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Abstract

The Total Variation image (or signal) denoising model is a variational approach that can be
interpreted, in a Bayesian framework, as a search for the maximum point of the posterior density
(Maximum A Posteriori estimator). This maximization aspect is partly responsible for a restoration
bias called “staircasing effect”, that is, the outbreak of quasi-constant regions separated by sharp edges
in the intensity map. In this paper we study a variant of this model that considers the expectation of
the posterior distribution instead of its maximum point. Apart from the least square error optimality,
this variant seems to better account for the global properties of the posterior distribution. Theoretical
and numerical results are presented, that demonstrate in particular that images denoised with this
model do not suffer from the staircasing effect.

Keywords: Image denoising, total variation, Bayesian model, least square estimate, maximum a pos-
teriori, estimation in high dimensional spaces, proximity operators, staircasing effect.

1 Introduction

Total Variation (TV) is probably one of the simplest analytic priors on images that favor smoothness
while allowing discontinuities at the same time. Its typical use, introduced in the celebrated Rudin, Osher
and Fatemi (ROF) image restoration model [58], consists in solving an inverse problem like Au = v (where
v is the observed image, u is the unknown ideal image, and A a given operator) by minimizing the energy

E(u) = ‖Au− v‖2 + λTV (u). (1)

This energy sets a trade-off between data fidelity (the first term) and data regularity (TV), the relative
weight of the latter being specified by the hyperparameter λ. In a continuous formulation, the TV of a
gray-level image u : R2 → R is defined by

TV (u) = inf

{∫

R2

u div p ; p ∈ C∞c (R2,R2), ‖p‖∞ ≤ 1

}

,

which boils down to

TV (u) =

∫

R2

|Du| with |Du| =
√
(
∂u

∂x

)2

+

(
∂u

∂y

)2

(2)

for smooth images. Depending on the choice of A, Equation (1) can be used for image denoising (A is the
identity operator), image deblurring (A is a convolution with a given blur kernel), tomography (A is a
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Radon Transform), super-resolution (A is an image subsampling operator), etc. In the last two decades,
the TV prior has been used in a large variety of image processing and computer vision applications
(and also, of course, for applications that do not concern images): image inpainting [20], interpolation
[30], segmentation [18], image quality assessment [8], scale detection [42], cartoon+texture decomposition
[4, 5], motion estimation [66], and many others. For a more complete list of applications concerning image
processing and the TV model, we invite the interested reader to consult [13, 16] and references therein.

Even if other prior functionals have been proposed (Besov priors, Markov random fields learned on
a large bench of images, sparsity priors, fields of experts [57]), TV still frequently appears in non-linear
image processing algorithms. A possible explanation for this is the simplicity of the TV operator, and
its ability to penalize edges (that is, sharp transitions), but not too much: images which are smooth
away from a jump set which is a finite union of smooth curves of finite length, will have a finite TV .
Conversely, TV does penalize highly oscillating patterns, noise in particular. Among other reasons that
make TV worth studying, we can mention the following:

• The prior model based on TV (or the median pixel prior, its discrete counterpart) shows a natural
connection with purely discrete Markov models [7, 9].

• If u is a binary image (that is, the characteristic function of some (regular enough) subset S of R2),
then TV (u) is simply the perimeter of S. For a general real-valued image u, this correspondence
is generalized thanks to the coarea formula [1]: the idea is to decompose u into nested binary
images (corresponding to the level sets of u) and to sum up the infinitesimal contribution of the
TV of each binary image. This geometric characterization of TV allows us to interpret the ROF
model as a regularization of the level lines of v. If the data-fidelity term ‖u − v‖2 is replaced
by its L1-norm counterpart ‖u − v‖1 in (1), more suitable in the case of impulse noise, we even
have a contrast-invariant transform [24], that processes the level sets of u independently. This nice
analytical framework around TV and BV spaces [1] makes it particularly fitted to mathematical
image analysis.

• The TV model is simple enough to produce few artifacts, which is important for applications in
medical imaging for instance, be it the segmentation of an organ or the analysis of a pathology.
This may not be the case for more sophisticated methods like BM3D [22] or dictionary learning
methods, where the higher performance comes along with artifacts that are difficult to control and
anticipate.

TV is simple and convenient, but it has its own drawbacks. First, textured image parts, that are very
oscillatory in general, are highly penalized by TV and often destroyed (or at least strongly attenuated)
by the ROF model. Another well-known artifact is the staircasing effect: as it was first noticed in [23],
images denoised by the ROF model are piecewise constant, and present transition boundaries that may
look completely artificial.

The staircasing effect. It is commonly admitted that the staircasing effect is due to the non-regularity
of TV [47, 49, 51], which, in the discrete framework, comes from the singularity of TV at zero gradients.
More than that, under several hypotheses [63], the ROF model is equivalent to minimizing an energy
like (1), but where the TV (the ℓ1 norm of gradient) is replaced with the ℓ0 “norm” of the gradient,
hence promoting sparsity for the gradient and favoring piecewise constant images. A way to avoid this
staircasing artifact is to regularize the TV operator, as proved by [49]. Among variants that have been
proposed [3, 7, 26, 50, 64], some introduce a parameter ε > 0 and replace the term |Du| in (2) by fε(|Du|),
where

fε(t) =
√

ε2 + t2, or fε(t) =

{

t2 if |t| < ε

ε2 otherwise,
or fε(t) =

{
t2

2ε + ε
2 if |t| < ε

|t| otherwise,

or fε is another even, smooth function that is non-decreasing on R
+. More recently, different authors

managed to promote sparsity for higher order derivatives [6, 10, 19, 21, 38], leading to piecewise affine or
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piecewise polynomial images (hence pushing the staircasing effect to higher orders). In [32], an elegant
modification of the TV operator seems to avoid staircasing in denoising and deblurring experiments, but
no proof is provided.

All the above-mentioned variants require modifications of TV, or the addition of higher-order terms
in the variational model. One contribution of the present paper is to show that the true TV prior is
compatible with the avoidance of the staircasing artifact, provided that an appropriate framework is
used. Indeed, the ROF model can be reinterpreted in a statistical (Bayesian) framework, where it exactly
corresponds to the Maximum A Posteriori (MAP) estimate, which means that the ROF model selects the
image that maximizes the probability density function of a certain distribution (the posterior distribution,
associated to the TV prior and the data-fidelity term). Several authors [51, 65] pointed out that MAP
estimates tend to be very singular with regard to the prior distribution. The staircasing artifact can be
considered one of these prior statistics singularities.

In the present work, we propose to keep the statistical framework associated to the ROF model, but
to move away from MAP estimation and consider instead the mean of the posterior distribution (rather
than its maximum). As in the preliminary work [40], we will denote this approach by TV-LSE, for it
reaches the Least Square Error. This kind of approach is also often called MMSE (Minimizer of the Mean
Square Error) in the literature, or sometimes CM (Conditional Mean).

LSE estimates versus MAP estimates. LSE estimates have been proposed for a long time in the
context of Bayesian image restoration. As early as in 1989, Besag [7] mentioned the possibility of using
the LSE estimate instead of MAP in the discrete TV framework (then called median pixel prior), as
well as the marginal posterior mode and the median estimate. In the case of a TV prior model, LSE is
presented in [25] as a favorable alternative to MAP concerning the statistics of the reconstructed image,
relying on the example of binary image denoising (the TV model is then equivalent to the Ising model)
where MAP provides a non-robust estimate. Lassas, Siltanen and colleagues [33, 35, 34] focus on 1-D
signal restoration with a TV prior, and make a comparative study of MAP and LSE at the interface
between the discrete and the continuous settings, when the quantization step goes to zero (so that the
dimension goes to infinity). They show that in their asymptotic framework, the TV prior may only lead
to trivial estimates (MAP equal to 0, LSE equivalent to Gaussian smoothing), and conclude by switching
to a Besov prior which behaves properly when the quantization step goes to 0.

MAP estimation, seen as the minimization of an energy, is often preferred to LSE estimation because
the computation is made easier and fast by a whole world of energy minimization algorithms, contrary
to LSE which requires Monte-Carlo Markov Chain algorithms [28] or Gibbs samplers [27], known to be
slow. This computational issue can motivate to use MAP instead of LSE, or, more interestingly, to see a
LSE estimate as a MAP estimate in another Bayesian framework, as was done in [29] and [52].

The debate between MAP and LSE goes far beyond algorithmic issues, as the literature, mostly on
learned prior Markov random fields, testifies. LSE estimates, regarding [52, 57, 61], seem to recover the
prior statistics in a better way than MAP estimates. But in [53], it is argued that the prior learning
method (maximum margin principle or maximum likelihood) has to be connected to the estimation
function: maximum likelihood seem to perform better while associated to a LSE estimator, but learning
with a maximum margin principle seems to perform even better while associated to a MAP estimator.

Since the preliminary work [40] in 2008, several people have taken an interest in TV-LSE. Fadili
and Chambolle [32], Lefkimmiatis, Bourquard, and Unser [38], and Salmon [60] mention the TV-LSE
model for its ability to naturally remove staircasing artifacts. In the conclusion of [44], Mirebeau and
Cohen propose a TV-LSE-like approach to denoise images using anisotropic smoothness features, an
interesting counterpart to Total Variation, arguing that LSE is able to deal with non-convex functionals.
Chaari et al. propose LSE estimates for a frame-based Bayesian denoising task [14] and for a parameter
estimation task [15], where a TV prior is used jointly with a prior on the frame coefficients; the abundant
numerical experiments show that the proposed method compares favorably with the MAP estimate. In
the Handbook chapter [13], Caselles, Chambolle and Novaga dedicate a section to TV-LSE.

3



Outline of the paper. The paper is organized as follows. In Section 2 we recall the Bayesian point
of view on the ROF model and motivate the LSE approach using measure concentration arguments. In
Section 3 we analyze the proposed TV-LSE estimator in a finite dimensional framework (finite number
of pixels, but real-valued images). Simple invariance and convergence properties are first given in Section
3.1 and 3.2. Then in Section 3.3, a deeper insight is developed where the TV-LSE denoiser is viewed
as the gradient of a convex function, which allows us to prove, using convex duality tools, that TV-LSE
avoids the constant regions of the staircasing effect while allowing the restoration of sharp edges. We
also interpret the TV-LSE denoiser as a MAP estimate, whose prior is carefully analyzed. In Section
4, we give numerical experiments on image denoising, showing that the TV-LSE offers an interesting
compromise between blur and staircasing, and generally gives rise to more natural images than ROF. We
then conclude in Section 5.

2 From ROF to TV-LSE: Bayes TV-based models

2.1 ROF Bayesian interpretation

Let u : Ω → R be a discrete gray-level image defined on a finite rectangular domain Ω ⊂ Z
2, that

associates with each pixel x = (x, y) ∈ Ω the gray level u(x). The (discrete) Total Variation of the image
u is defined by

TV (u) =
∑

x∈Ω

|Du(x)|, (3)

where |Du(x)| is a discrete scheme used to estimate the gradient norm of u at point x. In the sequel we
shall consider either the ℓ1 or the ℓ2 norm on R

2, associated with the simplest possible approximation of
the gradient vector, given by

Du(x, y) =

(
u(x+ 1, y)− u(x, y)
u(x, y + 1)− u(x, y)

)

(4)

(note that all the results of this paper hold for a large variety of discrete TV operators, see Appendix A.1).
Concerning boundary conditions, we shall use the convention that differences involving pixels outside the
domain Ω are zero. Given a (noisy) image v, the ROF method proposes to select the unique image u
minimizing the energy

Ev,λ(u) = ‖u− v‖2 + λTV (u), (5)

where ‖ · ‖ is the classical L2-norm on images, and λ is a hyperparameter which controls the denoising
level. This formulation as energy minimizer can be transposed in a Bayesian framework. Indeed, for
β > 0 and µ ∈ R, let us consider the probability density function (p.d.f.)

pβ(u) =
1

Zβ
e−βTV (u), where Zβ =

∫

Eµ

e−βTV (u) du, (6)

and ∀µ ∈ R, Eµ =
{
u ∈ R

Ω, ū = µ
}

with ū =
1

|Ω|
∑

x∈Ω

u(x).

Let us now suppose that instead of u, we observe the noisy image v = u+N , where N is a white Gaussian
noise with zero mean and with variance σ2. Applying Bayes’ rule with prior distribution pβ leads to the
following posterior p.d.f.

p(u|v) = p(v|u)pβ(u)
p(v)

=
1

Z
exp

(

−Ev,λ(u)

2σ2

)

, (7)

where λ = 2βσ2 and Z is a normalizing constant depending on v and λ only, ensuring that u 7→ p(u|v)
remains a p.d.f. on R

Ω. Hence, the variational formulation (argminuEv,λ(u)) is equivalent to a Bayesian
formulation in terms of maximum a posteriori (MAP)

ûMAP = arg max
u∈Eµ

p(u|v). (8)
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(a) (c) (e)

(b) (d) (f)

Figure 1: The staircasing effect. A noisy version (a) of Lena image (white Gaussian noise with standard
deviation σ = 10) is denoised by TV minimization with λ = 30 (b). The details (c) and (d) of (b) reveal the
so-called staircasing effect: TV minimization tends to create smooth regions separated by spurious edges. This
effect clearly appears on the level lines (e) and (f) of images (c) and (d): most level lines (here computed using a
bilinear interpolation) tend to be concentrated along spurious edges.

This means that ROF denoising amounts to select the most probable image under the posterior probability
defined by p(u|v). Notice that the constraint u ∈ Eµ, that was imposed to obtain a proper (that is,
integrable) prior p.d.f. pβ , can be dropped out when µ = v̄, since this leaves the MAP estimate unchanged
[2].

In a certain sense, the most complete information is given by the whole posterior distribution function.
However, for obvious practical reasons, one generally seeks an “optimal” estimate of the original image
built from the posterior distribution, with respect to a certain criterion. The MAP estimate is obtained by
minimizing Bayes risk, when the associated cost function is a Dirac mass located on the true solution. In a
certain sense, this estimator is not very representative of the posterior distribution, since it only “sees” its
maximum; in particular, as shows (7), the solution does not depend on σ, which measures the “spread”
of the posterior distribution. As ûMAP minimizes the energy Ev,λ(u), it tends to concentrate certain
exceptional structures which are cheap in energy, in particular regions of constant intensity, leading to
the well-known staircasing effect (see Figure 1).
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2.2 The staircasing effect

Several authors mathematically proved the existence of this staircasing effect, in the one-dimensional
continuous case [55] as well as in the two-dimensional discrete [46, 47, 49, 50] and continuous [31] cases.
Namely in [49], Total Variation is viewed as a particular case of regularization terms J that combine
linear operators Gi (typically, finite differences) and a function ϕ that is non-differentiable in zero (and
not necessarily convex):

Proposition 1 [49] If X (v) = argminu ‖u − v‖2 + λJ(u) where J(u) =
∑r

i=1 ϕi(Giu), with Gi linear
and ϕ a non-differentiable at 0 potential function, then there exists a neighborhood VL of v for which

∀v′ ∈ VL, {i | Gi(X (v′)) = 0} = {i | Gi(X (v)) = 0}. (9)

In particular, the case where J is a Total Variation operator fulfills the conditions of Proposition 1,
since taking the Gi’s equal to gray-level differences across neighboring pixels as in (4) makes the associated
function ϕ (the ℓ1 or the ℓ2 norm on R

2) not differentiable at 0. In this case, the set {i | Gi(X (v)) = 0}
contains the constant regions of the denoised image, and Proposition 1 tells that these constant regions
have a certain stability with respect to perturbations of the observed data v. This gives a first theoretical
explanation of the staircasing effect.

Let us also cite the recent work of Caselles, Chambolle and Novaga [12] where staircasing is studied
not from the point of view of constant regions, but in terms of discontinuities. An interesting property
concerning the jump set of the reconstructed image in the continuous framework is proved, which could
suggest that staircasing is only due to a bad quantization of the total variation. The (approximate) jump
set of a continuous image u is defined as the set of points x ∈ R

2 satisfying

∃u+(x) 6= u−(x), ∃νu(x) ∈ R
2,







|νu(x)| = 1,

lim
ρ↓0

∫

B+
ρ (x,νu(x))

|u(y)− u+(x)| dy
∫

B+
ρ (x,νu(x))

dy
= 0,

lim
ρ↓0

∫

B−
ρ (x,νu(x))

|u(y)− u−(x)| dy
∫

B−
ρ (x,νu(x))

dy
= 0,

where
B+

ρ (x, νu(x)) = {y | ‖y − x‖ < ρ , 〈y − x, νu(x)〉 > 0},
and B−

ρ (x, νu(x)) is the same with a negative inner product. Intuitively, the jump set of an image u is the
set of points where u can be locally described as a two-dimensional Heaviside function, which corresponds
to regular edges. It is shown that if the datum image v has bounded variation, then the jump set of the
solution û to the continuous TV minimization problem is contained within the jump set of v. In other
words, TV minimization does not create edges which did not already exist in v. This would contradict
some kind of staircasing effect (the discontinuity part), if we forgot that v is generally noisy and then the
jump set contains almost every point of the domain.

2.3 Concentration of the posterior distribution

Another distortion induced by the MAP approach comes from the high dimension of the problem. Indeed,
the MAP estimate only depends on the location of the mode, but not on the probability mass that this
mode contains [59], and this difference may become huge in high-dimensional spaces. Let us illustrate
this with a simple example. If n is a positive integer and X is a random vector distributed as N (0, σ2In)
(centered normal distribution with covariance matrix σ2In, In being the n-dimensional identity matrix),
then by applying the Bienaymé-Tchebychev inequality to the random variable |X|2 =

∑n
i=1X

2
i (which
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follows a σ2χ2(n) distribution), we obtain

∀ε > 0, P

(∣
∣
∣
∣

1

n
|X|2 − σ2

∣
∣
∣
∣
> ε

)

≤ 2σ4

nε2
, (10)

and the right-hand term decreases towards 0 when the dimension n grows to infinity. In this example,
the mode of X is located in 0, but when n goes to +∞ all the mass of the distribution “concentrates”
onto the sphere centered in 0 with radius nσ, and therefore goes away from the mode. This kind of
situation is quite common in high dimension. A similar example is the case of the uniform distribution
on the unit ball, whose mass concentrates in an arbitrarily small neighborhood of the unit sphere when
the dimension grows. Hence, the MAP estimate may be, especially in high dimension, a very special
image which properties may strongly differ from those of typical samples of the posterior. This remark
particularly makes sense for images, whose typical dimension can be n = 106 or more.

In our image denoising problem, we should deal with the posterior probability π associated to the
p.d.f. π(u) = p(u|v) (see (7)), which is a log-concave Gibbs field. For such probability distributions, we
can have concentration results similar to (10), but they require more sophisticated tools [37].

A key notion to study the concentrating power of a probability distribution π on X is the concentration
function απ(r) [37], defined for each r > 0 by

απ(r) = sup

{

1− π(Ar), A Borel set of RΩ,π(A) ≥ 1

2

}

, (11)

where Ar = {u ∈ R
Ω, d(u,A) < r} (d is the Euclidean distance of X ). For instance, in the case of a

uniform distribution on the d-dimensional unit sphere, the concentration function can be proved to be
smaller than a Gaussian function of r [36], whose fast decay for large r indicates thanks to (11) that the
probability is very concentrated near to any equator.

An analytical point of view for απ is useful when considering other distributions. The concentra-
tion function can be addressed in terms of concentration of Lipschitz-continuous functions around their
median. Namely, a measurable function F : X → R is said to be 1-Lipschitz when

‖F‖Lip := sup
u,v∈X

|F (u)− F (v)|
‖u− v‖ ≤ 1,

and mF is called a median of F if it satisfies

π(F ≤ mF ) ≥
1

2
and π(F ≥ mF ) ≥

1

2
.

The concentration function can be characterized for any r > 0 by [36]

απ(r) = sup
F

π(F −mF ≥ r), (12)

where the supremum runs over all real-valued measurable 1-Lipschitz functions F , and where mF is any
median of F .

In the case of the posterior probability having p.d.f. (7) of our image denoising problem, we can have
a Gaussian concentration inequality similar to the uniform distribution on the unit sphere, as shows

Proposition 2 (Measure concentration) Let π denote the posterior probability with p.d.f. (7). Then

∀r > 0, απ(r) ≤ 2e−
r2

4σ2 . (13)

Proof —The probability π has p.d.f. π = 1
Z e

−V where V = 1
2σ2Ev,λ. V satisfies the strong convexity

inequality

∃c > 0, ∀u, v ∈ R
Ω, V (u) + V (v)− 2V

(
u+ v

2

)

≥ c

4
‖u− v‖2 (14)
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with c = 1/σ2. Then applying [37, Theorem 2.15 p. 36], we obtain (13). 2

This shows that any Lipschitz-continuous function F is concentrated around its median mF : indeed,
combining (12) and (13) yields

π(F −mF ≥ r) ≤ 2e−
‖F‖2Lipr2

4σ2 , (15)

and the same argument with −F leads to

π(F −mF ≤ −r) ≤ 2e−
‖F‖2Lipr2

4σ2 . (16)

Both inequalities put together, we deduce that for each r > 0,

π(|F −mF | ≥ r) ≤ 4e−
‖F‖2Lipr2

4σ2 . (17)

Now we prove that the energy Ev,λ is concentrated around a particular value. Ev,λ is not Lipschitz-
continuous (because the data-fidelity term is quadratic), but its square-root is Lipschitz-continuous as
soon as v is not constant, which allows to conclude to a weaker form of concentration for the energy.

Proposition 3 Let π denote the posterior probability with p.d.f. (7). Assume that v is not constant.
Then there exist m ∈ R and c > 0 such that for any r ≥ 0,

π(|
√

Ev,λ −m| ≥ r) ≤ 4e−
c2r2

4σ2 . (18)

Proof —For any images u and u′, let us write

√

Ev,λ(u′)−
√

Ev,λ(u) = C1 + C2

with
C1 =

√

‖u′ − v‖2 + λTV (u′)−
√

‖u− v‖2 + λTV (u′)

and
C2 =

√

‖u− v‖2 + λTV (u′)−
√

‖u− v‖2 + λTV (u).

For C1, let us recall that when u
′ is fixed, u 7→

√

‖u− v‖2 + λTV (u′) is the composition of u 7→ ‖u− v‖
and x ∈ R 7→

√
x2 + ε with ε = λTV (u′) ≥ 0, which both are 1-Lipschitz. This gives the inequality

|C1| ≤ ‖u′ − u‖. (19)

To bound C2, we need to compute the Lipschitz constant of TV . It depends on the scheme for TV
which is used, and monotonically depends on |Ω|. Writing ‖TV ‖Lip = κ

√

|Ω|, κ can be evaluated to

κ = 4 +O(1/
√

|Ω|) for the ℓ1-scheme, and κ = 2
√
2 +O(1/

√

|Ω|) for the ℓ2-scheme (the approximation
is due to the domain’s border effect, and in both cases the Lipschitz constant is reached when computing
TV (u)− TV (0), where u is the chessboard image defined by u(i, j) = (−1)i+j). We have

C2 =
‖u− v‖2 + λTV (u′)− ‖u− v‖2 − λTV (u)

√

‖u− v‖2 + λTV (u′) +
√

‖u− v‖2 + λTV (u)
.

But as v is supposed to be non-constant, Ev,λ is coercive and cannot equal zero, so that it is bounded

from below by a positive constant. Hence, since
√

‖u− v‖2 + λTV (u′) is non-negative, we have

|C2| ≤
λ|TV (u′)− TV (u)|
0 +

√
minEv,λ

≤ λκ
√

|Ω|‖u′ − u‖
√
minEv,λ

. (20)
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Then, combining (19) and (20), we obtain

∣
∣
∣
∣

√

Ev,λ(u′)−
√

Ev,λ(u)

∣
∣
∣
∣
≤
(

1 +
λκ
√

|Ω|
√

minEv,λ

)

‖u′ − u‖,

and
√
Ev,λ is Lipschitz-continuous, with constant c, with c = λκ

√

|Ω|/minEv,λ +O(1) when |Ω| goes to
∞. We conclude by applying Proposition 2. 2

By homogeneity of ‖·−v‖2 and TV with respect of the dimension |Ω| of the images, it is not restrictive
to assume that the median m goes to ∞ as the dimension |Ω| of images increases (by juxtaposing several
versions of v for instance). This means that as the dimension increases, π(|

√
Ev,λ − m|/|m| ≥ r) is

bounded by 4e−
c2r2m2

4σ2 , where

c2 =
λ2κ2|Ω|
minEv,λ

+O(1)

is bounded because minEv,λ is proportional to |Ω|, whilem goes to +∞ as |Ω| → +∞. Hence π(|
√
Ev,λ−

m|/|m| ≥ r) converges to 0, and for large domains Ω, almost any image u drawn from π satisfies
Ev,λ(u) ≈ m2.

As Ev,λ is strictly convex and continuous, the lower set {u, Ev,λ(u) < m2} is a bounded convex
set. It is not symmetric and its boundary is not smooth as soon as v is not constant and λ > 0, but
it always contains ûMAP (because it reaches the lowest energy). Let us define the median energy set as
the boundary of {u, Ev,λ(u) < m2}. In high dimension, (18) means that almost all the mass of π is
supported by a thin dilation of this median energy set. Estimating the original image u by ûMAP does
not take the geometry of this median energy set into consideration, its asymmetrical shape in particular.
In high dimension, the mean of π approximately corresponds to the isobarycenter of the median energy
set, which is likely to give interesting results in terms of image denoising performance.

2.4 Definition of the TV-LSE operator

Instead of using the risk associated to a Dirac cost (leading to a MAP estimate), we propose to use a
Least Square risk, which amounts to search the image û(v) minimizing

Eu,v

(
‖u− û(v)‖2

)
=

∫

RΩ

∫

Eµ

‖u− û(v)‖2p(u, v) dv du. (21)

The image reaching this minimum is the expectation of the posterior distribution (Least Square Estimate,
written LSE), that is

ûLSE := E(u|v) =
∫

u∈RΩ

p(u|v)u du, (22)

which can be, thanks to (7), rewritten under the form below.

Definition 1 The TV-LSE operator (denoted by SLSE) maps a discrete image v ∈ R
Ω into the discrete

image ûLSE defined by

ûLSE = SLSE(v) =

∫

RΩ

exp

(

−Ev,λ(u)

2σ2

)

· u du
∫

RΩ

exp

(

−Ev,λ(u)

2σ2

)

du

, (23)

where λ and σ are positive parameters and Ev,λ is the energy function defined in (5).

In this paper we concentrate on TV-LSE, but we are conscious that minimizing risks other than Least
Square risk in (21) can lead to other interesting estimates (a median estimate for a L1 risk for instance),
though they seem to be more difficult to analyze.
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3 Properties of TV-LSE

In this section, we explore several theoretical aspects of the TV-LSE operator. We give geometric invari-
ance properties, and study the limiting operator when one of the parameters goes either to 0 or to ∞.
Finally, we use Moreau’s theory of proximations (or proximity operators) [45, 56] to state finer properties
of TV-LSE, among which the fact that the staircasing effect cannot occur in TV-LSE denoising.

3.1 Invariance properties

Here we give several geometric invariance properties of SLSE (gray-level average preservation, transla-
tion and symmetry invariance, . . . ), all shared with MAP denoising [2], which are basic but essential
requirements for image processing.

Proposition 4 (Average preservation) For any image u, let ū =
1

|Ω|
∑

x∈Ω

u(x) denote the average

gray level of u. Then for every v ∈ R
Ω,

SLSE(v) = v.

Proof —Let E0 = {u ∈ R
Ω : ū = 0} denote the subspace of images with mean zero, and 1 the constant

image equal to 1 everywhere. Splitting up the variable u = u0 + t1 into a zero-mean image u0 ∈ E0 and
a shift t (note that ū = t = 1

|Ω| 〈u,1〉), the LSE-denoised image writes

ûLSE =
1

Z

∫

u0∈E0

∫

t∈R

u0 e
−

Ev,λ(u0+t1)

2σ2 dt du0 +
1

Z

∫

u0∈E0

∫

t∈R

te−
Ev,λ(u0+t1)

2σ2 dt du0 1, (24)

where Z is a generic normalizing constant. We show that ûLSE has mean v̄. The first integral in (24) has
mean zero since it is a weighted average of zero-mean images. Let us focus on the second integral. As
TV (u) = TV (u0), the energy may be written

Ev,λ(u0 + t1) = ‖1‖2
(

t− 〈v − u0,1〉‖1‖2
)2

+ ‖u0 − v‖2 −
〈1, u0 − v〉2
‖1‖2 + λTV (u0),

with ‖1‖2 = |Ω|. Then integrating along t yields

∫

R

te−
|Ω|(t− 1

|Ω|
〈v−u0,1〉)

2

2σ2 dt =

√
2πσ

|Ω|3/2 〈v − u0,1〉 .

Hence the second integral in (24) reads

1

Z

∫

u0∈E0

∫

t∈R

te−
Ev,λ(u0+t1)

2σ2 dt du0 =
1

Z ′

∫

u0∈E0

〈v − u0,1〉 e−
‖u0−v‖2− 1

|Ω|
〈1,u0−v〉2+λTV (u0)

2σ2 du0

=
1

|Ω| 〈v,1〉 −
〈

1

Z ′

∫

u0∈E0

u0 e
−

‖u0−v‖2− 1
|Ω|

〈1,u0−v〉2+λTV (u0)

2σ2 du0, 1

〉

,

which equals v̄, for the integral inside the inner product is again a weighted average of zero-mean images.
Finally ûLSE is a zero-mean image shifted by v̄, therefore ûLSE and v have the same average value. 2

Proposition 5 (Invariance by composition with linear isometry) Let s : RΩ → R
Ω be a linear

isometry such that for all u ∈ R
Ω, TV ◦ s(u) = TV (u) holds. Then

∀v ∈ R
Ω, SLSE ◦ s(v) = s ◦ SLSE(v).

10



Proof —The change of variable u′ = s−1(u) in the numerator and the denominator of (23) yields

SLSE(s(v)) =

∫
s(u′)e−

‖s(u′)−s(v)‖2+λTV (s(u′))

2σ2 du′

∫
e−

‖s(u′)−s(v)‖2+λTV (s(u′))

2σ2 du′
,

because s being an isometry implies ds(u′) = du′. Furthermore s is isometric, so we have ‖s(u′)−s(v)‖2 =
‖u′ − v‖2, and TV (s(u′)) = TV (u′) thus

SLSE ◦ s(v) =
∫
s(u′)e−

‖u′−v‖2+λTV (u′)

2σ2 du′

∫
e−

‖u′−v‖2+λTV (u′)

2σ2 du′
= s(SLSE(v)),

because s is linear. 2

A consequence of Proposition 5 is that the TV-LSE operator inherits many properties of the discrete
scheme used for TV . For the classical ℓ1 or ℓ2 schemes associated to Equations (3) and (4), we obtain in
particular the following invariances:

1) translation invariance: SLSE ◦ τt = τt ◦ SLSE, where τt is the translation operator of vector t ∈ Z
2

defined by τt ◦ u(x) = u(x− t) (Ω is assumed to be a torus)

2) π/2-rotation invariance: if ρ is a π/2-rotation sending Ω onto itself, then SLSE ◦ ρ = ρ ◦ SLSE

3) gray-level shift invariance: ∀u ∈ R
Ω, ∀c ∈ R, SLSE(u + c) = SLSE(u) + c (this is not a direct

consequence of Proposition 5, but the proof is easily adapted to the case s(u) = u+ c).

These properties can help find the structure of SLSE(v) when v contains lots of redundancies and
structure. For example, if v is a constant image, then SLSE(v) = v. Indeed, v is invariant under the
translations of vector (1, 0) and (0, 1), and so is SLSE(v); moreover the average gray level of SLSE(v) is
the same as v. Finally SLSE(v) is a constant equal to v. Another example is the checkerboard, defined
by

vi,j =

{

a if i+ j is even

b if i+ j is odd

for some constants a, b ∈ R. It is quite easy to see that v′ = SLSE(v) is also a checkerboard (use the
invariance by translations of vectors (1, 1) and (1,−1)), even if it seems difficult to get the associated
parameter values a′ and b′.

3.2 Asymptotics

Unlike MAP denoising (that depends on the only parameter λ), LSE denoising depends on 2 distinct
parameters λ and σ. The theorem below sums up several asymptotic behaviors of ûLSE, when one of the
parameters goes to 0 or +∞.

Remark 1 By the change of variables v′ = v/σ, u′ = u/σ, λ′ = λ/σ, σ′ = 1, the transformed operator,

with obvious notations, satisfies Sλ,σ
LSE(v) = σS

λ/σ,1
LSE ( vσ ).

Theorem 1 For a given image v ∈ R
Ω, let us write ûLSE(λ, σ) = SLSE(v) to recall the dependency of

ûLSE with respect to λ and σ. For any fixed λ > 0, we have

(i) ûLSE(λ, σ) −−−→
σ→0

ûMAP (λ),

(ii) ûLSE(λ, σ) −−−−−→
σ→+∞

v,

11



while for any σ > 0, we have

(iii) ûLSE(λ, σ) −−−→
λ→0

v,

(iv) ûLSE(λ, σ) −−−−−→
λ→+∞

v̄1,

where v̄1 is the constant image equal to the average of v.

Proof —As Ev,λ is strongly convex (Equation (14)), the probability distribution 1
Z exp

(

−Ev,λ

2σ2

)

(where

Z is a normalizing constant depending on σ) weakly converges when σ → 0 to the Dirac distribution
located at ûMAP (λ) = argminuEv,λ(u), whose expectation is ûMAP (λ), which proves (i).

For (ii), let us consider the change of variable w = (u− v)/σ. Then

ûLSE(λ, σ) = v +

∫

RΩ

σwe−
1
2 (‖w‖2+λ

σTV (w+ v
σ )) dw

∫

RΩ

e−
1
2 (‖w‖2+λ

σTV (w+ v
σ )) dw

= v +
N

D
.

When σ → ∞, the function inside the denominator D converges almost everywhere (a.e.) to e−‖w‖2/2,

ans is uniformly bounded by e−‖w‖2/2, thus thanks to Lebesgue’s dominated convergence theorem, D
converges towards

∫
e−‖w‖2/2 dw.

For the numerator, notice that the mean value theorem applied to x 7→ e−x implies the existence of
a real number cw,σ ∈ [0, λ

2σTV (w + v
σ )] such that

e−
λ
2σTV (w+ v

σ ) = 1− λ

2σ
TV (w +

v

σ
)e−cw,σ .

Hence N can be split into

N = σ

∫

we−
‖w‖2

2 dw − λ

2

∫

we−
‖w‖2

2 TV (w +
v

σ
)e−cw,σ

︸ ︷︷ ︸

fσ(w)

dw.

The first integral is equal to zero. Concerning the second integral, when σ → ∞, cw,σ goes to 0, and as
TV is Lipschitz continuous, fσ satisfies for every σ ≥ 1,

fσ(w) −−−−→
σ→∞

we−
‖w‖2

2 TV (w) a.e.

and ‖fσ(w)‖ ≤ ‖w‖e−
‖w‖2

2 (TV (w) + α‖v‖), (25)

where α is the Lipschitz-continuity coefficient of TV . As the right-hand term of (25) belongs to L1(RΩ)
(as a function of w), again Lebesgue’s dominated convergence theorem applies and

∫

fσ(w) dw −−−−→
σ→∞

∫

we−
‖w‖2

2 TV (w) dw = 0

because the function inside the integral is odd (since TV is even). Hence, N goes to 0 as σ tends to
infinity, which implies the convergence of ûLSE(λ, σ) towards v, and proves (ii).

The proof of (iii) is a simple application of Lebesgue’s dominated convergence theorem.

For (iv), the dominated convergence theorem cannot be applied directly because u 7→ ue−
1

2σ2 TV (u)

does not belong to L1(RΩ). We need to come down to a space of constant mean images where it becomes
L1. If we assume that the data image v has zero mean (which does not reduce the generality of the proof,
because of the gray-level shift invariance of Section 3.1), then thanks to the average invariance property
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(Proposition 4), we simply have to show that ûLSE(λ, σ) converges to 0 when λ goes to ∞. Let us split
every u ∈ R

Ω into u = (ū + z)/λ with ū ∈ R and z ∈ E0 (the space of zero mean images). The fidelity
term ‖u− v‖2 becomes

‖u− v‖2 =

∥
∥
∥
∥

ū+ z

λ
− v
∥
∥
∥
∥

2

=
|Ω|
λ2
ū2 +

∥
∥
∥
z

λ
− v
∥
∥
∥

2

,

since both z and v have mean zero. Hence ûLSE(λ, σ) writes

ûLSE(λ, σ) =

∫

z∈E0

∫

ū∈R

ū+ z

λ
e−

1
2σ2 (‖ ū+z

λ −v‖2+TV (z)) dū dz

∫

z∈E0

∫

ū∈R

e−
1

2σ2 (‖ ū+z
λ −v‖2+TV (z)) dū dz

=
1

λ

∫

z∈E0

e−
1

2σ2 (‖ z
λ−v‖2+TV (z))

∫

ū∈R

(ū+ z)e−
|Ω|ū2

2σ2λ2 dū dz

∫

z∈E0

e−
1

2σ2 (‖ z
λ−v‖2+TV (z))

∫

ū∈R

e−
|Ω|ū2

2σ2λ2 dū dz

=
1

λ

∫

E0

ze−
1

2σ2 (‖ z
λ−v‖2+TV (z)) dz

∫

E0

e−
1

2σ2 (‖ z
λ−v‖2+TV (z)) dz

. (26)

For both functions g(z) = 1 and g(z) = z, we have






g(z)e−
1

2σ2 (‖ z
λ−v‖2+TV (z)) −−−−→

λ→∞
g(z)e−

1
2σ2 (‖v‖2+TV (z)),

∥
∥
∥g(z)e

− 1
2σ2 (‖ z

λ−v‖2+TV (z))
∥
∥
∥ ≤ ‖g(z)‖e− 1

2σ2 TV (z) ≤ ‖g(z)‖e− C
2σ2 ‖z‖1,

where the last inequality comes from the fact that since TV is a norm on the finite-dimensional space
E0, there exists C > 0 such that for every z ∈ E0, TV (z) ≥ C‖z‖1 (this can be considered as a discrete
version of the Poincaré inequality [1]). Thus thanks to Lebesgue’s dominated convergence theorem, each
integral in (26) converges to a positive value when λ → +∞, and dividing by λ yields the desired limit
ûLSE(λ, σ)→ 0. 2

3.3 TV-LSE as a proximity operator and several consequences

Proximity operators [45, 56] are mappings of a Hilbert space into itself, that extend the notion of projec-
tion onto a convex space; here we prove that the TV-LSE denoiser is a proximity operator on R

Ω. From
that, we deduce several stability and regularity properties of TV-LSE, and prove that it cannot create
staircasing artifacts.

3.3.1 SLSE is a proximity operator

Let us start by setting a frame of convex analysis (in finite dimension) around TV-LSE. Let n = |Ω|
denote the total size of the considered images. An image is therefore an element of Rn. Let Γ0(R

n) be
the space of convex, lower semi-continuous functions from R

n to (−∞,+∞] that are proper (that is, non
identically equal to +∞).

Definition 2 [45, 56] Let f be an arbitrary function in Γ0. The proximity operator associated to f is
the mapping proxf : Rn → R

n defined by

proxf (u) = arg min
v∈Rn

1

2
‖v − u‖2 + f(v).

13



Notice that if f is the characteristic function associated to a closed, convex and non-empty set C
(f = 0 on C and f = +∞ elsewhere), proxf simply reduces to the projection on C.

Recall 1 [45, 56] Whatever f in Γ0, its convex conjugate f∗ (Legendre-Fenchel transform), defined by

f∗(v) = sup
u∈Rn

〈u, v〉 − f(u),

is in Γ0(R
n), and satisfies f∗∗ = f . Moreover, the Moreau’s decomposition theorem states that given

f ∈ Γ0, every z ∈ R
n can be decomposed into z = u+ v, with u = proxf (z) and v = proxf∗(z).

Definition 3 [45, 56] The primitive function associated to proxf is the function Φ ∈ Γ0(R
n) defined by

∀z ∈ R
n, Φ(z) =

1

2
‖v‖2 + f(u) where u = proxf (z) and v = proxf∗(z).

Now let f = λ
2σ2TV . f is an element of Γ0(R

n) whose domain dom(f) = {u ∈ R
n | f(u) <∞} has a

non-empty interior. Besides, f can be viewed as the potential of the (improper) prior distribution in our
Bayesian framework whose p.d.f. is p = exp(−f).

Letting Gσ denote the Gaussian kernel u ∈ R
n 7→ 1

σn(2π)n/2 exp(−‖u‖2

2σ2 ), the TV-LSE operator,

denoted SLSE, can be written

∀v ∈ R
n, SLSE(v) =

∫
uGσ(u− v) p(u) du
∫
Gσ(u− v) p(u) du

. (27)

We come to the specific study of SLSE.

Lemma 1 SLSE is differentiable, and its differential dSLSE is a symmetric positive-definite matrix at
every point.

The proof is left in the appendix, in Section A.2.

Lemma 2 There exists a C∞ function ϕ ∈ Γ0(R
n) such that SLSE = ∇ϕ. Furthermore, ϕ is strictly

convex and is defined by

ϕ : v ∈ R
n 7→ 1

2
‖v‖2 + σ2 log(p ∗Gσ)(v). (28)

Proof —The function ϕ defined by (28) is C∞ since the convolution of p with a Gaussian kernel is C∞.
Moreover, we have

∇ϕ(v) = v + σ2∇v log

∫

Gσ(v − u) p(u) du = v + σ2

∫
∇vGσ(v − u) p(u) du
∫
Gσ(v − u) p(u) du

, (29)

and since ∇vGσ(v − u) = − 1
σ2Gσ(v − u) · (v − u), we finally get

∇ϕ(v) =
∫
Gσ(v − u) p(u)u du
∫
Gσ(v − u) p(u) du

= SLSE(v).

Now the only difficulty is to prove that ϕ is strictly convex (as shown in the proof of Theorem 2 below,
the second term σ2 log(p ∗Gσ) is actually concave). In fact, it suffices to check that the Hessian of ϕ is
(symmetric) positive-definite. But the Hessian of ϕ at point v equals the differential dSLSE(v) of SLSE at
point v, and by Lemma 1, dSLSE(v) is positive-definite, which ends the proof. 2
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Theorem 2 The operator SLSE is a proximity operator.

Proof —The application p ∗ Gσ is log-concave as the convolution of two log-concave distributions [54].
Hence σ2 log(p ∗ Gσ) is concave, and ϕ is less convex than u 7→ 1

2‖u‖2 (that is, the mapping u 7→
1
2‖u‖2 − ϕ is convex). Then, applying [45, Proposition 9.b, (I) ⇒ (III)], ϕ is necessarily the primitive
function associated to a proximity operator, that is, there exists g ∈ Γ0(R

n) such that ϕ is the primitive
function associated to proxg. Now, denoting g∗ ∈ Γ0(R

n) the Legendre-Fenchel transform of g, we have
∇ϕ = proxg∗ [45, Proposition 7.d] which proves that SLSE is a proximity operator. 2

As SLSE is a proximity operator, we can define the convex function to which SLSE is associated.

Definition 4 (TVσ prior) Let us assume that λ = 1. For any σ > 0, we define TVσ as the unique
function in Γ0(R

n) such that TVσ(0) = 0 and SLSE = prox 1
2TVσ

.

The existence of such a function TVσ is given by Theorem 2, while the uniqueness is a consequence
of [45, Proposition 8.a]. Thus, and still for λ = 1, SLSE(v) corresponds to the MAP estimation of v with
the prior potential TVσ, in the same way that ROF gives a MAP estimation of v with the prior potential
TV . As we shall see in Section 3.3.3, the potential TVσ has interesting properties that significantly differ
from those of TV .

Note that for other values of λ, SLSE remains a proximity operator, associated to a rescaled version
of TVσ. Indeed, with obvious notations for Sλ,σ

LSE, since we have

∀v ∈ R
Ω, Sλ,σ

LSE(v) =
1

λ
S
1,σλ
LSE(

1

λ
v),

and the scaling property of the proximity operators,

∀f ∈ Γ0(R
Ω), ∀α > 0, ∀v ∈ R

Ω, proxα2f (v) = α proxf(α·)(
1

α
v),

entails
Sλ,σ
LSE = proxλ2

2 TVσ
λ
( ·
λ )
.

SLSE being a proximity operator is a rather strong property that implies the following stability and
monotonicity properties.

Corollary 1 SLSE is non-expansive, that is,

∀v1, v2 ∈ R
n, ‖SLSE(v2)− SLSE(v1)‖ ≤ ‖v2 − v1‖, (30)

and monotone in the sense of Minty, that is,

∀v1, v2 ∈ R
n, 〈SLSE(v2)− SLSE(v1), v2 − v1〉 ≥ ‖SLSE(v2)− SLSE(v1)‖2. (31)

Proof —The non-expansiveness property is a consequence of [45, Proposition 5.b], and the monotonicity
a consequence of [43] or [45, 5.a] (these properties are condensed in [56, p. 340]). 2

3.3.2 SLSE induces no staircasing

We first show that SLSE is a C∞-diffeomorphism from R
n onto itself.

Lemma 3 SLSE is injective.
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Proof —Assume that SLSE(v1) = SLSE(v2). Then considering the mapping ψ such that

ψ(t) = 〈SLSE((1− t)v1 + tv2), v2 − v1〉

satisfying ψ(0) = ψ(1), its derivative

ψ′(t) = 〈dSLSE((1− t)v1 + tv2)(v2 − v1), v2 − v1〉

must vanish at a certain point t0 ∈ [0, 1]. But dSLSE((1− t0)v1 + t0v2) is a positive-definite matrix (see
Lemma 1), and consequently ψ′(t) > 0 unless v1 = v2. 2

Lemma 4 Let I denote the identity of Rn. The operator SLSE − I is bounded and SLSE is onto.

The proof follows from the Lipschitz continuity of the discrete TV operator, and is detailed in Ap-
pendix A.3.

Theorem 3 SLSE is a C∞-diffeomorphism from R
n onto R

n.

Proof —SLSE is C∞ because it satisfies SLSE = ∇ϕ with ϕ in C∞ (see Lemma 2). Now, adding the fact
that dSLSE is invertible at every point (Lemma 1) and that SLSE is injective (Lemma 3), and we obtain
by the global inversion theorem that SLSE is a C∞-diffeomorphism from R

n to SLSE(R
n). We conclude

by using the fact that SLSE(R
n) = R

n (Lemma 4). 2

Beside the fact that SLSE has the regularity of a C∞-diffeomorphism is interesting in itself (robustness
of the output with respect to the input, non-destruction of information), it allows to state the main result
of this section.

Theorem 4 (SLSE induces no staircasing) If V is a random image whose p.d.f. is absolutely contin-
uous with respect to Lebesgue’s measure, then for any distinct pixels x and y, one has

P

{

SLSE(V )(x) = SLSE(V )(y)
}

= 0.

A consequence of this property is that two neighboring pixels (say, for the 4- or the 8-connectedness)
have a probability zero to have the same value in SLSE(V ). Thus, almost surely ûLSE contains no constant
region, which means that there is no staircasing in the sense of [49], contrary to ROF.

For example, if V writes V = u + N with u a fixed image and N a white Gaussian noise, that is,
a realization of V is a noisy version of u, or if V is drawn from the total variation distribution (that
is, V ∼ 1

Z e
−λTV (V )), then the assumption on V in Theorem 4 is met, and ûLSE almost surely contains

no staircasing. Note that it does not tell that edges should be blurred out. In Section 3.3.3 (through a
theoretical argument) and 4 (through denoising experiments), we show that it is indeed not the case.

Proof of Theorem 4 — Let pV the probability measure associated to the random image V . Let A be
the event {V (x) = V (y)} ⊂ R

n. As A is a subspace of Rn with dimension strictly less than n and pV is
absolutely continuous with respect to Lebesgue’s measure, the probability pV (A) is null. Now

P

{

SLSE(V )(x) = SLSE(V )(y)
}

= pV (S
−1
LSE(A)),

and as SLSE is a diffeomorphism from R
n onto itself and the p.d.f. of pV is measurable, the change of

variables formula can apply [62, Théorème 1.1]. In particular, S−1
LSE changes negligible sets into negligible

sets [62, Lemme 2.1], and pV (S
−1
LSE(A)) = 0. 2
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3.3.3 Properties of TVσ

In this section, we study the potential TVσ introduced in Definition 4. Since we have SLSE = prox 1
2TVσ

for λ = 1, the SLSE operator can be considered as a MAP estimator associated to the prior pLSE =
1
Z exp

(
− 1

2σ2TVσ
)
, or, equivalently, as the minimizer of a variational formulation including the classical

squared L2 data-fidelity term and the potential TVσ, as pointed out in [29] in a more general framework.
We here specifically investigate some properties of TVσ, that are in particular useful to compare the TVσ
and TV potentials.

Proposition 6 TVσ is C∞.

Proof —Let z ∈ R
n. Having u ∈ 1

2∂TVσ(z) is equivalent to having ‖z′ − (u+ z)‖2 + TVσ(z
′) minimized

by z among all z′ ∈ R
n. Hence z = SLSE(u+ z). But as SLSE is invertible, the solution u is unique and

satisfies u = S−1
LSE(z)− z. This proves the equivalence

u ∈ 1

2
∂TVσ(z) ⇐⇒ u = S−1

LSE(z)− z.

This means that ∂TVσ(z) contains a single point, so that TVσ is differentiable at point z. Furthermore
we have

1

2
∇TVσ = S−1

LSE − I, (32)

and the right-hand term is C∞ thanks to Theorem 3, which concludes the proof. 2

The regularity of TVσ distinguishes it from TV which is singular. Intuitively, this is consistent with
the behavior of the denoising operator in terms of staircasing: in [49] Nikolova proves (under particular
assumptions which are probably not met here) that the differentiability of the regularizing term is a
necessary and sufficient condition to avoid the staircasing effect.

Corollary 2 ∇TVσ is bounded.

Proof —Lemma 4 states that SLSE − I is bounded, say by c > 0 (that is, ‖SLSE(u) − u‖ ≤ c for any
u ∈ R

n). For any v ∈ R
n, letting u = S−1

LSE(v) yields

‖S−1
LSE(v)− v‖ = ‖u− SLSE(u)‖ ≤ c,

and hence S−1
LSE − I is bounded. Writing ∇TVσ = 2(S−1

LSE − I) ends the proof. 2

Let us see a consequence of Corollary 2. By definition of TVσ, û = SLSE(v) minimizes ‖u−v‖2+TVσ(u)
among all u ∈ R

Ω. As TVσ is smooth and convex, this energy can be differentiated and û is characterized
by

2(û− v) +∇TVσ(û) = 0. (33)

Subtracting (33) in two neighboring pixels x and y yields

(û(x)− v(x))− (û(y)− v(y)) = 1

2

(

∇TVσ(û)(y)−∇TVσ(û)(x)
)

,

but as ‖∇TVσ‖ is bounded from above by, say, a constant c′ > 0 (depending on σ), we have

|û(x)− û(y)| ≥ |v(x)− v(y)| − c′.

In particular, if the absolute gap of v between pixels x and y is greater than c′, then there will be also a
gap for û between these pixels. This explains why TV-LSE is able, like ROF, to restore contrasted edges.

We end up this section with an explicit (but hardly tractable) formulation connecting TVσ to TV .

17



Corollary 3 The potential TVσ is linked to TV by the equality

(

I +
1

2
∇TVσ

)−1

= I + σ2∇(p ∗Gσ)

p ∗Gσ
(34)

or, equivalently, by
1

2
∇TVσ =

(

I + σ2∇ log(e−
TV
2σ2 ∗Gσ)

)−1

− I. (35)

Proof —Rewriting (29) gives

SLSE = I + σ2∇(p ∗Gσ)

p ∗Gσ
.

Now, because of (32), we can write

S−1
LSE = I +

1

2
∇TVσ.

Grouping these two equations yields (34), and (35) immediately follows from p = 1
Z e

− TV
2σ2 . 2

There is probably no simple closed formula for TVσ, but (35) is a natural starting point to derive
approximations of ∇TVσ. For instance, it seems that ∇TVσ converges to ∇TV at each point where
TV is differentiable. Obtaining a higher order Taylor expansion of the right-hand side of (35) would
be most helpful to get an intuition of the deviation made by TVσ with respect to TV . Closed-form
approximations of TVσ would be very interesting too, since they could be inserted in a minimization
algorithm to efficiently compute approximations of the TV-LSE operator.

4 Experiments

4.1 An algorithm for TV-LSE

As we saw in (23), the denoised image ûLSE can be written

ûLSE =

∫

uπ(du) =

∫

uπ(u) du, where π(u) =
1

Z
e−

1
2σ2 Ev,λ(u) (36)

is the density of the posterior distribution π. Hence, the computation of ûLSE implies an integration on the
whole space of discrete images RΩ. Surprisingly enough, such an integration over a very high-dimensional
space can be realized in a reasonable time via a Monte-Carlo Markov Chain (MCMC) method. Here we
only give a quick and intuitive explanation of the algorithm described in [40]. A more complete publica-
tion, devoted to the detailed description and the study of this algorithm, is currently in preparation; for
the time being, the interested reader can find more details in [39].

The principle of the MCMC algorithm is the following: if we were able to draw i.i.d. samples from
the posterior distribution π (36), a good approximation of the posterior mean ûLSE could be obtained
thanks to the law of large numbers by averaging all these samples. Now, as sampling directly from π is
computationally out of reach, we build a first-order Markov chain of images (Un)n≥0 (which means that
Un+1 only depends on Un and on other independent random variables) whose stationary distribution
(that is, the asymptotic distribution of Un when n → +∞) is π. The Metropolis-Hastings algorithm
provides a simple way of achieving this. Then an ergodic theorem, well adapted to our framework, states
that the average of the (dependent) samples successfully approximates the mean of π (see [40]).

Let us detail a little bit more the construction of (Un). The first sample U0 is drawn at random
from an initial measure µ0 (e.g., a white noise). Then, the transition from Uk to Uk+1 (for any k ≥ 0)
is realized in two steps. First, an intermediate image Uk+1/2 is generated by adding a uniform random
perturbation to one random pixel of Uk. Second, Uk+1 is chosen to be equal to Uk+1/2 or Uk (that is, the
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transition Uk → Uk+1/2 is accepted or not) according to the following rule: if π(Uk+1/2) > π(Uk), then
Uk+1 = Uk+1/2 (the transition is accepted); otherwise, the transition is accepted only with probability
π(Uk+1)/π(Uk) (if the transition is rejected, then Uk+1 = Uk, that is, nothing happens during this
iteration). The chain is run until reaching a precise convergence criterion, say at iteration n. In the end,
we approximate ûLSE by 1

n

∑n
k=1 Uk.

This mathematical construction can be translated into Algorithm 1, which returns an estimate of
SLSE(u). It makes use of the function Ex

v,λ(u, t), which is defined as follows: call ux,t ∈ R
Ω the image

defined by

∀y ∈ Ω, ux,t(y) =

{

u(y) if y 6= x,

t if y = x,

then Ex

v,λ(u, t) captures in the formula for Ev,λ(ux,t) (see Equation (5)) only the terms that depend on

t. It is not difficult to see that if the ℓ2 norm is used for |Du|, then

∀(x, y) ∈ Ω, E
(x,y)
v,λ (u, t) = (t− v(x, y))2

+ λ
√

(u(x− 1, y)− t)2 + (u(x− 1, y)− u(x− 1, y + 1))2

+ λ
√

(u(x, y − 1)− t)2 + (u(x, y − 1)− u(x+ 1, y − 1))2

+ λ
√

(t− u(x+ 1, y))2 + (t− u(x, y + 1))2, (37)

with the boundary convention that any squared difference term that contains an undefined term (u(z)
with z 6∈ Ω) is replaced with 0.

Algorithm 1 can be optimized in several ways (convergence control by means of two independent
chains, use of an automatic burn-in procedure that skips the first iterations to reduce the bias, automatic
setup of the α parameter, etc.), as explained in [39] and [40]. These references also contain a proof of
convergence of the algorithm.

Algorithm 1 Metropolis-Hastings algorithm for ûLSE
n← 0, S ← 0Ω
draw a white noise image U
repeat
draw x ∼ U(Ω) (uniform distribution on Ω)
t← U(x)
draw t′ ∼ U([t− α, t+ α])

let U(x)← t′ with probability min
(

1, exp
(

−Ex

v,λ(u,t
′)−Ex

v,λ(u,t)

2σ2

))

, see Equation (37)

S ← S + U
n← n+ 1

until convergence is reached
return 1

nS.

4.2 Comparison to the ROF model and the staircasing effect

In Figure 2 to 4, we show signals and images corrupted with additive Gaussian noise, and denoised using
both the proposed TV-LSE method and the classical ROF method. The signal version of both denoisers
consists in regarding the input signal as a one-line (N × 1) image; note that in this case, both ℓ1 and ℓ2

schemes for |Du| lead to absolute values of successive differences. On the one side, several similarities
between the denoised signals or images can be noticed. Indeed, it can be seen that most of the noise is
removed, and that contrasted contours (or large gaps for signals) are preserved. On the other side, the
proposed TV-LSE model shows some differences with respect to the ROF model, the most striking of
which being the avoidance of the staircasing effect, proved in Theorem 4, Section 3.3.2. This can be seen
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for instance in Figure 2, where the affine part of the signal is well restored by TV-LSE. In Figure 3, a
constant image is corrupted with a Gaussian white noise (σ = 20) and then denoised by either ROF or
TV-LSE for different values of the parameter λ, and we can observe that the artificial edges brought by
ROF are avoided by the TV-LSE method, which manages to attenuate the noise in a much smoother
way. Figure 4 again considers the images of Figure 1 and illustrates the good behavior of TV-LSE with
respect to the staircasing effect, whereas the ROF denoiser transforms smooth regions into piecewise
constant regions with spurious contrasted edges. Note also that TV-LSE denoised images have a more
“textured” aspect than ROF denoised images. This heuristically agrees with the injectivity of the TV-
LSE denoiser (Lemma 3 in Section 3.3.2), according to which two versions of the noisy image (2 different
noise realizations) cannot lead to the same denoised result: there must remain some trace of the initial
noise in the denoised image.

noisy ROF TV-LSE

Figure 2: Denoising of a simple synthetic signal. A triangle-shaped signal (left figure, red curve) is
corrupted by an additive white Gaussian noise, and the resulting signal (left, green curve) is then denoised using
the ROF (middle) and TV-LSE (right) methods. In the ROF result, the noise has been wiped off on the initially
constant parts of the signal, but a strong staircasing effect appears on the slope. The TV-LSE method behaves
more smoothly: no staircasing appears on the slope and the noise is attenuated (but not completely removed) on
the initially constant parts. The parameters of the ROF and TV-LSE methods have been set in order to equalize
the method noise level (ℓ2 distance from the noisy signal to the result).

4.3 Role of the hyperparameters

As clearly appears in Equation (23), the TV-LSE model involves two hyperparameters: the (known or
estimated) noise standard deviation σ and the regularization parameter λ balancing the data-fidelity term
and the regularity term. In comparison, the ROF model depends on the latter only.

Figures 5 and 6 show how the TV-LSE denoised image changes when λ is tuned while maintaining
a fixed value of σ (Figure 5), or when σ is tuned with a fixed value of λ (Figure 6). One can see in
Figure 5 that fixing σ > 0 and letting λ go to 0 makes the image look like the noisy initial image, and
increasing λ makes the image smoother until it becomes a constant. One can also see in Figure 6 that
fixing λ > 0 and letting σ go to 0 makes the image look like the ROF denoised image containing some
staircasing effect, and that when σ gets larger, the image gets closer to the noisy initial image. All these
observations agree with the asymptotic results of Section 3.2.

The λ parameter is useful since it permits to easily compare ROF and TV-LSE denoising methods.
But a more relevant regularity parameter is β = λ

2σ2 , which corresponds to the inverse temperature in
the prior probability (Equation 6) motivating the introduction of TV-LSE. Thus considering σ and β as
the couple of hyperparameters of the model allows us to better dissociate the noise and regularization
parameters. In Figure 7 a part of a noisy Lena image is denoised using TV-LSE with a constant β and
increasing values of σ. The denoised image goes from the initial noisy image to a flat and smooth image:
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noise (σ = 20) ROF (λ = 20.3) TV-LSE (λ = 50, σ = 20)

noise (enhanced contrast) ROF (λ = 28.4) TV-LSE (λ = 100, σ = 20)

Figure 3: Denoising of a pure noise image. A constant image is corrupted by a white Gaussian noise with
standard deviation σ = 20 (top-left image, and bottom left image after an affine contrast change). On columns 2
and 3 we show respectively the results of ROF and TV-LSE methods on this image, the gray-level scale being the
same for all images of a given row. As in Figure 2, the TV-LSE and ROF parameters are set in order to equalize
(inside each row) the method noise levels of both methods. For the low denoising level (first row), isolated pixels
remain in the ROF result (this can be understood by the fact that ROF is not far from being a ℓ0 (sparse) recovery
operator, and a single pixel with outstanding value has a relatively small cost for the ℓ0 energy), which does not
happen for TV-LSE. Furthermore, a staircasing effect (artificial edges) is clearly visible in the ROF result, while
TV-LSE manages to maintain a smoother image. For the high denoising level (second row), ROF acts almost like
a segmentation method, and breaks the domain into flat artificial regions, while the TV-LSE result gets uniformly
smoother. This experiment clearly illustrates the different behavior of the ROF and TV-LSE methods on flat
regions, and in particular the fact that the TV-LSE model, though being based on the TV operator, completely
avoids the staircasing effect.
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noisy ROF TV-LSE

Figure 4: No staircasing effect with TV-LSE. We experimentally check that the TV-LSE method does not
create staircasing artifacts. The left column shows parts of Lena and Barbara classical images, after they have been
corrupted with an additive white Gaussian noise (σ = 10). The right column shows the corresponding TV-LSE
denoised images with (σ, λ) = (10, 40), while the middle column shows the ROF denoised images, with a value
of λ that leads to the same method noise level in each case (from top to bottom: λMAP = 25.6, λMAP = 20.3,
λMAP = 29.0, λMAP = 26.9). The main difference between the two methods is clearly the staircasing effect,
which does not occur in TV-LSE images but introduces spurious edges in the ROF images.
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σ
=

1
0

λ = 2 λ = 8 λ = 32 λ = 128

Figure 5: A noisy image is processed by TV-LSE with σ = 10 (which corresponds to the standard deviation of
the noise) and increasing values of λ. When λ is small (left), the denoised image ûLSE is very close to the noisy
image v; as λ increases, the noise gradually disappears, the homogeneous regions being smoothed out without
staircasing; then, as λ increases further, the texture is erased, and the result gets close to a piecewise smooth
image (right).

β really acts as the regularizing parameter. Notice that inversely, fixing σ and increasing β would be
equivalent to the case of Figure 5 (fixed σ and increasing values of λ).

To compare precisely the interest of TV-LSE over ROF in terms of image denoising (see Figure 8)
we fixed the level of denoising, measured by the L2 norm of the residual image v− ûLSE (method noise),
and considered increasing values of σ (for a given σ there exists at most one value of λ such that the
desired level of denoising is reached, and this value increases with σ). For σ = 0, this corresponds to
ROF denoising, but as σ increases we can observe the benefit of using TV-LSE in terms of staircasing.
The fact that staircasing artifacts gradually disappear seems in contradiction with Theorem 4, stating
that staircasing vanishes as soon as σ is positive; in fact it is not, and this simply comes from the fact
that the (classical) definition of staircasing used in Theorem 4 is a qualitative (yes-no) property, while
our perception is more quantitative (difference between gray level variations in flat zones and along
their boundaries). By the way, it would certainly be interesting to characterize the limit TV-LSE image
obtained by sending σ → +∞ while maintaining the method noise level as in Figure 8. Indeed, this
limit image would define a filter controlled by a single parameter, the method noise level. In practice, we
observed that ordinary values of σ (and in particular, choosing for σ the known or estimated noise level)
lead to satisfactory results in the sense that they benefit from the good properties of the TV model (in
particular edge preservation) without suffering from the staircasing effect.

λ
=

30

σ = 1.25 σ = 5 σ = 20 σ = 80

Figure 6: A noisy image is processed by TV-LSE with λ = 30 and increasing values of σ. When σ is small
(left), the denoised image ûLSE is very close to the MAP-denoised image ûMAP(λ), with some texture erased
and some staircasing visible: the cheek and hat parts contain boundaries which do not exist in the original Lena
image. As σ increases, ûLSE looks more and more like the noisy image, which is consistent with the convergence
ûLSE(σ, λ) → v when σ → ∞.
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β
=

λ
2
σ
2
=

0.
1
5

σ = 1.25 σ = 5 σ = 20 σ = 80

Figure 7: A noisy image is processed by TV-LSE with β = λ

2σ2 = 0.15 fixed and increasing values of σ. For
small values of σ, the denoised image is close to the noisy image (left). As σ increases, the image is regularized,
the edges are preserved but the texture is gradually erased. When σ further increases (right), the denoised image
is completely blurred out.

‖û
L
S
E
(σ
,λ

)
−
v
‖
=

9

σ = 0 σ = 2.5 σ = 10 σ = 40

Figure 8: The level of denoising ‖ûLSE(σ, λ) − v‖ = 9 being fixed, TV-LSE is applied to a noisy image v for
different values of σ. The value σ = 0 (left) corresponds to ROF: the image noise has been well cleaned, but
some texture is erased, and staircasing is clearly visible (on the cheek for instance). As σ increases, staircasing
disappears and the aspect of the denoised image becomes more natural.
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Figure 9 gives a 2-dimensional view of the roles of the parameters σ and λ. The visual quality of
the denoised image is good for medium values of σ and λ (typically σ = 10, corresponding to the noise
level, and λ = 40), because it avoids the staircasing effect while maintaining the main structure of the
image. The denoising quality is quite robust to the choice of σ, which allows for some inaccuracy in the
estimation of the noise level.

λ
=

0
λ
=

10
λ
=

40
λ
=

16
0

σ = 0 σ = 5 σ = 10 σ = 20

Figure 9: Effect of the two parameters λ and σ on TV-LSE. A noisy version of Lena image (Gaussian
white noise with standard deviation equal to 10) is processed with TV-LSE for various values of λ and σ. First
row: λ = 0 (the TV-LSE image is equal to the noisy image); second row: λ = 10; third row: λ = 40; last row:
λ = 160. First column: σ = 0 (the TV-LSE denoised image corresponds to ROF); second column: σ = 5; third
column: σ = 10; last column: σ = 20.

4.4 Comparison to other TV-based denoising methods

In this section, we propose to compare TV-LSE to other denoising methods through numerical experi-
ments. We limit ourselves to TV-based methods, since the aim of this paper is not to bring a general and
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state-of-the art denoising method, but rather to explore new possibilities for Total Variation as a model
for images, and in particular qualitative properties of the corresponding denoising algorithms. This is
why we shall examine and discuss the visual properties of the denoised images rather than trying to
blindly rank the different methods using classical metrics like PSNR or SSIM, which are poor predictors
of the visual quality of the results.

Given a noisy image v, we propose to compare ûLSE(σ, λ), the result of TV-LSE applied to v with
parameters σ and λ, to:

• ROF denoising, alias TV-MAP: the denoised image is denoted by ûMAP(λMAP ). The parameter
λMAP is tuned in such a way that the denoising level ‖v− ûMAP(λMAP )‖ equals that of ûLSE(σ, λ),
‖v − ûLSE(σ, λ)‖;

• TV-barycenter: in order to be able to compare ûLSE(σ, λ) and ûMAP(λ) with the same value of λ
(that is, for which both methods deal with the same energy Ev,λ), we propose to combine ûMAP(λ)
linearly with the noisy image v via

ûbary = t ûMAP(λ) + (1− t) v with t =
‖v − ûMAP(λ)‖
‖v − ûLSE(σ, λ)‖

.

We obtain a barycenter of ûMAP(λ) and v which has the desired denoising level. The choice of
this method is also motivated by the observation that the quality of denoising often increases both
visually and in PSNR when deviating the ROF estimate towards v (in other terms, visual quality
is better when noise and texture are not completely removed).

• TV-ε : it is well-known that smoothing the Total Variation and embedding it in the usual vari-
ational framework leads to a staircasing-free denoising model [49]. More precisely, we can define
generalizations of TV on R

Ω by

TVf (u) =
∑

x∈Ω

f(|Du|), (38)

for specific smooth functions f : R → R that approximate the absolute value function, and then
denoise an image v by minimizing

Ef (u) = ‖u− v‖2 + λTVf (u). (39)

The smoothness of f in the neighborhood of 0 implies a regular processing of small gradients and
avoids staircasing. A natural example of such a function f is

fε : x 7→
√

ε2 + x2 with ε > 0,

which is convex and smooth. This leads to a denoising method here called TV-ε, which is com-
putable by a simple gradient descent. The parameter ε roughly corresponds to the minimal gradient
magnitude of a discontinuity in the denoised image. We choose to set ε = 10 for images with gray
levels lying in [0, 255], while the parameter λ = λε is such that the denoising level of TV-LSE is
reached.

• TV-Huber : another possible function f for (38) and (39), discussed in [64] for instance, is the
so-called Huber norm

fα : x 7→
{

1
2αx

2 if |x| ≤ α,
|x| − α

2 if |x| > α.

This leads to a denoising model here called TV-Huber model, which also has the property of avoiding
the staircasing effect. A fast primal-dual algorithm can be used to compute the minimum of Efα

[17]. As ε in TV-ε denoising, α corresponds to a minimal gradient for discontinuity, and is set to
10. The regularization parameter λ = λHuber is such that the denoising level of TV-LSE is reached.
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• TV-L1: we consider the minimizer of

E(u) = ‖u− v‖1 + λL1 TV (u),

where ‖ · ‖1 is the L1-norm. The only change of the fidelity term makes it especially adapted to
remove impulse noise and makes the denoiser become contrast invariant [24, 48].

• local-TV : it has been proved in [41] that another way of avoiding staircasing in a TV framework
is to “localize” it: denoising the pixel x of a noisy image v by the local-TV filter consists of first,
extracting a patch v(Wx) centered at x from the image, then denoising the patch by ROF with a
given regularizing parameter λloc, independent from x, and finally assigning to the denoised image
at x the central value of the denoised patch. The pixels of the patch can be weighted, leading to
the more general scheme

ûloc(x) = u(x) where u ∈ R
Wx minimizes

∑

y∈Wx

ω(y − x)(u(y)− v(y))2 + λloc TV (u),

for each pixel x. This scheme (with Gaussian or constant weights ω(h) for instance) is able to avoid
staircasing, in the sense that if all the patches of a given region have small enough variance, then
the filter is equivalent to a blurring linear filter on this region [41]. In our present experiments, we
use 5× 5 patches, and Gaussian weights ω(h) = exp(−‖h‖2/(2a2)) with a = 2. The parameter λloc
is chosen such that the denoising level is that of TV-LSE.

Figure 10, 11 and 12 zoom on different parts of the Lena image processed with all the methods
listed above. As expected, ROF results present strong staircasing artifacts, and the added noise in TV-
barycenter does not manage to remove them. The TV-L1 model, due to its morphological invariance
(invariance with respect to increasing contrast changes), is more suitable for granularity analysis or
impulse noise removal than for piecewise smooth image retrieval, and the resulting images show even
stronger staircasing artifacts. Among other methods, the similarity between the results of TV-Huber
and TV-LSE is striking, both visually and qualitatively: there is no staircasing, a faithful reconstruction
of contrasted edges, and a good overall quality. TV-ε also avoids staircasing and is able to reconstruct
edges, but is not as good as TV-Huber and TV-LSE. Local-TV looks quite different: it is sharper than
TV-LSE, but several spurious contours or spikes are still visible as in the ROF image.

We observed in our experiments that the results obtained with TV-Huber and TV-LSE could be
very similar. We do not have a full explanation for this, but the results obtained in Section 3.3 shed
an interesting light. Indeed, we showed that TV-LSE is a MAP estimator associated to the smooth
prior potential TVσ (see Definition 4), which seems, according to (35), to be a regularized version of TV
converging to TV when σ goes to 0. Hence, it is not completely unexpected that replacing TV with a
regularized prior as in TV-Huber leads to results that resemble those of TV-LSE, at least for small values
of σ. It would be interesting to determine, among all regularized version of the gradient norm under the
form ϕ(‖Du‖), which function ϕ leads to the best approximation of the TV-LSE operator for a given
choice of σ and λ.

5 Conclusion

In this paper, we studied the TV-LSE variant of the Rudin-Osher-Fatemi (ROF) denoising model, which
consists in estimating the expectation of the Bayesian posterior distribution rather than the image with
highest posterior density (MAP). We proved, among other properties, that this denoising scheme avoids
one major drawback of the classical ROF model, that is, the staircasing effect. This shows in particular
that the staircasing observed with the classical ROF model is not a consequence of the TV term, but
rather a model distortion due to the MAP framework, as Nikolova pointed out in [51]. As mentioned in
the introduction, the posterior expectation often goes along with a better preservation of local statistics:
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noisy ROF TV-barycenter TV-L1

TV-LSE TV-Huber TV-ε local-TV

Figure 10: Comparison of TV-LSE denoising to other TV-based denoising methods. The Lena image
is corrupted with an additive Gaussian noise with standard deviation equal to 10, and the resulting noisy image
(detail on top, left) is first processed with TV-LSE using the parameters (σ, λ) = (10, 30), then processed with
the other above-mentioned methods. The fixed parameters for these other methods are: ε = 10 for TV-ε, α = 10
for TV-Huber, while for local-TV 5 × 5 patches are used together with Gaussian weights with parameter a = 2.
The remaining parameter of each method is adjusted in such a way that the resulting method noise (norm of
the estimated noise image) equals the one of TV-LSE, which leads to: λMAP = 17.03 for ROF, t = 0.87 for
TV-barycenter, λL1 = 0.80 for TV-L1, λHuber = 28.78 for TV-Huber, and λloc = 15.54 for local-TV. The 3
results appearing in the first row (ROF, TV-barycenter and TV-L1) all suffer from staircasing artifacts, visible
in particular as spurious contrasted edges. On the second row, staircasing is avoided but TV-LSE and TV-Huber
lead to better quality (and very similar) images compared to TV-ε and local-TV. Note that these pictures only
show a detail of the Lena image (processed as a whole). Zooms on other details are given in Figure 11 and 12.
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noisy ROF TV-barycenter TV-L1

TV-LSE TV-Huber TV-ε local-TV

Figure 11: A second detail of Lena, denoised with various TV-based methods, as in Figure 10. The conclusions
are similar: notice in particular how the stripes (top-left image part) are better restored with the TV-LSE and
TV-Huber methods.

noisy ROF TV-barycenter TV-L1

TV-LSE TV-Huber TV-ε local-TV

Figure 12: A third detail of Lena, denoised with various TV-based methods, as in Figure 10.
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this is somehow the case for the gradient norm of the denoised images, that, in the TV-LSE variant,
avoids the strong peak in 0 observed with the ROF model.

These theoretical properties have a direct consequence on the visual quality of the denoised images,
that show a nice combination of sharp edges (the most interesting property of the TV functional) and the
absence of staircase (piecewise constant) regions. In that sense, the TV-LSE model favorably compares
to other TV-based denoising methods, as was shown in Section 4. Numerical experiments also revealed
that the results of the TV-LSE model can be, for a certain range of parameters, very close to the
images produced by the TV-Huber method, which sheds light on the latter model, and more generally
on modifications of the ROF energy that would lead to good approximations of the TV-LSE method.

Beyond its use in the TV-LSE denoising variant, the theoretical and numerical framework introduced
here opens interesting perspectives, not only for other restoration tasks such as deblurring, zooming,
inpainting, etc. that could also be reformulated in a TV-LSE setting, but also because a very similar
algorithm could be used to compute the LSE variant associated with other (non-necessarily convex) func-
tionals, or to explore other statistics (median, maximum of marginal distribution, etc.) of the posterior
distribution.

A Appendix

A.1 Mild assumptions for TV scheme

Throughout the paper, TV is assumed to be of the form

TV (u) =
∑

x∈Ω

√

(Du(x)1)2 + (Du(x)2)2 (ℓ2 formulation)

or
TV (u) =

∑

x∈Ω

(|Du(x)1|+ |Du(x)2|) (ℓ1 formulation).

But the only requirements we really need in the results of Section 3 are the following (and are met by
both the ℓ1 and ℓ2 formulations):

(A1) The TV operator maps RΩ on R ∪ {+∞}; it is non-negative, convex and Lipschitz continuous (so
that its domain {u ∈ R

Ω, TV (u) < +∞} has a non-empty interior).

(A2) The TV operator is positively homogeneous, i.e. for every u ∈ R
Ω and every α ∈ R, we have

TV (αu) = |α|TV (u).

(A3) The TV operator is shift-invariant, i.e. for every c ∈ R and every u ∈ R
Ω, we have TV (u + c) =

TV (u).

(A4) The TV operator satisfies the discrete form of Poincaré inequality, i.e. there exists C > 0 such
that

∀u ∈ R
Ω, ‖u− ū‖ ≤ C TV (u),

where ū is the mean of u on Ω.

In particular, any norm on the space E0 of zero mean images, extended by shift invariance on R
Ω,

suits to these assumptions. For example, if (ϕj,k) is any wavelet basis on the finite-dimensional space
R

Ω, the function

Fp,q;s(u) =




∑

j

2−js/2

(
∑

k

|〈u, ϕj,k〉|p
)q/p





1/q

,

corresponding to the discretization of a homogeneous Besov semi-norm ‖ · ‖Ḃs
p,q

, fits the assumptions.
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A.2 Proof of Lemma 1

Lemma 5 Let P ∈ R[X1, . . . , Xn] be a polynomial. Let p be a bounded probability density function. Let
FP : Rn → R be such that

FP : v 7→
∫

Rn

P (u1, . . . , un) e
−

‖u−v‖2

2σ2 p(u) du. (40)

Then FP is continuous and differentiable. Its derivative along the direction h is given by

dFP (v)(h) =

∫

Rn

〈u− v, h〉
σ2

P (u1, . . . , un) e
−

‖u−v‖2

2σ2 p(u) du.

Proof —In this proof, when u ∈ R
n, we shall write P (u) for P (u1, . . . , un) for concision. Let us start

by showing that FP is continuous, by applying the continuity theorem under the integral sign. Let g be
defined by

g : (u, v) 7→ P (u) e−
‖u−v‖2

2σ2 p(u) (41)

The mapping v 7→ g(u, v) is continuous. Now, note that if h is a unit vector of Rn then

|t| < ε ⇒ ‖u− v − th‖2 ≥ 1

2
‖u− v‖2 − ε2. (42)

Let v ∈ R
n and ε > 0. Let us denote B(v, ε) the set of v′ satisfying ‖v′ − v‖ ≤ ε. The mapping g(u, ·)

has an upper bound on B(v, ε) thanks to (42) given by

∀v′ ∈ B(v, ε), |g(u, v′)| ≤ |P (u)|e−
1
2
‖u−v‖2−ε2

2σ2 p(u),

which is an upper bound independent of v′ ∈ B(v, ε), and g(u, ·) is in L1(Rn) since p is bounded (i.e.
v 7→ g(u, v) is locally (in v) uniformly bounded by an integrable function). Hence the continuity theorem
under the integral sign applies, and FP is continuous.

To prove the differentiability of FP , let h be a unit vector of Rn and ε > 0. The function

t ∈ (−ε, ε) 7→ P (u) e−
‖u−v−th‖2

2σ2 p(u),

is C1, with derivative

t 7→ 〈u− v, h〉 − t
σ2

P (u) e−
‖u−v−th‖2

2σ2 p(u),

and satisfies, thanks to (42),
∣
∣
∣
∣

〈u− v, h〉 − t
σ2

P (u) e−
‖u−v−th‖2

2σ2 p(u)

∣
∣
∣
∣
≤ ‖u− v‖+ ε

σ2
|P (u)| e−

‖u−v‖2

2σ2 e
ε2

2σ2 p(u).

This bound is independent of t (provided that |t| < ε) and h ∈ B(0, 1), and is integrable with respect
to u ∈ R

n since the Gaussian distribution admits finite moments of order 1 and 2. Now thanks to the
derivation theorem under the integral sign, the mapping t 7→ FP (v+ th) is differentiable at 0, then FP is
differentiable and its differential writes

dFP (v)(h) =
∂

∂t

∫

Rn

P (u) e−
‖u−v−th‖2

2σ2 p(u) du

∣
∣
∣
∣
t=0

=

∫

Rn

〈u− v, h〉
σ2

P (u) e−
‖u−v‖2

2σ2 p(u) du,

which was the desired result. 2

Proof of Lemma 1 — SLSE is the division of two functions of the type FP (40), with P = X for the
numerator and P = 1 for the denominator (leading to a positive value). Thanks to Lemma 5, FP is
continuous and differentiable in both cases, and finally SLSE benefits from this regularity too.
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Again thanks to Lemma 5,

σ2 dSLSE(v)(h) =

∫
〈h, u− v〉u e−

‖u−v‖2

2σ2 p(u) du
∫
exp(−‖u−v‖2

2σ2 ) p(u) du
−
∫
〈h, u− v〉 e−

‖u−v‖2

2σ2 p(u) du
∫
e−

‖u−v‖2

2σ2 p(u) du

∫
ue−

‖u−v‖2

2σ2 p(u) du
∫
e−

‖u−v‖2

2σ2 p(u) du

=

∫
〈h, u〉u e−

‖u−v‖2

2σ2 p(u) du
∫
exp(−‖u−v‖2

2σ2 ) p(u) du
−
∫
〈h, u〉 e−

‖u−v‖2

2σ2 p(u) du
∫
e−

‖u−v‖2

2σ2 p(u) du

∫
ue−

‖u−v‖2

2σ2 p(u) du
∫
e−

‖u−v‖2

2σ2 p(u) du
.

The differential dSLSE(v) can be interpreted as a covariance matrix

σ2 dSLSE(v) = E[ZvZ
T
v ]− EZv EZT

v = CovZv,

where Zv follows a distribution with density qv(u) =
1
Z e

−
‖u−v‖2

2σ2 p(u). Indeed, for each h ∈ R
n,

(CovZv)h = E[ZvZ
T
v h]− EZvE[Z

T
v h]

= E[〈h, Zv〉Zv]− E 〈h, Zv〉EZv,

where we can recognize σ2 dSLSE(v)(h). In particular, dSLSE(v) is symmetric with non-negative eigen-
values. Let us prove now that dSLSE(v) is positive-definite. To that end, let us assume that there exists
a vector h 6= 0 in the kernel of dSLSE(v), i.e. such that

(CovZv)h = 0.

Then multiplying on the left by hT yields

hT (CovZv)h = var 〈h, Zv〉 = 0.

But the support of distribution qv satisfies

Supp(qv) = Supp(p) = {v ∈ R
n | f(v) <∞},

which has non-empty interior. Then 〈h, Zv〉 cannot have a zero variance, and we obtain a contradiction.
Finally dSLSE(v) is a symmetric positive-definite matrix. 2

A.3 Proof of Lemma 4

For every v ∈ R
n, the triangle inequality applied to SLSE(v)− v leads to

‖SLSE(v)− v‖ ≤
∫
‖u− v‖e−

‖u−v‖2

2σ2 p(u) du
∫
e−

‖u−v‖2

2σ2 p(u) du

≤
∫
‖u‖e−

‖u‖2

2σ2 p(v + u) du
∫
e−

‖u‖2

2σ2 p(v + u) du
.

Now since the potential f = − log p of the prior probability is Lipschitz continuous, we have

∃k > 0, ∀u, v ∈ R
n, |f(v + u)− f(v)| ≤ k‖u‖,

so that
p(v)e−k‖u‖ ≤ p(v + u) ≤ p(v)ek‖u‖,

each side remaining positive. This allows us to bound the expression by

‖SLSE(v)− v‖ ≤
∫
‖u‖e−

‖u‖2

2σ2 ek‖u‖p(v) du
∫
e−

‖u‖2

2σ2 e−k‖u‖p(v) du
,

32



which simplifies into

‖SLSE(v)− v‖ ≤
∫
‖u‖e−

‖u‖2

2σ2 ek‖u‖ du
∫
e−

‖u‖2

2σ2 e−k‖u‖ du

which is finite and independent of v, which proves the boundedness of SLSE − I.
If the dimension n = |Ω| is equal to 1, then SLSE is continuous and SLSE−I is bounded, and thanks to

the intermediate value theorem, SLSE is onto. Now if n ≥ 2, as SLSE− I is bounded, it is straightforward
that

lim
‖v‖→∞

| 〈SLSE(v), v〉 |
‖v‖ = +∞, (43)

so we can apply Corollary 16 of [11]: since SLSE is continuous and satisfies (43) and

∀v1, v2 ∈ R
n, 〈SLSE(v2)− SLSE(v1), v2 − v1〉 ≥ 0

(monotony in the sense of Brezis, which is a weaker form of (31)), we conclude that SLSE is onto. 2
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