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In the last two decades, many random graph models have been
proposed to extract knowledge from networks. Most of them look for
communities or more generally clusters of vertices with homogeneous
connection profiles. While the first models focused on networks with
binary edges only, extensions now allow to deal with valued networks.
Recently, new models were also introduced in order to characterize
connection patterns in networks through mixed memberships. This
work was motivated by the need of analyzing a historical network
where a partition of the vertices is given and where edges are typed.
A known partition is seen as a decomposition of a network into sub-
graphs that we propose to model using a stochastic model with un-
known latent clusters. Each subgraph has its own mixing vector and
sees its vertices associated to the clusters. The vertices then connect
with a probability depending on the subgraphs only, while the types
of the edges are assumed to be sampled from the latent clusters.
A variational Bayes expectation-maximization algorithm is proposed
for inference as well as a model selection criterion for the estima-
tion of the cluster number. Experiments are carried out on simulated
data to assess the approach. The proposed methodology is then ap-
plied to an ecclesiastical network in merovingian Gaul. An R package,
called Rambo, implementing the inference algorithm is available on
the CRAN.

1. Introduction. Since the original work of Moreno (1934) on sociograms,
network data has become ubiquitous in Biology (Albert and Barabási, 2002;
Milo et al., 2002; Palla et al., 2005) and computational social sciences (Sni-
jders and Nowicki, 1997). Applications range from the study of gene reg-
ulation processes to that of social interactions. Network analysis was also
applied recently to a medieval social network in Villa, Rossi and Truong
(2008), where the authors find a clustering of vertices through kernel meth-
ods. Both deterministic and probabilistic methods have been used to seek
structure in these networks, depending on prior knowledge and assumptions
on the form of the data. For example, Hofman and Wiggins (2008) looked for
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a partition of the vertices where the clusters exhibit a transitivity property.
The model of Handcock, Raftery and Tantrum (2007) on the other hand
assumes the relations to be conditioned on the projection of the vertices
in a latent social space. Notable among the community discovery methods,
though asymptotically biased (Bickel and Chen, 2009), are those based on
the modularity score given by Girvan and Newman (2002).

Many of the other currently used methods derive from the stochastic
block model (SBM) (Wang and Wong, 1987; Nowicki and Snijders, 2001),
which is a probabilistic generalization (Fienberg and Wasserman, 1981) of
the method applied by White, Boorman and Breiger (1976) to Sampson’s
famous monastery data. SBM assumes that each vertex belongs to a hidden
cluster and that connection probabilities between a pair of verices depend
exclusively on their clusters, as in Frank and Harary (1982). The parame-
ters and clusters are then inferred to optimize a criterion, usually a lower
bound of an integrated log-likelihood. Thus, Latouche, Birmelé and Am-
broise (2011) used an approximation of the marginal log-likelihood, while
Daudin, Picard and Robin (2008) considered a Laplace approximation of the
integrated classification log-likelihood. A non parametric Bayesian approach
was also introduced by Kemp et al. (2006) to estimate the number of clusters
while clustering the vertices. SBM was extended by the mixed membership
stochastic block model (MMSBM) (Airoldi et al., 2008), which allows a ver-
tex to belong to different clusters in its relations towards different vertices,
and by the overlapping stochastic block model (OSBM) (Latouche, Birmelé
and Ambroise, 2011), which allows a vertex to belong to no cluster or to
several at the same time. More recent works focused on extending MMSBM
to dynamic networks (Xing, Fu and Song, 2010), or dealing with non-binary
networks, such as networks with weighted edges (Soufiani and Airoldi, 2012).
Goldenberg, Zheng and Fienberg (2010) and Salter-Townshend et al. (2012)
provide extensive reviews of statistical network models.

In this paper, we aim at clustering the vertices of networks with typed
edges and for which a partition of the nodes into subgraphs is observed
and bears some importance in their behaviour. For example, one may be
interested in looking for latent clusters in a world-wide social network de-
scribing social interactions between individuals where different countries, or
at a different scale, different regions of the world, have different connectiv-
ity patterns. We might also observe the same kind of phenomenon between
different scientific fields in a citation network. This kind of networks may be
modelled using generalized linear models (Fienberg and Wasserman, 1981)
by incorporating the observed partition information as covariates and the
clusters serving as random effects or a p1 model (Holland and Leinhardt,
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1981) where the clusters allow for the estimation of interactions. However,
we consider here a different strategy and propose an extension of the SBM
model which has the advantage of relying on easy to interpret parameters.
Indeed, SBM parameters are not expressed through non linear functions like
the log or logistic functions and this allows an easy interpretation for non
statisticans.

This point is of crucial interest in this work because we aim at providing
historians with insight into the relationships between ecclesiastics and no-
table people in the kingdoms that made up Merovingian Gaul, by analyzing
a network characterizing their different kinds of relations. Specifically, the
data set focuses on the relationships between individuals built during the ec-
clesiastical councils which took place in Gaul during the 6th century. These
councils were convened under the authority of a bishop to discuss specific
questions relating to the Church. Though consisting mainly of clergymen,
laics would also occasionally take part, as representatives of the secular
power or experts in the questions discussed. These assemblies shaped a sig-
nificant part of that period, and we are interested in discovering how they
reflected the relationships between various groups of individuals. For this
network, extra information on the vertices, namely a geographical partition,
is available, associating each individual to a specific kingdom. This parti-
tion induces a decomposition of the network into subgraphs and we aim at
modelling the connection pattern of each subgraph through latent clusters.

Thus, in this paper, we propose a new model, that we call the random
subgraph model (RSM), for the analysis of directed networks with typed
edges for which a partition of the vertices is available. On one hand, we con-
sider that the probability of observing an edge between two vertices depends
solely on the subgraphs to which the vertices belong. On the other hand,
we assume that each vertex belongs to a hidden cluster, with a probability
depending on its subgraph. Then, if a relation is present, its type is drawn
from a multinomial distribution whose parameters depend on the clusters to
which the vertices belong. Let us emphasize that the latter property allows,
once the inference is done, to compare the different subgraphs.

The choice of proposing a probabilistic rather than a deterministic model
is again motivated by the nature of the historical network we consider. In-
deed, as mentioned in Section 4, the data set was built from a collection of
data at hand using sources such as council acts or narrative texts. However,
the rarity of the sources only allowed an incomplete or approximate char-
acterization of the relations between individuals. Therefore, we rely on the
probabilistic framework in order to deal with the uncertainty on the edges.
Moreover, we emphasize that probabilistic methods for network analysis are
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appealing in general because they have been shown to be flexible and ca-
pable of retrieving complex heterogeneous structures in networks (see for
instance Airoldi et al., 2008; Goldenberg, Zheng and Fienberg, 2010).

The article is organized as follows. The random subgraph model is pre-
sented along with its inference algorithm in Section 2, then tested on sim-
ulated data and compared to other models in Section 3. Our model is then
applied to the ecclesiastical network and the results are analyzed from the
historical point of view in Section 4. Concluding remarks and possible ex-
tentions are finally discussed in Section 5.

2. The random subgraph model. We consider a directed graph G
with N vertices represented by its N ×N adjacency matrix X along with a
known partition P of the vertices into S classes. Our goal is to cluster the
network intoK groups with homogeneous connection profiles, i.e. estimating
a binary matrix Z such that Zik = 1 if vertex i belongs to cluster k, 0
otherwise.

Let us now detail the notations. Each edge Xij , describing the relation
between the vertices i and j, is typed, i.e. takes its values in a finite set
{0, . . . , C}. Note that Xij = 0 corresponds to the absence of an edge. We
assume that G does not have any self loop and therefore the entries Xii will
not be taken into account. In order to simplify the notations when describing
the model, we also consider the binary matrix A with entries Aij such that
Ai,j = 1 ⇐⇒ Xi,j 6= 0.

We also emphasize that the observed partition P induces a decomposition
of the graph into subgraphs where each class of vertices corresponds to a
specific subgraph. We introduce the variable si which takes its values in
{1, . . . , S} and is used to indicate in which of the subgraphs vertex i belongs,
for i ∈ {1, . . . , N}.

2.1. The probabilistic model. The data is assumed to be generated in
three steps. First, the presence of an edge from vertex i to vertex j is sup-
posed to follow a Bernouilli distribution whose parameter depends on the
subgraphs si and sj only:

Ai,j ∼ B(γsi,sj).

Each vertex i is then associated to a latent cluster with a probability de-
pending on si. In practice, if we assume for now that the number K of latent
clusters is known, the variable Zi is drawn from a multinomial distribution:

Zi ∼ M(1;αsi),
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Notations Description

X Adjacency matrix. Xij ∈ {0, . . . , C} indicates the edge type
A Binary matrix. Aij = 1 indicates the presence of an edge
Z Binary matrix. Zik = 1 indicates that i belongs to cluster k
N Number of vertices in the network
K Number of latent clusters
S Number of subgraphs
C Number of edge types
α αsk is the proportion of cluster k in subgraph s

Π Πklc is the probability of having an edge of type c

between vertices of clusters k and l

γ γrs probability of having an edge between vertices of subgraphs r and s

Table 1

Summary of the notations used in the paper.

where

∀s ∈ 1, . . . , S,
K
∑

k=1

αsk = 1.

A notable point of the model is that we allow each subgraph to have different
mixing proportions αs for the latent clusters. We denote hereafter α =
(α1, . . . ,αS). Finally, if an edge between i and j is present, i.e. Aij = 1,
its type Xij is sampled from a multinomial distribution with parameters
depending on the latent clusters. Thus, if i belongs to cluster k and j to
cluster l:

Xi,j |ZikZjl = 1, Aij = 1 ∼ M(1,Πkl),

where the sum over the C types of each vector Πkl = (Πkl1, . . . ,ΠklC) is:

∀(k, l) ∈ {1, . . . ,K}2,

C
∑

c=1

Πklc = 1.

If there is no edge between the two vertices, the entry Xij is simply set to
Xij = Aij = 0.

The model is therefore defined through the joint distribution:

p(X,A,Z |α,γ,Π) = p(X,A |Z,γ,Π)p(Z |α)

= p(X |A,Z,Π)p(A |γ)p(Z |α),

where

p(X |A,Z,Π) =

K
∏

k,l

C
∏

c=1

(Πc
kl)

∑N
i6=j δ(Xij=c)AijZikZjl ,
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Fig 1. Graphical representation of the RSM model.

and

p(A |γ) =
N
∏

i 6=j

γ
Aij
ri,rj(1− γri,rj)

1−Aij .

Finally,

p(Z |α) =

N
∏

i=1

K
∏

k=1

αZik

ri,k
.

We refer to the appendix for the detailed calculation of the complete data
log-likelihood associated to the RSM model and summarize the model pa-
rameters in Table 1.

We point out that the choice of separating the role of the known sub-
graphs and the latent clusters was motivated by historical assumptions on
the creation of relationships between individuals in Gaul during the 6th cen-
tury. These assumptions were at the core of the study of the ecclesiastical
network we consider in this paper. An alternative approach would consist
in allowing the presence of an edge and its type to depend on both the sub-
graphs and latent clusters. However, this would dramatically increase the
number of model parameters to be estimated. Indeed, for a network with
S = 6, K = 6, and C = 4, it would require K2S2(C + 1) + SK = 6516
parameters while RSM only involves S2 +K2C + SK = 216 parameters.

2.2. Bayesian framework. We consider a Bayesian framework and intro-
duce conjugate prior distributions. Thus, since Zi is sampled from a multi-
nomial distribution, we rely on a Dirichlet prior to model the parameters
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αs:
p(αs) = Dir

(

αs; χ
0
s1, . . . , χ

0
sK

)

,∀s ∈ {1, . . . , S}.

A similar distribution is used as a prior distribution for the parameters Πkl:

p(Πkl) = Dir
(

Πkl; Ξ
0
kl1, . . . ,Ξ

0
klC

)

,∀(k, l) ∈ {1, . . . ,K}2.

If no prior information is available, a common choice in the literature consists
in fixing the hyperparameters of the Dirichlet to 1/2, i.e. χ0

sk = 1/2,∀(s, k)
and Ξklc = 1/2,∀(k, l, c). Such a distribution corresponds to a non informa-
tive Jeffreys prior distribution which is known to be proper (Jeffreys, 1946).
A uniform distribution can also be obtained by setting the hyperparameters
to 1.

Finally, since the presence or absence of an edge between a pair of ver-
tices is drawn from a Bernoulli distribution, we rely on a beta prior for the
parameters γrs:

p(γrs) = Beta(γrs; a
0
rs, b

0
rs),∀(r, s) ∈ {1, . . . , S}2.

Again, if no prior information is available, both hyperparameters a0rs and b
0
rs

can be set to 1/2 or 1 to obtain non informative prior distributions, respec-
tively a Jeffreys or a uniform distribution. Figure 1 presents the graphical
model associated with the RSM model.

2.3. Inference with the variational Bayes EM algorithm. Given the ob-
served matrices X and A, we aim at estimating the posterior distribution
p(Z,α,γ,Π |X,A), which in turn will allow us to compute a maximum a
posteriori estimate of the clustering structure Z as well as the parameters
(α,γ,Π). Because this distribution is not tractable, approximate inference
procedures are required. The Markov chain Monte Carlo (MCMC) sampling
scheme is a widely used approach which consists in sampling from tractable
conditional distributions. After a burnin period, samples are assumed to be
drawn from the true posterior distribution. One the main advantage of the
MCMC algorithm is that it can characterize the uncertainty in model pa-
rameters. Moreover, the convergence of the Markov chain and therefore the
quality of the approximation can be tested.

Unfortunately, the MCMC algorithm has a poor scaling with sample sizes.
This motivated the work of Daudin, Picard and Robin (2008) who proposed
a variational approach for the SBM model which can deal with large net-
works contrary to the MCMC method of Nowicki and Snijders (2001). In
general, the main drawback of variational techniques is that, although they
can produce a good estimate of the model parameters or find the mode the
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posterior distribution, they usually cannot uncover the uncertainty in the
model parameters and tend to underestimate posterior variances. Further-
more, the quality of the variational approximation cannot be tested in most
cases since the KL divergence between the true and approximate posterior
distribution is not tractable.

However, recent results (Celisse, Daudin and Pierre, 2012; Mariadassou
and Matias, 2013) gave some new insights on the form of the true posterior
distribution in the case of the SBMmodel and showed that the corresponding
variational estimates where consistent. In light of these recent results and
because we aim at proposing an inference procedure capable of handling
large networks, we rely in the following on a variational Bayes EM (VBEM)
algorithm.

Thus, given a distribution q(Z,α,γ,Π), the marginal log-likelihood can
be computed in two terms:

log p(X,A) = L(q) +KL(q(.)||p(.|X,A)),

where L is defined as follows:

L(q) =
∑

Z

∫

α,γ,Π

q(Z,α,γ,Π) log(
p(X,A,Z,α,γ,Π)

q(Z,α,γ,Π)
)dα dγ dΠ,

and the KL divergence is given by:

KL(q(.)||p(.|X)) = −
∑

Z

∫

α,γ,Π

q(Z,α,γ,Π) log(
p(Z,α,γ,Π |X,A)

q(Z,α,γ,Π)
)dα dγ dΠ.

Finding the best approximation of the posterior distribution p(Z,α,γ,Π |X,A)
in the sense of the KL divergence becomes equivalent to finding q(·) that
maximizes the lower bound L(q) of the integrated log-likelihood. To obtain
a tractable algorithm, we assume that q(.) can be fully factorized, that is:

q(Z,α,γ,Π) =

(

N
∏

i=1

q(Zi)

)(

S
∏

s=1

q(αs)

S
∏

t=1

q(γs,t)

)

K
∏

k,l

q(Πk,l).

The functional optimization of the lower bound with respect to q(·) is per-
formed using a VBEM algorithm (see Algorithm 1). All the optimization
equations are given in the appendix. We emphasize that the functional form
of the prior distributions is preserved through the optimization. In particu-
lar, q(Z) is given by:

q(Z) =
N
∏

i=1

q(Zi) =
N
∏

i=1

M(Zi; 1, τ i),
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Algorithm 1 VBEM algorithm for the RSM model (see text for details)
Initialize matrix τ = Z with k-means
Initialize hyperparameters θ0 =

{

χ0, (a0,b0),Ξ0
}

Compute L(q)
while | θnew −θold | ≥ ǫ do

E step: update τ

M step: update θnew =
{

χ, (a,b),Ξ
}

Compute L
end while

where τik is variational parameter denoting the probability of node i to be-
long to cluster k. The approximate posterior distributions over the other
model parameters (α,γ,Π) depend on parameters that we denote θ =
{

χ, (a,b),Ξ
}

respectively.

2.4. Initialization. The VBEM algorithm, though useful in approximat-
ing posterior distributions of graphical models, is only guaranteed to con-
verge to a local optimum (Bilmes, 1998). Strategies to tackle this issue in-
clude simulated annealing and the use of multiple initializations (Biernacki,
Celeux and Govaert, 2003). In this work, we choose the latter option. In or-
der to have a better chance of reaching a global optimum, VBEM is run for
several initializations of a k-means like algorithm with the following distance
d(i, j) between the vertices i and j:

(1) d(i, j) =
N
∑

h=1

δ(Xih 6= Xjh)AihAjh +
N
∑

h=1

δ(Xhi 6= Xhj)AhiAhj .

The first term looks at all possible edges from i and j towards a third vertex
h. If both i and j are connected to h, i.e. AihAjh = 1, the edge types Xih

and Xjh are compared. By symmetry, the second term looks at all possible
edges from a vertex h to both i as well as j, and compare their types. Thus,
the distance computes the number of discordances in the way both i and j
connect to other vertices or vertices connect to them. The algorithm starts
by sampling the cluster centers among all the vertices of the network. It then
iterates a two-step procedure until convergence of the cluster centers. In the
first step, the vertices are classified into the cluster with the closest center.
Each cluster center is then associated to a vertex minimizing its distance
with all the vertices of the corresponding cluster.

2.5. Choice of K. So far, the number K of latent clusters has been as-
sumed to be known. Given K, we showed in Section 2.3 how an approx-
imation of the posterior distribution over the latent structure and model
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parameters could be obtained. We now address the problem of estimating
the number of clusters directly from the data. Given a set of values of K, we
aim at selecting K∗ for which the marginal log-likelihood log p(X |K) is max-
imized. However, because this integrated log-likelihood involves a marginal-
ization over all the model parameters and latent variables, it is not tractable.
Therefore, we propose to replace the marginal log-likelihood with its varia-
tional approximation, as in Bishop (2006); Latouche, Birmelé and Ambroise
(2009, 2012). Thus, for each value of K considered, the VBEM algorithm
is applied. We recall that the maximization of the lower bound induces a
minimization of the KL divergence. After convergence of the algorithm, the
lower bound is used as an approximation of log p(X |K) and K is chosen
such that the lower bound is maximized. We prove in the appendix that,
if computed right after the M step of the variational Bayes EM, the lower
bound has the following expression:

L(q) =
S
∑

r,s

log(
B(ars, brs)

B(a0rs, b
0
rs)

)+
S
∑

s=1

log(
C(χs)

C(χ0
s)
)+

K
∑

k,l

log(
C(Ξkl)

C(Ξ0
kl)

)−
N
∑

i=1

K
∑

k=1

τik log(τik),

where C(x) =
∏D

d=1
Γ(xd)

Γ(
∑D

d=1
xd)

if x ∈ R
D, B(a, b) = Γ(a)Γ(b)

Γ(a+b) ,∀(a, b) ∈ R
2, and Γ(·)

is the gamma function. See the appendix for the definition of ars, brs, χs,
Ξkl, and τik.

3. Numerical experiments and comparisons. In this section, we
first run experiments aiming at proving the validity of our model, focusing
on the ability of its inference procedure to find the right clustering. We
then compare its performance to that of other stochastic models for graph
clustering.

3.1. Experimental setup. In order to evaluate the performance of our
approach, we applied it on data generated according to the RSM model.
To simplify the parameterization and facilitate the reproducibility of the
experiments, we constrained the parameters Π and γ to have the following
forms:

Π =













u v · · · v

v u
. . .

...
...

. . .
. . . v

v · · · v u













,γ =













λ ǫ · · · ǫ

ǫ λ
. . .

...
...

. . .
. . . ǫ

ǫ · · · ǫ λ













,

where λ, ǫ ∈ [0, 1] and u,v ∈ [0, 1]K . With such a parameterization, the
probability λ of an edge within a subgraph is assumed to be common be-
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Fig 2. Example of a RSM network for S = 2 subgraphs (indicated by the node forms),
C = 3 types of edges (indicated by the edge colors) and K = 3 clusters to identify (indicated
by the node colors).

tween subgraphs and the probability ǫ of a connection between different sub-
graphs is also assumed to be the same for all couples of subgraphs. Similarly,
the vector u controls the probability of each edge type between nodes of a
same cluster whereas v defines the edge type probabilities between nodes of
different clusters. We recall that the prior probabilities of each group within
each subgraph are given by the parameter α = (α1, . . . ,αS).

Figure 2 presents an example of a network generated this way with pa-

rameters S = 2, C = 3, K = 3, α =

[

0.1 0.3 0.6
0.6 0.3 0.1

]

, λ = 0.6, ǫ = 0.06,

u = (0.8, 0.1, 0.1) and v = (0.1, 0.3, 0.6). This RSM network is made of 30
nodes with S = 2 subgraphs (indicated by the node forms), C = 3 types
of edges (indicated by the edge colors) and K = 3 clusters that have to be
identified in practice (indicated by the node colors).

In order to illustrate, on various situations, that RSM is a relevant model
and that its corresponding inference procedure provides an accurate estima-
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Parameters Scenario 1 Scenario 2 Scenario 3

N 100 100 100

S 1 1 3

C 3 3 3

K 3 3 3

α (0.3,0.3,0.4) (0.3,0.3,0.4)





0 0.5 0.5
0.5 0 0.5
0.5 0.5 0





u (0.8,0.1,0.1) (0.5,0.45,0.05) (0.5,0.45,0.05)

v (0.1,0.1,0.8) (0.1,0.45,0.45) (0.1,0.45,0.45)

λ 0.2 0.2 0.2

ǫ 0.06 0.06 0.1

Table 2

Parameter values for the three types of graphs used in the experiments.

tion of the true clustering structure, we rely in the following paragraphs on
three types of graphs, described in Table 3.1. The three scenarii considered
correspond to different situations ranging from a almost classical setup to a
more specific one. The first scenario considers networks with no subgraphs
(S = 1) and with a preponderant proportion of edges of type 1 (u1 = 0.8)
and 3 (u3 = 0.8). The second scenario still considers networks with no sub-
graphs (S = 1) but with balanced proportions of edge types. Finally, the
third scenario considers networks with several subgraphs (S = 3) and bal-
anced proportions for edge types. Therefore, the latter case should be the
more complex situation to fit.

The VBEM algorithm with multiple initializations, presented in Section 2,
is used in the following experiments. For a given value of K, the result with
the best value for L(q) is chosen among the multiple initializations. Then, a
clustering partition is deduced from the posterior probabilites τik using the
maximum a posteriori (MAP) rule, i.e. a node is assigned to the group with
the highest posterior probability.

Since our approach aims to search the unobserved clustering partition of
the nodes, we chose here to evaluate the results of our VBEM algorithm
by comparing the resulting partition with the actual one (the simulated
partition). In the clustering community, the adjusted Rand index (ARI)
(Rand, 1971) serves as a widely accepted criterion for the difficult task of
clustering evaluation. The ARI looks at all pairs of nodes and check wether
they are classified in the same group or not in both partitions. As a result,
an ARI value close to 1 means that the partitions are similar and, in our
case, that the VBEM algorithm succeeds to recover the simulated partition.
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Fig 3. Criterion values L(q) vs. number K of groups for a graph simulated according to
scenario 1.

3.2. Choice of K and inference results. In this first simulation study, we
aim at evaluating the ability of the lower bound L(q) to serve as a criterion
for selecting the appropriate number K of clusters. To this end, the VBEM
algorithm for the RSM model was first run on a graph simulated according
to scenario 1 for several values of K. The highest criterion value among
the different initializations obtained for each value of K are presented in
Figure 3. The figure indicates that K = 3 seems to be the appropriate
number of groups for the studied network, which is the actual number of
group.

We then replicated this experiment over 50 networks, still simulated ac-
cording to scenario 1, for both verifying the consistency of L(q) and studying
the clustering ability of our approach. Figure 4 shows the repartition of the
criterion values (left panel) as well as the associated ARI values (righ panel).
These results confirm that the lower bound L(q) is a valid criterion for select-
ing the number of groups. One can also observe that the partition resulting
from our VBEM algorithm has, for the selected number of groups, a good
adequation with the actual partition of the data.

3.3. Comparison with the stochastic block model. Our second set of ex-
periments compares the performance of RSM to that of other models on
data drawn according to its generative process. We were interested in the
comparison with the following models:
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Fig 4. Repartition of the criterion (left panel) and ARI (right panel) over 50 networks
generated with the parameters of the first scenario.

• binary SBM (presence): We fit a binary SBM using the R package
mixer (Ambroise et al., 2010) on a collapsed version of the data to
conform this specific model. The collapsed data were obtained by con-
sidering only the presence of the edges and not the type of the edges,
i.e. X̃ij = 0 if Xij = 0 and X̃ij = 1 otherwise.

• binary SBM (type 1, 2 or 3): We fit a binary SBM, still using the
mixer package, on the networks defined by taking only the edges of
one type. For instance, the collapsed network for type c = 1, 2, 3 was
obtained by considering only the presence of type c edges, i.e. X̃ij = 1
if Xij = c and X̃ij = 0 otherwise.

• typed SBM : We consider here a SBM with discrete edges. Although
SBM was originally proposed in Nowicki and Snijders (2001) with
discrete edges, existing softwares only propose to fit a SBM on binary
networks. We therefore had to implement a version of the SBM which
supports typed edges. Note that, in this case, the types of edges are
in {0, . . . , C}, where 0 corresponds to the absence of a relation.

• RSM : We run the VBEM algorithm, that we proposed in Section 2 for
the inference of the RSM model, with the available subgraph partition
and with 5 random initializations for each run.

Table 3 presents the average ARI values and standard deviations on 50
simulated graphs for each scenario and with binary SBM, typed SBM and
RSM. We point out that the inference is done with the actual number of
clusters and this for each method. One can observe that, for the first scenario,
the binary SBM based on the link presences and the type 2 SBM always fail
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Method Scenario 1 Scenario 2 Scenario 3

binary SBM (presence) 0.001 ± 0.012 0.001 ± 0.013 0.239 ± 0.061
binary SBM (type 1) 0.976 ± 0.071 0.494 ± 0.233 -0.372 ± 0.262
binary SBM (type 2) 0.001 ± 0.006 -0.003 ± 0.006 0.179 ± 0.097
binary SBM (type 3) 0.959 ± 0.121 0.519 ± 0.219 0.367 ± 0.244

Typed SBM 0.694 ± 0.232 0.472 ± 0.339 0.360 ± 0.162

RSM 1.000 ± 0.000 0.981 ± 0.056 0.939 ± 0.097

Table 3

Average ARI values and standard deviations for binary SBM, typed SBM and RSM
according to the three simulation scenarii. The results are averaged on 25 simulated

graphs for each scenario.

whereas type 1, type 3 and typed SBM work pretty well. Those behaviors
can be explained by the nature of scenario 1 which is a rather easy situation
with no subgraphs and a predominant presence of type 1 and type 2 links.
However, we can remark that it seems easier in this case to fit a binary SBM
on type 1 or type 2 edges than to fit a typed SBM. This is due to the high
discriminative power of type 1 and type 2 edges in this specific scenario.
Let us also remark that RSM works perfectly here even though the network
does not contain any subgraphs.

Regarding scenario 2, which considers a situation where there is still no
subgraphs but with more balanced proportions of the different edge types,
one can first notice that binary SBM and type 2 SBM fail once again. The
type 1 and type 3 SBM have now a behavior closer to the one of typed
SBM whereas RSM gives very accurate results once again. Finally, scenario
3 considers a RSM-type network, i.e. with several subgraphs, and all SBM-
based algorithms are significantly outperformed by RSM which succeeds
in exploiting both the information carried by different edge types and by
the different subgraphs. To summarize, the RSM model and its associated
VBEM algorithm turn out to be effective on situations ranging from classical
setups without subgraphs to complex scenarii with subgraphs and typed
edges.

4. Ecclesiastical network. This section now focuses on applying the
RSM model to the ecclesiastical network, that we briefly described in the
introduction and that initially motivated this work, and on analyzing its
results from the historical point of view.

4.1. Description of the data. The relational data considered in this sec-
tion were mainly built from written acts of ecclesiastical councils that took
place in Merovingian Gaul during the 6th century. A council is an ecclesias-
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Fig 5. Adjacency matrix for the kingdom of Neustria (left block) and the province of
Provence (right block). The dot colors indicate the type or relationships: red = ”negative”,
green = ”variable”, black = ”neutral” and blue = ”positive”. Zoom on the paper electronic
version for details.

Fig 6. Adjacency matrix for the kingdoms of Austrasia (left block) and Burgundy (right
block). The dot colors indicate the type or relationships: red = ”negative”, green = ”vari-
able”, black = ”neutral” and blue = ”positive”. Zoom on the paper electronic version for
details.
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tical meeting, usually called by a bishop, where issues regarding the Church
or the faith are addressed. However, since 511, kings could also call for a
council to discuss some political, judiciary or legal issues, and that laics
(kings, dukes or counts for instance) would attend. During the 6th century,
46 councils took place in Gaul. Although there were mostly local or regional
councils, attended by individuals from a specific ecclesiastical province, there
were some national councils convened under the authority of a king.

The composition of these councils is known thanks to the acts written at
the end of the meeting, and which were signed by all attending members.
In addition to the council acts, we used narrative texts (among which the
famous Ten History Books by Gregory of Tours), hagiographies or letters
which also describe these councils. The network, that took over 18 months
to build from these historical sources, contains N = 1331 individuals who
held one or several offices in Gaul between the years 480 and 614, and who
we know to have been related or to have met during their lifetime.

The council acts and the other historical sources allowed also to qualify
the type of the relationship between the individuals involved in the network.
However, the scarcity of the sources only allowed for an approximate charac-
terization of these relationships. As a consequence, C = 4 relation types were
qualified and the relationships can be either positive, negative, variable or
neutral (when the type was unknown). For instance, a positive relationship
may describe an agreement between two clergymen on a question of faith
whereas a negative one may be a disagreement on such a question. Vari-
able relationships usually correspond to relationships which change over the
time.

Using the different sources, it was also possible to obtain additional in-
formations on the individuals. In particular, the geographical positions of
the offices hold by the clergymen or the laics allowed us to split the network
into S = 6 subgraphs. Those 6 subgraphs correspond to the geographical
partition of the Gaul at this period (the kingdoms of Neustria, Austrasia
and Burgondy, and the provinces of Aquitaine and Provence), completed
with an additional subgraph for individuals for whom the information was
not available. We also recorded the social positions of the individuals in
order to be able to interpret afterward the clusters found by our method.
These social positions can be for instance ecclesiastical positions (bishops,
deacon, archdeacon, abbot, priest, ...) or titles of nobility (king, queen, duke,
earl, ...).

To summarize, the network is made of N = 1331 individuals split into
S = 6 subgraphs and whose relationships can be of C = 4 difference types.
Figures 5 and 6 show some parts of the whole adjacency matrix associated



18 Y. JERNITE ET AL.

to the network where the dot colors indicate the type or relationships. The
whole adjacency matrix is provided in a zoomable pdf file as supplemen-
tary material. We expect the statistical analysis with RSM of this network
to help us understand how the behavior of an individual can be modeled
through their belonging to a group. The use of a probabilistic approach,
instead of a deterministic one, makes particularly sense here since at least
a part of the historical sources are subject to caution due to their nature
and age. In History, this kind of approach is more common to modernists
or contemporarists than to medievists who rarely have access to this kind
of data. Let us finally notice that a ”source effect” is expected due to the
possible overrepresentation in our sources of some places (Neustria by Gre-
gory of Tours or Austrasia by Fredegar) or some individuals (in letters or
hagiographies).

4.2. Results. The VBEM algorithm that we proposed to infer the RSM
model was run on the network defined by these relations, where the sub-
graphs are the provinces in which the individuals lived (Aquitaine, Austra-
sia, Burgondy, Neustria, Provence or Unknown). The use of the lower bound
L(q) allowed us to find 6 clusters.

To give some insight into the nature of the found clusters, Figure 7
presents the repartition of the different social positions in the clusters. In
view of these results, some historical comments can be done. First, clusters
1 and 3 appear to be made of the people who would attend local assemblies,
provincial or diocesan councils. The council of Arles which took place in
554, would have had the same kind of composition as cluster 3, while that of
Auxerre, in 585 could well represent cluster 1. Second, clusters 4 and 5 are
more characteristic of aristocratic assemblies, such as the council of Orange
in 529. Third, clusters 2 and 6 have the same compositions as councils con-
cerned with more political issues (those usually convened by a king). Such
a council took place in Orleans in 511. Let us however notice that cluster 2
is composed of very few individuals, which might hurt the relevance of its
interpretation. Also, we might be able to further our understanding of the
composition of these clusters by taking into account the similarity of certain
social positions (such as ”duke” and ”earl”).

The relations between the different clusters, described by the parameter
Π and shown in Figure 8, inform us further. Although the limitations ex-
pressed above about the roughness of the relation types still apply, they
nevertheless provide us with interesting elements to confirm the coherence
of the proposed model. First, it is natural that we should find “neutral”
relations at the local level, between clusters 1, 3 and 6. Indeed, local as-



THE RANDOM SUBGRAPH MODEL 19

Bishop Priest Abbot Earl Duke Monk Deacon King Queen Archdeacon

Cluster 1

0
50

10
0

15
0

20
0

25
0

Bishop Priest Abbot Earl Duke Monk Deacon King Queen Archdeacon

Cluster 2

0
2

4
6

8

Bishop Priest Abbot Earl Duke Monk Deacon King Queen Archdeacon

Cluster 3

0
50

10
0

15
0

Bishop Priest Abbot Earl Duke Monk Deacon King Queen Archdeacon

Cluster 4

0
1

2
3

4
5

6

Bishop Priest Abbot Earl Duke Monk Deacon King Queen Archdeacon

Cluster 5

0
5

10
15

20

Bishop Priest Abbot Earl Duke Monk Deacon King Queen Archdeacon

Cluster 6

0
10

20
30

40

Fig 7. Repartition of the different social positions in the found clusters (restricted to the
10 most frequent positions).

semblies were the less documented ones in our sources. On the other hand,
the links between high level individuals are better known, because councils
used to settle conflicts between aristocrats, which explains the presence of
“negative” and “variable” relations. Finally, the positive relations between
cluster 3, 5 and 6 could represent the personal friendships documented by
collection of letters between bishops.

After having described the political background represented by each of the
clusters, we can compare the organization of the different regions. Figure 9
presents the cluster repartition (parameter α) in the different provinces.
One can observe that the clergy and noblemen of the different regions were
concerned with very different issues: Provence and Burgundy were more
concerned with local questions (clusters 1 and 3), and less with political
ones (clusters 2 and 6). The clusters concerned both with local (clusters
1 and 3) and high level (cluster 6) questions are represented in Aquitaine.
Conversely, all levels of power are represented in Neustria. This could be
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Fig 8. Relations between the 6 found clusters (parameter Π) for each relation type: neg-
ative, variable, neutral and positive. For visualization purpose, the relation weights have
been normalized according to relation types.

the result of a “source effect”, as mentioned above. Let us also notice that
the council structures seem similar in Austrasia and Aquitaine: sovereigns
(kings and queens) are involved in Church, and frequently convene councils
in order to discuss political questions.

Some of these observations are confirmed by the estimate of parameter
γ, which is given in a log scale by Figure 10. First, it shows a greater fre-
quency of relations between Aquitaine and Neustria, which comes both from
a geographical and political proximity (Aquitaine is absorbed into Clovis’
kingdom in 507, then divided and absorbed by Neustria in 511). One can
also see there another example of “source” effect, as our main source, Gre-
gory of Tours, was bishop in Neustria and raised in Aquitaine (next to his
uncle, the bishop of Clermont), which gave him a good knowledge of both
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provinces. More enlightening is the relative disconnection of Burgondy and
Provence, especially in regard to the provinces of Austrasia and Neustria,
both heavily connected.

4.3. Conclusion from the historical point of view. A first analysis of the
results of the RSM model confirms two well known general facts. Indeed,
our results confirm the preponderance of local assemblies in 6th century
Gaul and the “source effect”. Nevertheless, further analysis of the found
clusters and their relations yields a better understanding of the period. In
particular, the composition of the found clusters reflect different archetypes
of councils, and different levels of political concerns. Our results have also
highlighted that the type of concerns of each province are closely related to
the frequency of their communications with others.

Two limitations to these results remain however. First, we are limited by
the scarcity of the historical documentation. It would be interesting to see
whether the use of more precise types of relations (ecclesiastical or secular,
through which media, ...) could improve the results. Second, it would also
be interesting for the model to take into account temporal evolutions of
the relations and clusters. Indeed, one aspect of the data which is currently
not addressed by the results of RSM is its temporality. Nevertheless, this
lack seems to have a limited impact here since all clusters exhibit the same
distribution of individuals over time, reflecting the higher concentration of
information in years 550 to 600 (when numerous conflicts were settled by
councils: Paris 577, Chalon 579, Berny 580, Lyon 581, ...). The repartition
of the different kinds of powers, then seems to change little over time on this
short period.

5. Conclusion and further work. In this work, we proposed a new
stochastic graph model, the random subgraph model, to deal with networks
where a vertex behavior is influenced by an observed partition variable.
We derived a variational Bayes EM algorithm to infer the model parame-
ters from data and applied it to an ecclesiastical network from Merovingian
Gaul. The results of the fitted RSM enlightened us on the different levels of
power present at this time in Gaul, and on the different power structures
of different regions. Let us highlight that the RSM model allows in addition
the comparison of subgraphs through the model parameters, in particular
the cluster proportions. We also would like to mention that networks with
typed edges and subgraphs can be encountered in many application fields
(such as biology, economics, archeology, ...) and the RSM model should be
useful in these contexts as well.
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One aspect, however, that RSM does not currently address is the tempo-
rality of the data. Since this aspect can be found in many of the data sets
we wish to apply the RSM model to, we believe that a natural continuation
of this work would be a dynamic extension of the RSM model. Moreover,
we plan to introduce a Chinese restaurant process on the latent cluster
structure in order to automatically estimate the number of clusters while
clustering the vertices. Finally, we would like to consideration the problem
of visualizing such networks with typed edges and known subgraphs.

APPENDIX A: VARIATIONAL BAYES

In this final section, we detail the computations that lead to the update
rules given in Section 2, and provide an explicit expression of the criterion
L(q).

Proposition A.1. The complete data log-likelihood the RSM model is
given by:

log p(X,A,Z,α,γ,Π) =

N
∑

i 6=j

C
∑

c=1

K
∑

k,l

{δ(Xij = c)ZikZjl log(Πklc)}

+
N
∑

i=1

K
∑

k=1

Zik log(αri,k)

+

N
∑

i 6=j

{

Aij log(γri,rj) + (1−Aij) log(1− γri,rj)
}

+
S
∑

s=1

log p(αs) +
S
∑

r,s

log p(γrs) +
K
∑

k,l

log p(Πkl).
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Proof.

log p(X,A,Z,α,γ,Π) = log p(X |A,Z,Π) + log p(A |γ) + log p(Z |α) + log p(α) + log p(γ)

+ log p(Π)

=

N
∑

i 6=j

C
∑

c=1

K
∑

k,l

{δ(Xij = c)ZikZjl log(Πklc)}

+
N
∑

i=1

K
∑

k=1

Zik log(αri,k)

+

N
∑

i 6=j

{

Aij log(γri,rj ) + (1−Aij) log(1− γri,rj)
}

+
S
∑

s=1

log p(αs) +
S
∑

r,s

log p(γrs) +
K
∑

k,l

log p(Πkl).

Proposition A.2. The VBEM update step for the distribution q(γrs) is
given by:

q(γrs) = Beta(γrs; ars, brs),∀(r, s) ∈ {1, . . . , S}2,

where
ars = a0rs +

∑

ri=r,rj=s

(Aij),

and
brs = b0rs +

∑

ri=r,rj=s

(1−Aij).

Proof.

log q(γrs) = E
Z,α,γ\rs,Π[log p(X,A,Z,α,γ,Π)] + κ

=
∑

ri=r,rj=s

{Aij log(γrs) + (1−Aij) log(1− γrs)}

log p(γrs) + κ

=
∑

ri=r,rj=s

{Aij log(γrs) + (1−Aij) log(1− γrs)}

(a0rs − 1) log(γrs) + (b0rs − 1) log(1− γrs) + κ

= (a0rs − 1 +
∑

ri=r,rj=s

Aij) log(γrs)

+ (b0rs − 1 +
∑

ri=r,rj=s

(1−Aij)) log(1− γrs) + κ,
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where κ is a constant term. Hence, the functional form of the variational
approximation q(γrs) corresponds to a Beta distribution with updated hy-
perparameters:

ars = a0rs +
∑

ri=r,rj=s

(Aij),

and
brs = b0rs +

∑

ri=r,rj=s

(1−Aij).

Proposition A.3. The VBEM update step for the distribution q(Zi) is
given by:

q(Zi) = M(Zi; 1, τ i),∀i,

where

τik ∝ exp

(

ψ(χri,k)− ψ(
K
∑

l=1

χri,l)

)

+ exp







N
∑

j 6=i

C
∑

c=1

K
∑

l=1

δ(Xij = c)τjl

(

ψ(Ξklc)− ψ(

C
∑

u=1

Ξklu)

)







+ exp







N
∑

j 6=i

C
∑

c=1

K
∑

l=1

δ(Xji = c)τjl

(

ψ(Ξlkc)− ψ(

C
∑

u=1

Ξlku)

)







.

Proof.

log q(Zi) = E
Z
\i,α,γ,Π

[log p(X,A,Z,α,γ,Π)] + κ

= E
Z
\i,Π





N
∑

j=1

C
∑

c=1







δ(Xij = c)
K
∑

k,l

ZikZjl log(Πklc)











+ E
Z
\i,Π





N
∑

j=1

C
∑

c=1







δ(Xji = c)

K
∑

k,l

ZjkZil log(Πklc)











+ E
Z
\i,α

[

K
∑

k=1

Zik log(αri,k)

]

+ κ

=

K
∑

k=1

ZikEα[log(αri,k)]
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+

N
∑

j=1

C
∑

c=1

K
∑

l,k

Zikδ(Xij = c)EZ\i,Π[Zjl log(Πklc)]

+
N
∑

j=1

C
∑

c=1

K
∑

l,k

Zikδ(Xji = c)EZ\i,Π[Zjl log(Πlkc)] + κ

=

K
∑

k=1

Zik

(

ψ(χri,k)− ψ(

K
∑

l=1

χri,l)

)

+

K
∑

k=1

Zik







N
∑

j 6=i

C
∑

c=1

K
∑

l=1

δ(Xij = c)τjl

(

ψ(Ξklc)− ψ(

C
∑

u=1

Ξklu)

)







+
K
∑

k=1

Zik







N
∑

j 6=i

C
∑

c=1

K
∑

l=1

δ(Xji = c)τjl

(

ψ(Ξlkc)− ψ(
C
∑

u=1

Ξlku)

)







+ κ,

where κ is a constant term. Hence, the functional form of the variational ap-
proximation q(Zi) corresponds to a multinomial distribution, with updated
parameters:

τik ∝ exp

(

ψ(χri,k)− ψ(
K
∑

l=1

χri,l)

)

+ exp







N
∑

j 6=i

C
∑

c=1

K
∑

l=1

δ(Xij = c)τjl

(

ψ(Ξklc)− ψ(
C
∑

u=1

Ξklu)

)







+ exp







N
∑

j 6=i

C
∑

c=1

K
∑

l=1

δ(Xji = c)τjl

(

ψ(Ξlkc)− ψ(

C
∑

u=1

Ξlku)

)







.

Proposition A.4. The VBEM update step for the distribution q(αs) is
given by:

q(αs) = Dir(αs;χs),∀s ∈ {1, . . . , S},

where

χsk = χ0
sk +

N
∑

i=1

δ(ri = s)τik,∀k ∈ {1, . . . ,K}.
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Proof.

log q(αs) = E
Z,α\s,γ,Π[log p(X,A,Z,α,γ,Π)] + κ

= E
Z,α\s,[

N
∑

i=1

K
∑

k=1

Zik log(αri,k)] + log p(αs) + κ

=

K
∑

k=1

N
∑

i=1

δ(ri = s) log(αsk)EZ[Zik] +

K
∑

k=1

log(αsk)(χ
0
sk − 1) + κ

=

K
∑

k=1

log(αsk)

{

χ0
sk − 1 +

n
∑

i=1

δ(ri = s)τik

}

+ κ,

where κ is a constant term. Hence, the functional form of the variational
approximation q(αs) corresponds to a Dirichlet distribution with updated
hyperparameters:

χsk = χ0
sk +

N
∑

i=1

δ(ri = s)τik,∀k ∈ {1, . . . ,K}.

Proposition A.5. The VBEM update step for the distribution q(Πkl)
is given by:

q(Πkl) = Dir(Πkl; Ξkl),∀(k, l) ∈ {1, . . . ,K}2,

where

Ξklc = Ξ0
klc +

N
∑

i 6=j

δ(Xij = c)τikτjl,∀c ∈ {1, . . . , C}.

Proof.

log q(Πk,l) = E
Z,α,γ,Π\kl [log p(X,A,Z,α,γ,Π)] + κ

= E
Z,Π\kl [

N
∑

i 6=j

C
∑

c=1

δ(Xij = c)ZikZjl log(Πklc)] + logp(Πkl)] + κ

=

C
∑

c=1

log(Πklc)







N
∑

i 6=j

δ(Xij = c)τikτjl







+

C
∑

c=1

log(Πklc)(Ξ
0
klc − 1) + κ

=

C
∑

c=1

log(Πklc)







Ξ0
klc − 1 +

N
∑

i 6=j

δ(Xij = c)τikτjl







+ κ,
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where κ is a constant term. Hence, the functional form of the variational
approximation q(Πkl) corresponds to a Dirichlet distribution with updated
hyperparameters:

Ξklc = Ξ0
klc +

N
∑

i 6=j

δ(Xij = c)τikτjl,∀c ∈ {1, . . . , C}.

Proposition A.6. When computed right after the M step, the lower
bound of the marginal log-likelihood is given by:

L(q) =

S
∑

r,s

log(
B(ars, brs)

B(a0rs, b
0
rs)

)+

S
∑

s=1

log(
C(χs)

C(χ0
s)
)+

K
∑

k,l

log(
C(Ξkl)

C(Ξ0
kl)

)−

N
∑

i=1

K
∑

k=1

τik log(τik),

where C(x) =
∏D

d=1
Γ(xd)

Γ(
∑D

d=1
xd)

if x ∈ R
D and B(a, b) = Γ(a)Γ(b)

Γ(a+b) ,∀(a, b) ∈ R
2.

Proof. The lower bound is given by:

L(q) = EZ,α,γ,Π[log(
p(X,A,Z,α,γ,Π)

q(Z,α,γ,Π)
],

where

log(
p(X,A,Z,α,γ,Π)

q(Z,α,γ,Π)
) =

N
∑

i 6=j

{

Aij log(γri,rj ) + (1−Aij) log(1− γri,rj)
}

+

N
∑

i 6=j

C
∑

c=1

K
∑

k,l

{δ(Xij = c)ZikZjl log(Πklc)}

+ log(
p(Z,α,γ,Π)

q(Z,α,γ,Π)
),

and

log(
p(Z,α,γ,Π)

q(Z,α,γ,Π)
) = log(

p(Z |α)

q(Z)
) + log(

p(α,γ,Π)

q(α,γ,Π)
)

=
N
∑

i=1

K
∑

k=1

Zik log(
αri,k

τik
) +

S
∑

r,s

log(
Beta(γrs; a

0
rs, b

0
rs)

Beta(γrs; ars, brs)
)

+
S
∑

s=1

log(
Dir(αs;χ

0
s)

Dir(αs;χs)
) +

K
∑

k,l

log(
Dir(Πkl;Ξ

0
kl)

Dir(Πkl;Ξkl)
)
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=

N
∑

i=1

K
∑

k=1

Zik log(
αri,k

τik
) +

S
∑

r,s

log(
B(ars, brs)

B(a0rs, b
0
rs)γ

ars−a0rs
rs (1− γrs)brs−b0rs

)

+

S
∑

s=1

log(
C(χs)

C(χ0
s)
∏K

k=1 α
χsk−χ0

sk

k

) +

K
∑

k,l

log(
C(Ξkl)

C(Ξ0
kl)
∏C

c=1Π
Ξklc−Ξ0

klc

klc

).

If x ∈ R
D then C(x) =

∏D
d=1

Γ(xd)

Γ(
∑D

d=1
xd)

where Γ(·) is the gamma function. More-

over, if (a, b) ∈ R
2 then B(a, b) = Γ(a)Γ(b)

Γ(a+b) . Finally

log(
p(X,A,Z,α,γ,Π)

q(Z,α,γ,Π)
) =

S
∑

r,s









a0rs − ars +
∑

ri=r,rj=s

Aij



 log(γrs)







+
S
∑

r,s









b0rs − brs +
∑

ri=r,rj=s

(1−Aij)



 log(1− γrs)







+
S
∑

s=1

K
∑

k=1

{(

χ0
sk − χsk +

N
∑

i=1

δ(ri = s)Zik

)

log(αsk)

}

+
K
∑

k,l

C
∑

c=1









Ξ0
klc − Ξklc +

N
∑

i 6=j

δ(Xij = c)ZikZjl



 log(Πklc)







−

N
∑

i=1

K
∑

k=1

Zik log(τik) +

S
∑

r,s

log(
B(ars, brs)

B(a0rs, b
0
rs)

)

+
S
∑

s=1

log(
C(χs)

C(χ0
s)
) +

K
∑

k,l

log(
C(Ξkl)

C(Ξ0
kl)

).

Therefore, that if L(q) is computed right after the M step:

L(q) =

S
∑

r,s

log(
B(ars, brs)

B(a0rs, b
0
rs)

)+

S
∑

s=1

log(
C(χs)

C(χ0
s)
)+

K
∑

k,l

log(
C(Ξkl)

C(Ξ0
kl)

)−

N
∑

i=1

K
∑

k=1

τik log(τik).
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