary disconnections (e.g., reboot, software upgrade,

short-term network disruption). Devices fail permanently with

a rate of λ failures per month per device (e.g., disk crash,

device replacement, long-term network disruption).

When using erasure correcting codes, the file is divided

into k blocks and n encoded blocks are produced so that any

k encoded blocks allow recovering the file: the file remains

available as long as at least k devices are available. Hence, the

resulting system availability is A =
∑n

i=k

(

n

i

)

pi(1− p)n−i.

Whenever a block is permanently lost, a repair mechanism is

used to regenerate it. The repair procedure in erasure correct-

ing codes consists in contacting k live devices, recovering the

file and encoding it again to produce a new block. Since the

whole data is read from disks and transferred over the network,

this procedure has both high I/O costs, which can be reduced

using specific codes [15], and high network cost, which can be

reduced using regenerating codes [5]. In this paper, we focus

on the latter codes reducing network costs.

Regenerating codes apply network coding to storage sys-

tems to offer the best trade-off between network bandwidth

repair cost γ and storage cost α. The file is divided into k∆
sub-blocks. These k∆ original sub-blocks are encoded into nα
encoded sub-blocks which are then spread on the n devices

ar
X

iv
:1

20
4.

50
28

v2
 [

cs
.D

C
]

 1
6

Ju
l 2

01
2

.

.

×

× MBR

∆ = (2d − k + 1)/2
α = d
β = 1

MSR

∆ = d− k + 1
α = d− k + 1

β = 1

S
t
o
r
a
g
e

Repair bandwidth

(a) Tradeoff curve









x1

x2

x3

x4









(

x2 + x3

x1 + x2 + x4

)

(

x1 + x3

x2 + x4

)

(

x3

x4

)

(

x1

x2

)

Encode and spread

(

x1

x2

)

x2 + x3

x1 + x3

x3

Collect Store

Repair

(b) General scheme (MSR, k = 2, n = 4, d = 3, α = ∆ = 2)

Figure 1. Regenerating codes are optimal with respect to storage and repair cost thanks to efficient repair methods.

(i.e., one group of α sub-blocks is stored on each device)

so that contacting any k devices allows recovering the file.

Regenerating codes rely on an additional parameter d, which is

the number of devices involved in a repair. Whenever a failure

occurs, if the number of available devices is at least d, the

following optimal repair method, shown in Figure 1b, can be

used: (i) the device being repaired fetches β sub-blocks1 from

each of d available devices (thus γ = dβ), (ii) the device stores

α sub-blocks computed from the dβ sub-blocks it received.

Regenerating codes, as explained in [5], can be parame-

terized by the values ∆ and α to minimize either the storage

(MSR, Minimum Storage Regenerating) or the bandwidth (i.e.,

network repair cost) (MBR, Minimum Bandwidth). This trade-

off is illustrated on Figure 1a.

The seminal paper about regenerating codes relies on ran-

domized code constructions, namely random linear network

codes [6]. With such codes, the repaired data is not strictly

equal to the lost data. As a first consequence, such codes

cannot be maintained in a systematic form. Systematic codes

suppresses decoding costs and allows direct access to small

parts of the file since the file can be read directly from

the k first blocks (or kα first sub-blocks) without decoding.

As a second consequence, checking the integrity of such

randomized codes requires to use complex techniques. In order

to solve these two issues, it has been proposed to rely on

exact regenerating codes [16]. Various code constructions have

been proposed with two of the most advanced ones being by

Suh et al. [7] and by Rashmi et al. [8]. In Section IV, we will

compare the computational costs of these schemes with the

randomized code constructions [6] and regular Reed-Solomon

erasure correcting codes.

Finally, in regenerating codes [5], the number d of devices

to contact during repairs is chosen once for all and cannot be

changed. Adaptive regenerating codes [17] relax this constraint

and allow d to adapt to each repair. However, adaptive regen-

erating codes currently can only be implemented with random

linear network codes, which have a high complexity and

require costly schemes for integrity checking. In the following

section, adaptive regenerating codes are included for they show

the best achievable theoretical bound, yet further research is

1In the rest of the paper, we will focus on scalar codes (β = 1) for the sake
of clarity and for they have lower computational costs. Vector codes (β > 1)
have higher computational costs but are useful for reducing I/Os.

needed before they can be used in practice. To repair "static"

regenerating codes when less than d devices are available, k
available devices must be chosen and the repair must be carried

by decoding the file before encoding it again leading to a cost

γ′ = k∆ as with regular erasure correcting codes. Hence,

finding the right value for d is important to avoid using this

expensive repair by decoding method.

In the sequel of the paper, we study regenerating codes and

focus on MSR codes, which offer the same trade-off between

storage and availability as Reed-Solomon codes.

III. SYSTEM LEVEL ANALYSIS

In this section, we consider several levels of device avail-

ability and study regenerating codes by performing an analysis

at the system level for it matches the real costs observed. At

the device level, the storage cost is α and the repair cost

(i.e., network bandwidth) is γ. Hence, at the system level,

the storage cost is nα and the repair cost is Γ = nλγ.

The cost at the device level is known for decreasing as n
increases. However, this conclusion does not apply at the

system level. This section shows some interesting interactions

between parameters. In the settings shown on the plots in the

rest of the paper, we consider one file of size M = 64MB and

a failure rate of λ = 1 failure per month. The repair cost is

given in MB per month per file stored. This cost scales linearly

with the number of files, the file size M, and the failure rate λ
(i.e., if 10 files are stored or if λ = 10 failures per month, the

cost is 10 times higher) thus allowing extrapolating results.

A. How many devices to repair from?

Let us consider that k and n are chosen to reach a given sys-

tem availability [2]–[4]. Regenerating codes require choosing

an additional parameter d, which is the number of live devices

contacted during a repair. Theoretical papers suggest that the

best value for d is dopt = n − 1. However, it turns out that

this choice is not the best as soon as the device availability is

p < 1 as we explain in this section.

Let us define the probability that exactly i devices are

available as P (X = i) =
(

n

i

)

pi(1 − p)n−i . We define

G = g(X) as the cost of the repair when X devices are

available. If i ≥ d, we repair using the optimal method (i.e.,

g(i) = M
k

d

∆), otherwise we repair by decoding the whole file

(i.e., g(i) = M). The expected cost at the system level is

E(G) =
∑n−1

i=k
P (X = i)g(i). When less than k devices are

0

500

1000

1500

2000

2500

16 18 20 22 24 26 28 30 32

R
ep

ai
r

co
st

d

p=0.5
p=0.7
p=0.9

p=0.99

(a) k = 16, n = 32 (MSR)

0

500

1000

1500

2000

2500

16 18 20 22 24 26 28 30 32

R
ep

ai
r

co
st

d

p=0.5
p=0.7
p=0.9

p=0.99

(b) k = 16, n = 32 (ARC in bold, MSR in thin)

0

500

1000

1500

2000

15 20 25 30 35 40 45 50 55 60 65

R
ep

ai
r

co
st

n

p=0.5
p=0.7
p=0.9

p=0.99
p=1.0

(c) k = 16

Figure 2. System level repair cost as a function of d and n. The repair cost admits a minimum that is not dopt = n− 1.

available2, the repair is simply delayed. To this end, we plot

the system repair cost as nλ E(G)
P (k≤X≤n−1) .

According to theoretical studies [5], a high value for d helps

reducing the cost of repairs at the device level. Yet, this also

increases the probability that less than d devices are available

thus leading to more frequent repairs by decoding. Hence,

there should be an optimal value for d. For always available

devices (p = 1), it appears that dopt = n− 1, as stated in [5].

On Figure 2a, we consider a system relying on an MSR

code with n = 32 and k = 16. We consider various device

availabilities p and plot the system level cost as a function of

d. We observe that the cost function admits an optimal value

for d. For low to medium availabilities (p = 0.5 to p = 0.9),

the optimal value for d is rather low (much lower than n− 1
value suggested by the literature [5]). For high availability

p = 0.99, the optimal value is close to n − 1 but is still

dopt = 29 (dopt = n− 3). Moreover, choosing d = 31 instead

of d = 29 when p = 0.99 more than doubles the repair cost.

Hence, as soon as devices are not highly available (p = 1),

the designer must choose d according to the device availability

observed in the system to best leverage regenerating codes.

The repair cost for erasure correcting codes is the same

as the cost for regenerating codes with d = k = 16. For

high device availability (p = 0.99), regenerating codes with

d = dopt offer a 10 time improvement over erasure correcting

codes. For medium availability (p = 0.7), with relatively low

dopt = 19, regenerating codes still offer a 3 time improvement

over erasure correcting codes.

As explained, the system is rather sensitive to the choice

of value d. This calls for codes where d can be changed on

the fly, namely adaptive regenerating codes [17], which are

similar to MSR codes. These codes may seem more practical

since they can self-adapt to the system, yet they currently lack

practical code designs.

Figure 2b plots repair costs for optimal adaptive regenerat-

ing codes (ARC) in bold lines alongside regular codes in thin

lines3. An interesting observation is that adaptive regenerating

codes, initially designed for highly dynamic systems, perform

particularly well in rather stable systems. Indeed, when com-

pared to MSR with optimal d, they provide an improvement

2This case remains rare as the system availability P (X ≥ k) is high.
3When using adaptive regenerating codes [17], repairs are performed inde-

pendently to compare to MSR and MBR on a fair basis (i.e., no coordinated
multiple repairs).

of 80% in rather stable systems (p = 0.99), whereas in highly

dynamic systems (p = 0.5) the improvement is only 10%.

B. How to choose the redundancy level?

As with classical codes, the amount of redundancy must

be chosen so that the resulting availability P (X ≥ k) =
∑n

i=k

(

n

i

)

pi(1 − p)n−i is at least the desired availability A.

This guides the values of the parameters k and n as studied

in [2]–[4]. Yet, with regenerating codes, it might be interesting

to sacrifice storage efficiency in favor of repair cost by either

increasing n or relying on MBR codes instead of MSR codes.

The first approach increases the number of devices redundant

data is spread on, while the latter increases the amount of

redundant data on each device without changing n. We study

MSR codes and set n to get the lowest possible repair cost

without constraints on the system availability A.

Let us consider that p ≈ 1 and hence d = n−1. As initially

observed by Dimakis et al. [5], very large n, thus allowing very

large d = n− 1 does not necessarily helps in reducing costs.

Indeed, the system level repair cost nλγ admits a minimum

at nopt = k +
√
k2 − k. When k is large enough, nopt ≈ 2k.

We perform a similar study when p < 1. For each possible

value n, we choose the corresponding value d that offers the

lowest cost. This effect is shown on Figure 2c. When applying

this procedure for multiple values of p and k, we observe that

dopt ≈ 2k and nopt ≈ k × c(p) where c(p) is a constant that

depends only on p as shown on Figure 3a. nopt is chosen so

that on average, the number of devices available for repair is

approximately dopt. These curves also show that for low values

(p, k), regenerating codes cannot operate efficiently for any

value (n, d) and erasure-correcting codes (n = k + 1, d = k)

offer the lowest repair cost (but also a low reliability) for such

(p, k). However, slightly increasing k is sufficient to leverage

regenerating codes in spite of low device availabilities p.

We now study MBR as an alternative to MSR. Indeed,

increasing n beyond the value needed to ensure the required

availability for the file, consists in globally increasing the

redundancy above the minimal level. Using MBR also in-

creases the redundancy but avoids increasing n (and hence

the system failure rate nλ). To this end, we compare storage

and repair bandwidth of MSR, MBR and Adaptive codes

(ARC) for various system unavailabilities (Fig. 3b) given a

device availability of p = 0.99. Overall, MBR consumes

twice the storage space needed for MSR or ARC. MBR

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

d

k

p=0.5
p=0.7
p=0.9

p=0.99

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50

n

k

p=0.5
p=0.7
p=0.9

p=0.99

(a) optimal (n, d)

300

600

900

1200

B
an

d
w

id
th

0
100
200

-60-50-40-30-20-10

S
to

ra
g
e

System unavailability (10x)

MSR
MBR
ARC

(b) p = 0.99, k = 16

Figure 3. The lowest repair cost is for dopt ≈ 2k and nopt ≈ k × c(p) (3a). Optimal storage and bandwidth (3b).

significantly reduce the bandwidth consumption. The system

designer should choose MBR or MSR depending on resources

she wishes to save. ARC4 approach and even outperform

MBR with respect to bandwidth without sacrificing the storage

efficiency (as efficient as MSR) thus significantly improving

high availability systems. Yet, currently, no practical code

designs for ARC are known. This represents a challenging

research agenda for theoretical work.

IV. COMPUTATIONAL PERFORMANCE

Various code designs exist to implement regenerating codes.

These codes rely on various algorithms and data structures,

leading to different costs when implemented. In this section,

we consider both CPU processing and memory costs. We

compare the following most significant codes, which are Reed-

Solomon codes for erasure correcting codes, and random linear

network codes [6], exact linear codes [7] and product-matrix

codes [8] for MSR regenerating codes.

A. Memory costs

We briefly study the costs associated with the data structures

needed to be loaded in memory for encoding and decoding.

Reed-Solomon codes are linear codes which rely on an n×k
matrix containing elements of q bits. For k = 16, n = 32, q =
16, the resulting encoding matrice is of size 1 Kbytes.

Linear network codes (random linear network codes [6] or

exact linear codes [7]) rely on an kα × n∆ (approximately

k2 × nk for MSR codes). For k = 16, n = 32, q = 16, the

resulting encoding matrice is of size 256 Kbytes.

The product-matrix codes [8] rely on a more compact

scheme and the encoding matrix is of size n × 2α (approxi-

mately n× 2k for MSR codes). For k = 16, n = 32, q = 16,

the resulting encoding matrice is only 2 Kbytes.

Overall, when considering 64 MB data blocks (typical in

cloud storage systems), the memory requirements for these

matrices is negligible. Moreover, apart for random linear net-

work codes, which are non-deterministic codes, the encoding

matrices, which are the same for all files, are created using a

deterministic process and need not be stored since they can be

re-created on the fly when needed. As a consequence, memory

costs, even if higher for regenerating codes than for erasure

correcting codes, are only a minor issue and are not relevant

4Again, for the comparison to be fair, repairs are performed independently
without relying on coordinated multiple repairs capability of ARC, which
would reduce bandwidth consumption even more.

for choosing one particular code design over another. However,

as we will explain hereafter, the processing costs are a true

limitation and vary greatly from one code design to another.

B. CPU costs

To compare the processing costs, we implemented in Java

several MSR codes. All codes implementations have similar

levels of optimization and rely on a log-table based finite field

implementation5. We ran these mono-threaded implementa-

tions on a Pentium E2200.

We implemented (i) random linear network codes (RL) [6],

(ii) exact linear codes (EL) [7]6, (iii) product-matrix codes that

use a compact representation of codes with efficient encoding

and decoding algorithms (PM) [8], and (iv) Reed-Solomon

erasure correcting codes (RS) [18].

Regular erasure correcting codes (e.g., Reed-Solomon) in-

volve linear operations on matrices of size k × k. Such

operations have a reasonable complexity Ω(k2). However,

regenerating codes involve the same linear operations but on

matrices of size kα×n∆ (approximately 2k2×k2 when n =
2k and d = n−1). Consequently, naive linear implementations

(EL, RL) [6], [7], [11] suffer from a complexity of Ω(k4) and

have high computational costs even for low values of k. It

can be observed that Product-Matrix codes [8] (PM) rely on

efficient algorithms departing from classical linear approaches

thus lowering costs as shown here.

Figure 4 shows the time needed to process a file of size

M = 16MB depending on the parameter k. When considering

the encoding (Figure 4a), all regenerating codes (PM, EL,

RL) perform worse than regular erasure correcting codes (RS).

However, it is interesting to notice that product-matrix codes

(PM) clearly outperform regular linear regenerating codes

codes (EL, RL). The two linear regenerating codes rely on

the same encoding and decoding algorithm, yet, exact linear

codes (EL) clearly outperform random linear network codes

(RL). Indeed, the encoding matrix of exact linear codes (EL)

is much sparser than the one of random linear network codes

(RL). Overall, these results are consistent with the asymptotic

complexities discussed in the previous paragraph.

5Computational costs using multiplication-table based finite field implemen-
tations are 30% lower but with such finite field implementation k is limited
because of constraints on field size. These plots, as well as plots showing that
all computational costs scale linearly with the file size, were omitted due to
limited space.

6We use a linear implementation of product-matrix codes [8], leading to
constructions similar to [7].

0

30

60

90

120

150

0 5 10 15 20 25 30 35

k

RS
PM
EL
RL

(a) Time for encoding a file in seconds

0

2

4

6

8

10

0 5 10 15 20 25 30 35

k

RS
PM
EL
RL

(b) Time for repairing a lost device in seconds

0

30

60

90

120

150

0 5 10 15 20 25 30 35

k

RS
PM
EL
RL

(c) Time for decoding a file in seconds

Figure 4. Performance for M = 16MB. Reed-Solomon decode the file and encode the lost block at each repair.

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

File size M (MB)

RS
PM
EL
RL

(a) Time for encoding a file in seconds

0

5

10

15

20

25

0 10 20 30 40 50 60 70

File size M (MB)

RS
PM
EL
RL

(b) Time for repairing a lost device in seconds

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

File size M (MB)

RS
PM
EL
RL

(c) Time for decoding a file in seconds

Figure 5. Performance for k = 16. Reed-Solomon decode the file and encode the lost block at each repair.

When considering the repair time (Figure 4b), all regenerat-

ing codes (PM, EL and RL) exhibit similar costs, with a slight

advantage for random linear network codes (RL) because their

randomized repair procedure is simpler. Reed-Solomon codes,

whose repair rely on a costly decoding followed by an encod-

ing suffer a cost that increase with k and that is higher than

the cost of all regenerating codes schemes. As a consequence,

when repair are frequent, it can be more interesting from a

computational point of view, to use regenerating codes even

if encoding and decoding are more costly.

When considering the decoding time, Reed-Solomon (RS)

codes have a low cost thanks to a specific decoding algorithm

and small encoding matrices. Product-matrix codes (PM)

have a reasonable cost that is much lower than the other

regenerating codes (EL, RL). Indeed, product-matrix codes

use a specific decoding algorithm much more efficient than

the algorithm used for other regenerating codes (EL, RL).

Figure 5 shows that the encoding time, the repair time and

the decoding time scale linearly with the file size M, and

confirms the relatively good performance of product matrix

codes (PM), and the poor performance of linear codes (EL,

RL) when compared to classical erasure correcting codes (RS).

Figure 6 studies the additional cost of relying on systematic

codes. Systematic codes are interesting because the k first

devices store non-encoded data. As a result, when performing

a read on such codes, no decoding is needed (i.e., the decoding

cost is null). Reed-Solomon codes use a specific encoding

matrix that encodes directly to a systematic form. As this

matrix is sparser than the matrix for the non-systematic

version, the systematic Reed-Solomon (S RS) is faster than

the non-systematic version (RS). On the contrary exact linear

regenerating codes (S EL) use a matrix that is costly to create

and that is denser than the original one leading to higher costs.

Finally, product matrix codes rely on a pre-coding step that

is performed before the encoding step. This precoding step

uses an algorithm similar to the decoding algorithm and as

such increases the costs: the systematic product matrix codes

(S PM) are more costly than the non-systematic ones (PM).

Hence, product-matrix codes are good candidates for replac-

ing Reed-Solomon codes in practical systems. Their impact on

memory and CPU remains limited. As shown on Figure 5b,

their non-systematic form only doubles the encoding costs

and quadruples the decoding costs when compared to non-

systematic Reed-Solomon codes. Their systematic form mul-

tiplies by 7 the encoding costs when compared to systematic

Reed-Solomon codes. Systematic product-matrix codes should

be preferred when data is read more frequently than it is

written, otherwise non-systematic codes are more efficient.

For MBR codes, which are not the focus of this paper,

Fractional Repetition Codes [10], not implemented in this

benchmark, perform very well since they rely on an efficient

systematic pre-code (e.g. Reed-Solomon) to produce encoded

sub-blocks that are then replicated on several devices. Repairs

and reads are performed using simple transfers without any

computation. The two other implementations of MBR codes

are random linear network codes based [6] or product-matrix

codes based [8], and since they use the same algorithms at the

MBR and the MSR point, they will behave similarly to their

MSR implementation (PM and RL).

V. CONCLUSION AND DISCUSSION

We study the impact of various parameters of regenerating

codes since they can have significant impact at the system

scale. First, despite common belief, dopt is not necessarily

dopt = n − 1 and instead should be carefully tuned due

to its high impact on the repair method efficiency at the

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

k

RS
S RS
S PM
S EL

RL

0

20

40

60

80

100

0 5 10 15 20 25 30 35

k

RS
S RS

PM
S PM

(a) Time for encoding a file in seconds (M = 16MB) (all systematic codes on the left,
comparison of the best codes with their non systematic version on the right)

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

File size M (MB)

RS
S RS
S PM
S EL

RL

(b) Time for encoding a file in seconds
(k = 16)

Figure 6. Performance for systematic codes. The repair procedure remains unchanged (see Figure 4). No decoding is needed when accessing the file.

system level. Even for high device availability p = 0.99 where

d = n− 1 seems reasonable, we get a two time improvement

by choosing d = n − 3. Second, the lowest repair cost for

MSR codes is obtained with d = 2k and n = k × c(p) with

c(p) a constant depending on the device availability. Third,

if sufficient system availability is achieved with a rather low

n, the designer needing to further lower repair cost should

favor MBR over using MSR with artificially increased n
because MBR allows achieving lower repair cost at the system

scale. Finally, since adaptive regenerating codes theoretically

outperform both MSR and MBR at the system level when

looking at the amount of data transferred; providing exact code

designs for ARC can be a promising theoretical research area

that would allow implementing ARC in practical systems.

We also study the computational costs associated with the

various coding schemes available. We show that the additional

cost of using regenerating codes (product-matrix codes [8])

is reasonable. We have shown that non-systematic product-

matrix codes outperform other linear code designs and only

double (resp. quadruple) the cost of encoding (resp. decoding)

when compared to Reed-Solomon codes. Systematic product-

matrix codes multiply by seven the cost of encoding when

compared to systematic Reed-Solomon codes. Hence product-

matrix codes keep computational costs within reasonable

values given the savings in term of network bandwidth they

allow to achieve. As a perspective, to lower systematic codes

computational costs, it would be interesting to design product-

matrix like codes that encode directly to a systematic form

without requiring a pre-processing step.

Interesting perspectives and ongoing theoretical work for

applying regenerating codes to practical system concern the

minimization of I/Os jointly with network repair cost and

storage cost. Indeed, we focused on regular regenerating codes

minimizing the network cost. In some systems, minimizing

the I/O (disk reads) is equally important. Regenerating codes

are not incompatible with this consideration and this research

subject is active. Recent work has optimized I/O cost by rely-

ing either on specific coding schemes [9], [10] or considering

variations of regenerating codes [19], [20]. Also, reducing

I/O is an interesting application for coordinated regenerating

codes [17] that support repairing multiple devices at once.

Indeed, if instead of performing t successive repairs, t repairs

are slightly delayed and performed at once in a coordinated

way, the I/O for repairs are factored thus reducing the overall

I/O by a factor t without jeopardizing the optimality with

respect to network.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in SOSP, 2003.

[2] H. Weatherspoon and J. Kubiatowicz, “Erasure Coding Vs. Replication:
A Quantitative Comparison,” in IPTPS, 2002.

[3] W. K. Lin, D. M. Chiu, and Y. B. Lee, “Erasure Code Replication
Revisited,” in P2P, 2004.

[4] R. Rodrigues and B. Liskov, “High Availability in DHTs: Erasure
Coding vs. Replication,” in IPTPS, 2005.

[5] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. O. Wainwright, and K. Ram-
chandran, “Network Coding for Distributed Storage Systems,” IEEE

Transactions On Information Theory, 2010.
[6] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and

B. Leong, “A Random Linear Network Coding Approach to Multicast,”
IEEE Transaction on Information Theory, vol. 52, pp. 4413–4430, 2006.

[7] C. Suh and K. Ramchandran, “Exact-Repair MDS code construction us-
ing interference alignment,” IEEE Transactions On Information Theory,
2011.

[8] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-
Regenerating Codes for Distributed Storage at the MSR and MBR Points
via a Product-Matrix Construction,” IEEE Transaction on Information

Theory, 2011.
[9] V. R. Cadambe, S. A. Jafar, C. Huang, and J. Li, “Optimal Repair of

MDS Codes in Distributed Storage via Subspace Interference Aligne-
ment,” in ISIT, 2011.

[10] S. El Rouayheb and K. Ramchandran, “Fractional Repetition Codes for
Repair in Distributed Storage Systems,” in Allerton Conference, 2010.

[11] A. Duminuco and E. Biersack, “A Pratical Study of Regenerating Codes
for Peer-to-Peer Backup Systems,” in ICDCS, 2009.

[12] Y. Hu, C.-M. Yu, Y. K. Li, P. P. C. Lee, and J. C. S. Lui, “NCFS: On the
Practicality and Extensibility of a Network-Coding-Based Distributed
File System,” in NetCod, 2011.

[13] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang, “NCCloud: Applying
Network Coding for the Storage Repair in a Cloud-of-Clouds,” in FAST,
2012.

[14] B. Calder et al., “Windows Azure storage: A highly available cloud
storage service with strong consistency,” in SOSP, 2011.

[15] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads,” in FAST, 2012.

[16] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A Survey on
Network Codes for Distributed Storage,” The Proceedings of the IEEE,
vol. 99, pp. 476–489, 2010.

[17] A. Kermarrec, N. Le Scouarnec, and G. Straub, “Repairing Multiple
Failures with Coordinated and Adaptive Regenerating Codes,” in Net-

Cod, 2011.
[18] S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite

Fields,” Journal of the SIAM, 1960.
[19] A. Kiani and S. Akhlagi, “Selective Regenerating Codes,” IEEE Com-

munications Letters, vol. 15, pp. 854–856, 2011.
[20] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li,

“Simple Regenerating Codes: Network Coding for Cloud Storage,” in
INFOCOM, 2012.

