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Abstract. In the context of Alzheimer’s disease (AD), state-of-the-art
methods separating normal control (NC) from AD patients or CN from
progressive MCI (mild cognitive impairment patients converting to AD)
achieve decent classification rates. However, they all perform poorly at
separating stable MCI (MCI patients not converting to AD) and pro-
gressive MCI. Instead of using features extracted from a single temporal
point, we address this problem using descriptors of the hippocampus
evolutions between two time points. To encode the transformation, we
use the framework of large deformations by diffeomorphisms that pro-
vides geodesic evolutions. To perform statistics on those local features in
a common coordinate system, we introduce an extension of the Kéarcher
mean algorithm that defines the template modulo rigid registrations, and
an initialization criterion that provides a final template leading to better
matching with the patients. Finally, as local descriptors transported to
this template do not directly perform as well as global descriptors (e.g.
volume difference), we propose a novel strategy combining the use of
initial momentum from geodesic shooting, extended Karcher algorithm,
density transport and integration on a hippocampus subregion, which is
able to outperform global descriptors.

Keywords: Brain imaging, population analysis, Alzheimer’s disease,
geodesic shooting, time-series image data, Karcher mean

1 Introduction

Large scale population studies aim to improve the understanding of the causes
of diseases, define biomarkers for early diagnosis, and develop preventive treat-
ments. For Alzheimer’s disease, several classification strategies have been pro-
posed to separate patients according to their diagnosis. These methods can be
split into three categories: voxel-based [1-7], cortical-thickness-based [1, 8, 9] and
hippocampus-based [10-12] methods. While decent classification rates can be
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achieved to separate AD from CN or CN from progressive MCI (MCI patients
converting to AD), all methods perform poorly at separating stable MCI (MCI
patients non converting to AD) and progressive MCI. A recent review comparing
these methods can be found in [13].

In this paper, we investigate the use of longitudinal evolution quantifiers ei-
ther local or global to separate between stable MCI and progressive MCI. To
extract information between two successive time-points, we use a one-to-one
deformation mapping the first image onto the second one. Different registration
algorithms are available to compute plausible deformations in this context. How-
ever, only one, the large deformations via diffeomorphisms (LDD) [14], provides
a Riemannian setting that enables to represent the deformations using tangent
vectors: initial velocity fields or equivalently initial momenta. This can be used
in practice to retrieve local information and to perform statistics on it as pre-
sented in [15, 16]. In this direction, it is worth mentioning paper [17] which shows
the correlation between principal modes of deformations and diagnosis. In order
to compare this information among the population, we need to define a com-
mon coordinate system. This implies (1) the definition of a template and (2) a
methodology for the transport of the tangent vector information.

In the literature, point (1) is addressed via different methods [18, 19]. Combin-
ing geodesic shooting algorithm presented in [20], we chose to develop a Kércher
method to average a set of shapes. A first approach has been presented in [21].
A natural requirement on the Kércher average is that it could be invariant with
respect to rigid transformations of each subject of the population. However, this
is not the case in [21]. One of the contribution of the present paper is to propose
a methodology to define such invariant Kércher averages. We also use a finer
strategy to update the deformations at each iteration of the algorithm. Point
(2) benefited in each different settings from various contributions that go be-
yond the standard transport actions. The key-point in our application is that
inter-subject variability is much higher than the longitudinal variation so that
one expects the statistical results to be strongly influenced by the choice of the
transport. To address this issue, parallel transport has been proposed in the
LDD setting in [22] and it has been applied to longitudinal data discrimination,
very similar to our problem, in [23]. Note that parallel transport preserves the
norm of the velocity field and since this norm is not invariant with respect to
rescaling, the population variability is still contained in the parallel transport
of the tangent information. For other frameworks, such as Log-demons, Schild’s
ladder approach has been introduced in [24] to extend parallel transport to their
Lie-group setting. In any case, we consider the question of transporting tangent
information as still open and this motivates us to compare different transport
strategies in the classification step.

Section 2 introduces the global pipeline used to perform statistics from lo-
cal descriptors of hippocampus deformations, with details on geodesic shooting,
population template and transport. Section 3 presents the data used and the
numerical results. Section 4 concludes the paper.
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2 Methods

2.1 Global pipeline

Let us assume we have a population of patients and the binary segmentation
of their hippocampus at two different time points. Let us also assume that all
patients have the same diagnosis at the first time point, and only a part of them
have converted to another diagnosis at the second time point. Our goal is to
compare patient evolutions, and classify them with regard to stable diagnosis
versus progressive diagnosis.

We use the pipeline summarized in Fig. 1 to compute descriptors of pa-
tient evolutions in a common space. First, the evolution descriptors is computed
locally for each patient (independently). To be able to compare these descrip-
tors, one needs to transport them in a common space. To do so, a population
template is computed, towards which all the local descriptors are transported.
Finally, classification is performed to separate progressive from stable patients.
Several local descriptors were tested: initial momentum and initial velocity field
of geodesic shooting. The use of subregion and integration were also introduced.
As for global shape deformation descriptors, volume variation and relative vol-
ume variation were tested.

Input Local Transported
im;) s deformation > deformation —| Classification
g descriptors descriptors
Population
template

Fig. 1: Four steps are needed to classify patient evolutions using local descriptors
of shape deformations: (1) the local descriptors are computed for each patient
independently, (2) a population template is computed, (3) all local shape defor-
mation descriptors are transported towards this template, (4) SVM classification
is performed for local descriptors on the whole domain and on a subregion, and
local descriptors integrated on the whole domain and on a subregion, and com-
pared with results using global descriptors.

2.2 Geodesic shooting
The LDD framework introduces the following minimization problem:
1 1
argmin  —|/Io (;507’1 —J|3: + )\/ o | dt (1)
veL2([0,1),V) 2 0

where [ is the source image, J the target image, and v; is a time dependent ve-
locity field that belongs to a reproducing kernel Hilbert space of smooth enough
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vector fields. The deformation @ is given by the flow of v;. Namely, for any = € (2
the domain of the images,

Ordo.t(z) = vi(do.t(x))
(ﬁoﬁo(l‘) =X.

The first term in formula (1) is a similarity term controlling the matching qual-
ity whereas the second one is a smoothing term controlling the deformation
regularity. The minimization problem (1) can be reformulated using a shoot-
ing formulation on an initial condition which is the so-called initial momentum
denoted P(0), a scalar field in the image space, as follows:

1
argmin o [|] o o1 — J72 + MVI(0)P(0), K  VI(0)P(0)) 2 (2)
P(0)

subject to the geodesic shooting equations:

I +VI-v=0
/P +V-(Pv)=0 (3)
v+ K*VIP=0,

where [ is the source image, v; the velocity field, P the momentum, K the
translation-invariant kernel of the reproducing kernel Hilbert space, and * the
convolution operator. In order to solve the new optimization problem (2), we use
the methodology described in [20]. Note that the choice of the kernel matters for
retrieving plausible deformations and we refer to [25] for an extensive discussion
on the parameter choices.

For each patient, a two-step process was performed to encode the defor-
mations of the hippocampus shape evolution, as described in Fig. 2. First the
hippocampus from the second time point was rigidly registered back to the
first time point. Second, the geodesic shooting was performed from the first time
point towards the registered second time point. Inital momenta and initial veloc-
ity fields from different patients are local descriptors that were used to compare
hippocampus evolutions.

2.3 Population template

As mentioned in section 2.1, local descriptors of hippocampus evolutions need to
be transported in a common space prior to any statistical analysis. We introduce
two modifications of the standard Kércher mean algorithm [21]: (1) the popula-
tion template is computed up to rigid transformations and (2) the template is
regenerated from a reference image at every iteration. We propose the following
optimization problem:

K = argmin Zd(K, Lo R M2, (4)
K,R1,....Rn
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Step 1. Rigid registration Step 2. Shooting
Input: Input:

— source image: J (follow-up, t = to + 12 months) — source image:

— target image: I (screening, ¢t = to) — target image: R(J)
Output: Output:

— rigid transformation R — initial momentum P°

&0 ¢ N

Fig. 2: For each patient, the initial momentum encoding the hippocampus evo-
lution is computed in a two-step process. First, the second time point (t = 12
months) is rigidly registered to the first time point (¢ = 0). Second, the geodesic
shooting is computed from the first time point to the previously rigidly registered
second time point.

where {I1,...,I,} are the population images, {Ry, ..., R,} are the rigid trans-
formations registering the I; towards K.

The proposed associated algorithm initializes the deformation field gener-
ating the template from the reference as the identity: ug = Id. Each Karcher
iteration is then composed of four steps described in Fig. 3.

The first modification is introduced because current implementations of LDD
algorithms are not invariant by the action of the group of orthogonal linear
transformations, so the resulting template reflects the orientation variability of
the population. Numerically speaking, such a modification can potentially help
avoiding convergence issues of the geodesic shootings (if the template estimate
and the image are too far with respect to the LDD metric), and reduce computa-
tion time. The second modification of the standard Kércher algorithm is purely
motivated by numerical considerations. The standard formulation smoothes the
template estimate at each iteration (as K41 is computed by shooting from Kj).
In our algorithm, the template is regenerated from the reference image at each
step, so that the template estimate keeps sharp boundaries.

2.4 Tangent information and associated transport

The local descriptors computed for each patient as explained in section 2.2 need
to be transported in a common coordinate space: the space of the Karcher av-
erage defined in section 2.3. We chose transport rules that only depend on the
final deformation (it does not include parallel transport which depends on the
chosen path). A two-step process was then used to transport local descriptors
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1. Rigid registration 2. Shooting to images
R1 I)
3. Shooting with PO 4. Update Karcher estimate

[ F o] o | [(Re] ] e |

Fig. 3: Each Kércher iteration is composed of four steps: (1) the images are rigidly
aligned towards the current Kércher mean estimate, (2) geodesic shootings from
the current Karcher estimate K; towards all the registered images are computed
(3) geodesic shooting from K, using PO = L3 P? generates a deformation
field ugmp, and (4) the composed deformation field wiy1 = wUpmyp © u; is used to
compute the updated estimate from the reference image.

of hippocampus evolutions to the template space (Fig. 4). First, the screening
hippocampus was registered towards the template rigidly [26] then non-rigidly
[27]. The resulting deformation is denoted by ¢. Second, this transformation was
used to transport the local descriptors of hippocampus deformations towards the
template. The transport itself depends on the nature of the quantity transported.
For instance, we call image transport the standard transformation of an image
by the action of a diffeomoprhism ¢:

Itranspm’ted(x) = Ilocal o ¢71(I) . (5)

From the mathematical point of view, the momentum is an adjoint variable to
the image. As a consequence, it is transported by the adjoint action of the group
which reduces to the standard transport for a density n, defined by:

ntransported(l') = det(JaC¢—1 (fﬁ)) Niocal © d)71($) . (6)

On the theoretical side, this transport preserves geodesics, due to the Ad invari-
ance of momentum maps: we refer the reader to [28] for that property. Note that
this action preserves the global integration of the density by a simple change
of variable. Last, we present the transport via the standard conjugation of a
velocity field defined by:

V;transported(x) = d¢($) O Viocal © (b_l(x) . (7)
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All those transport methods were tested in the classification step. We did
not include parallel transport in this study since no public implementation is
available and its implementation is rather involved, especially in the case of
images.

Patient space Template space
Hippocampus Step 1. Non-rigid registration Population
at time 1 Deformation ¢ template

|

Local Step 2. Transport Transported
deformation deformation
descriptor descriptor

Fig. 4: Local descriptors of hippocampus evolutions are transported to the tem-
plate in a two-step process. First the deformation field from the patient space
to the population template. Second, this deformation field is used to transport
the local descriptors.

3 Material and Results

3.1 Data

A dataset of 206 hippocampus binary segmentations from 103 patients enrolled in
ADNI! [29] has been used to estimate the efficiency of local and global descriptors
of hippocampus evolution with regard to disease progression. For each patient,
‘screening’ and ‘month 12’ were the two time points selected. All patients were
MCI at the screening point, 19 became AD by month 12, and the remaining 84
stayed MCI.

3.2 Experiments

First, all screening images were resampled to a common isotropic voxel size
1.0 x 1.0 x 1.0 mm, similar to their original size. Rigid transformations aligning
the month 12 hippocampus towards the screening ones were computed using [26].
The geodesic shootings [20] were performed? using a sum of three kernels (sizes
1,3 and 6 mm, with respective weights 2,1 and 1), and 200 gradient descent
iterations. All the 103 source images deformed by the shooting had a final Dice
score (i.e. overlap score) with their target images over 0.85.

! http://www.loni.ucla.edu/ADNI
2 http://sourceforge.net/projects/utilzreg/
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To compute the template, a subset of 20 images was used. This subset and
the initialization was based on a shape volume criterion. Four Kéarcher itera-
tions were performed, with respectively 200, 150,150 and 100 gradient descent
iterations in the geodesic shootings. To compute the transformations from the
screening hippocampi towards the template, rigid [26] then non-rigid [27] regis-
tration algorithms were applied with their default parameters.

To classify from local descriptors, a mask computed by dilating the template
was used. To compute classification on subregions, each hippocampus (left and
right) from the template was dilated. The bounding box was cut equally in thirds
along the longest axis, and intersections were used as masks.

Using a leave-10%-out scheme, training and test sets were created. With
training features equally distributed among classes, SVM classifiers were com-
puted (the Matlab functions from the Bioinformatics Toolbox were used). All
the patients were then classified. The Gaussian kernel was used and 20 kernel
widths were tested. This procedure was repeated 50 times and classification ac-
curacy averaged. From the numbers of true/false positives/negatives (TP, FP,
TN, FN), four indicators were used to measure classification accuracy: speci-

ficity Spec = %, sensitivity Sens = TPE—%’ negative predictive value
NPV = %, and positive predictive value PPV = %.
3.3 Results

Using the modified Karcher mean algorithm and the criterion mentioned above,
the average Dice score between the 103 registered patients and the template
was 0.87 £ 0.02, whereas it was only 0.44 &+ 0.11 when matching to a template
computed using a criterion based on the distance to the L2 mean.

Regarding descriptors of hippocampus evolutions, the local descriptors did
not perform as well as global descriptors, when used directly as input features
(Fig. 5). However, when integrated on the whole domain, the performances were
similar. When integrated on some subregion, they can outperform the global
descriptors. Detailed results are displayed in Fig. 5, and Table 1 displays the four
unbiased indicators when the sum of specificity and sensitivity is maximized.

4 Discussion and conclusion

We have studied the use of global, semi-local and local descriptors of hippocam-
pus evolutions to predict AD conversion for MCI patients, using a dataset of
binary segmentations provided by ADNI. This study focuses on shape evolu-
tions between two time points, whereas (to the best of our knowledge), studies
in this application field usually extract features from a single time point and
perform diagnosis classification.

The proposed extension of the Kércher mean algorithm with a subpopulation
and initialization criterion based on shape volume improved the matching quality
to the template (average Dice of 0.87 & 0.02 instead of 0.44 + 0.11) without the
need of modifying the default registration parameters.
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Fig. 5: Classification performance (depending on the SVM Gaussian kernel width o) for global descriptors
(5a, 5b), local (5c, 5f, 5i), local integrated on the whole image (5d, 5g, 5j) and local integrated on a
subregion (5e, 5h, 5k). Higher for Spec + Sens (in cyan blue) is better.
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Table 1: Performance indicators for various descriptors of the hippocampus evo-
lutions. These indicators are computed using a SVM classifier, with a Gaussian
kernel. Kernel width is such that the sum of specificity and sensitivity is max-
imized. The proposed method is the only one with Spec 4+ Sens outperforming
the same sum for the volume difference global descriptor.

Global / Local Deformation descriptor Sg:z:_ Spec|Sens| NPV |PPV
Global Volume difference 1.19 [0.78 |0.41| 0.85 | 0.30
oba Relative volume difference 1.08 | 0.85]0.23 | 0.83 | 0.25

Local integrated| Initial momentum, image transport | 1.10 | 0.37 | 0.73 | 0.86 | 0.21
on the whole |Initial momentum, density transport| 1.15 | 0.96 | 0.19 | 0.84 | 0.53
domain Initial velocity field 1.07 |0.46 |0.61| 0.84 | 0.20

Initial momentum, image transport | 1.18 | 0.63 | 0.55| 0.86 | 0.25

EEANI iy Initial momentum, density transport| 1.27 |0.62|0.65| 0.89 | 0.28

on a subregion

Initial velocity field 0.92 |10.79(0.13| 0.80 | 0.11

Initial momentum, image transport | 1.01 | 0.96 [ 0.05| 0.82 | 0.27

Local Initial momentum, density transport| 1.01 | 0.95 | 0.06 | 0.82 | 0.21
Initial velocity field 0.92 |0.7710.15| 0.80 | 0.13

Initial momentum, image transport | 1.10 | 0.68 | 0.42 | 0.84 | 0.23
Initial momentum, density transport| 1.17 | 0.68 | 0.49 | 0.85 | 0.26
Initial velocity field 0.98 [0.38]0.60| 0.81 | 0.18

Local restricted
to a subregion

In our experiments, the local descriptors did not perform as well as global
descriptors such as volume difference when they were directly used as input
features of the SVM classifiers. However, when integrated over the whole domain,
classification performances were similar. When integrated on a subregion, they
could even outperform the global descriptors. The method we propose combines
(1) the use of initial momentum of geodesic shooting, (2) an extended version
of the Kércher mean algorithm, (3) the use of density transport and (4) the
integration on a subregion. On our dataset, this method was the only one able
to outperform the global descriptors. It should be noted that in our study the
definition of the subregion was sub-optimal and used as a proof-of-concept. The
most promising perspectives are (1) developing a strategy to define subregions
maximizing the classification results and (2) adding more time-points to the
study using the geodesic regression method introduced in [30] or cubic spline
interpolation in [31].
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