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Effective properties of viscoelastic heterogeneous periodic media: An
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ABSTRACT

This paper describes a simple approximate method for obtaining the viscoelastic properties
of particle-matrix viscoelastic heterogeneous materials. This method accounts for the spa-
tial distribution of heterogeneities. It rests on a formulation used for elastic media which
allows, at the cost of evaluating parameters accounting for the distribution of heterogene-
ities, to compute the effective properties. Using the Laplace-Carson transform, the solution
is shown as being a rational fraction of the Laplace variable, which allows for simple
expressions of inverse Laplace transform. Some examples are shown for various viscoelas-
tic behaviors in the case of viscoelastic media of different types, including a comparison

with results coming from other methods.
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1. Introduction

The prediction of the effective properties of heteroge-
neous media knowing the properties at the scale of the
microstructure and their distribution has been the subject
of numerous works since a few decades. More specifically,
methods based on the Fourier transform have known an
increasing interest, because these methods can be used on
modern 3D images coming from tomography measure-
ments. However, these methods have not been used in the
case of viscoelastic constituents. Indeed, a classical way
for obtaining viscoelastic solutions is to use the Laplace-Car-
son transform. However, results coming from fully numeri-
cal FFT solutions need a numerical inversion of Laplace
transform, which would need the use of numerous applica-
tions of FFT computations at all values of Laplace variable.
So, up to now, methods allowing to produce by simple ways
the effective properties of viscoelastic media are restricted
to simple methods like the Mori-Tanaka's model or the
generalized self-consistent scheme for example. This paper
presents a new method which allows the prediction of the
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effective properties of inclusion-matrix heterogeneous
media characterized by various distributions of heterogene-
ities. The method rests on an approximate FFT based solu-
tion producing the effective properties of elastic media
(Iwakuma and Nemat-Nasser, 1983; Nemat-Nasser et al.,
1993; Nemat-Nasser and Hori, 1993). The distribution of
heterogeneities is taken into account by some synthetic
structure parameters which are computed from the Fourier
transform of the indicator function of the domain contain-
ing the heterogeneities. The work presented in this paper
rests on an extension of this method to viscoelastic media.

The paper is organized as follows. The constitutive rela-
tion used for the individual viscoelastic constituents is pre-
sented in Section 2. Then, the approximated Fourier
Transform solution is presented in the case of elasticity
in Section 3. An important aspect is to evaluate the capac-
ity of the method to compute accurately the properties of
elastic periodic media. This is made by comparison with
results coming from the application of the iterative FFT
method in Section 4. The extension of the method to visco-
elastic heterogeneous media is then treated in Section 5.
The application to different kinds of viscoelastic behaviors,
including a comparison with results of the literature
(Lahellec and Suquet, 2007) coming from step by step time
integration is finally shown in Section 6.



2. Linear viscoelastic behavior

2.1. Constitutive equations for an isotropic viscoelastic
medium.

In the following, composite materials under study com-
prise at least one phase which is a non ageing viscoelastic
material. The constitutive stress-strain relation of such a
material is given classically (Christensen and Freund,
1984; Salencon, 2009) by a time integral relationship as:
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where R, J are tensorial relaxation and creep functions. The
convolution product of two functions f and g, noted by
“fag”, is classically defined by:

= [ roe- g 3)

For a viscoelastic isotropic material, tensor R depends
only on two scalar functions R.(t) and R,(t) which are
relaxation functions for compression and shear. The behav-
ior of the material can then be expressed by using one of
the following forms:

o(t) = Re(t)®tre(t)1+ 2R, (t)e(t) 4)
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where s and e are deviators of stress and strain tensors.

2.2. Laplace-Carson transform

The Laplace-Carson transform f*(p) of a real function
f(t), t = 0is obtained from its Laplace transform f(s) by:

£ =)= | et (6)

Effecting the Laplace Carson transform of the first expres-
sion in (4) leads to:

6" (s) = Ri(s)tre(s)1 + 2R} (s)e’(s) (7)
which provides also:
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€'(s) = _QR:\.(S) tra*(s)1 + _2R;,(s)s (s) (8)

where s is the variable in Laplace-Carson space.

As it is well-known, these expressions show that for any
fixed value of s, the stress-strain relation in Laplace-Carson
space is formally equivalent to the elasticity constitutive
equation of an isotropic elastic material. This is named as
“pseudo-elastic” behavior. This is the base of many solu-
tions obtained for viscoelastic problems. However, having
obtained the pseudo-elastic solution, the recovery of the
viscoelastic solution needs to perform its inverse Laplace
transform. Even if numerical inversion methods exist, the

pseudo-elastic solution presents an interest essentially in
the case where the inverse Laplace transform can be ob-
tained by simple ways. This is the case when the pseudo-
elastic solution has the form of a rational fraction, as
shown thereafter.

2.3. Inverse Laplace transform of the pseudo-elastic solution
having the form of a rational fraction

Solving the viscoelastic problem is necessary to inverse
the solution obtained in the Laplace space. If this solution
F(s) is a rational fraction, the numerator P(s) and the
denominator Q(s) are both polynomial functions. Q(s) is
assumed to possess n distinct zero o, k=1,2,3,...,n
and to be such that the degree of P(s) is less than the de-
gree of Q(s).

Then:

P(s) } o~ P e ©)
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In the case where Q(s) = 0 has a multiple root of order
m, while the other roots, . f,...., B, are simple, F can be
developed as:
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Then, the inverse of the Laplace transform is given by:
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where:
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3. Overall elastic properties of periodic elastic
composites

3.1. Basic equation of the problem

Let us consider an elastic composite material made of
periodic cells as in Fig. 1. The periodic medium is obtained
by a periodic translation of the cell along different direc-
tions of the space.

Let us denote by 2a;(i = 1,2,3), the dimension of a basic
unit parallelepipedic cell along direction x;. Then the dis-

Fig. 1. Basic cell of a heterogeneous periodic medium.



placement field u = u(x), strain field € = €(x) and stress
field 6 = a(x) comply with the following relationships:
€x) =H{Vaoux) +(eaux)}
V.o(x)=0
a(x) = C(X) : €(X)
u(x) = EX + uper(X)

(13)

where the displacement field u,,, is periodic and C(x) is
the elasticity tensor which is also satisfying a periodicity
condition:

C(x) = C(x+d)

3
d-= ZZn,-a,-e,v
i=1

where n; is an arbitrary integer. u® is a periodic displace-
ment field and hence strain and stress fields are also
periodic:
{ o(x) =o(x+d)

€(X) = €(X+d) =E+ €pr

(14)

(15)

3.2. Strain and stress fields in Fourier space

Because of the periodicity of the medium, the solution
can be developed into Fourier series, as proposed in refer-
ences (Iwakuma and Nemat-Nasser, 1983; Michel et al.,
1999) or (Moulinec and Suquet, 2003). This series is the
discrete form of the Fourier transform of a periodic
function.

Let us consider a periodic function f(x) defined on the
cell V defined by:

V= {x-q<x<a(=123)} (16)

with the condition of periodicity: f(x) = f(x + d)
This function can be expanded into Fourier series as
follows:

Fx) =S f@e™, i=v-1 (17)
¢
with:

n;
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Let us consider the periodic part u,., of the displace-
ment field u, whose constant part is assumed null:

Wper(X) = ) " Uper(&)€" (19)
¢

where a prime on }_ indicates that the null wave vector is
excluded from the summation. Each Fourier component is
given by:

. 1 ;
(&) = 7 [ per00 % 20)

Differentiating this periodic field produces the “periodic
strain field” €, whose Fourier expansion is:

Eper(X) = Y _Eper(§)e™ (21)
¢

Finally, the relation between these “periodic parts”,
simultaneously with the constitutive elasticity in Fourier
space are:

Eper() = 5 U (§) + Tru () 0 8)

6(8) =iy CE-0):{teuE)} (22)
3.3. Obterftion of the effective properties

The effective properties come from the solution of the
set of Eq. (13). This solution is sought by using a constant
“reference elasticity tensor” C°. The expression of the local
stress field is transformed as:

C(x) : (E+ €er(X)) = C°: (E + €per(X) — €-(x)) (23)

where the “free strain” €' has been introduced. Inserting
this relation into the equilibrium equation transforms the
elasticity problem for a heterogeneous medium into an
elasticity problem for a homogeneous medium and free
strains. The interest of this expression is to produce the va-
lue of the “periodic strain field” induced by the free strain
under the form:

€per(8) = S(8): €¥) (24)
where tensor S(&) is given by:

S(§) =T():C° (25)

as a function of the more commonly used “strain Green's
tensor” T'(£) whose expression is known explicitly as a
function of the reference elasticity tensor and of the wave
vectors. As an example, for an isotropic material this tensor
is transversely isotropic and can be expressed in the Wal-
pole’s basis (Walpole, 1981 and Walpole et al., 1966) as
shown in Appendix B, by:

. 1 1
re =m£2(§)+m&(¢) (26)

where £, and E4 are tensors of the Walpole’s basis.
Introducing this expression of the periodic strain field
into (23) produces:

oC : <E + 2%(4;) : .p) =% é(x) (27)
¢
with:
{ ¥ =3 Jyeteceridvy 28)
oC = C° - C(x)

The problem is now to obtain the free field by solving
this “integral equation” (due to the integral appearing in
¥). One usual way is to solve this integral equation by suc-
cessive iterations (Michel et al.,, 1999; Moulinec and Su-
quet, 2003; Zeman et al, 2010). However, in order to
provide possible solutions in the case of viscoelasticity, a
simple approximate solution for the effective properties
will be obtained in the following section for the volume
average of the “free strain” on the domain of the
inclusions.



3.4. An approximation of the solution of the integral equation

Let us consider a basic cell D which consists of a matrix
of linear elasticity tensor CM containing inclusions Q of
elasticity tensor C'. The approximation introduced in refer-
ence (Iwakuma and Nemat-Nasser, 1983) is to replace the
eigenstrain field €" by its volume average under the inte-
gral appearing in the volume average of the previous rela-
tion, when using a reference medium equal to the elasticity
tensor of the matrix. This leads to:

M (€l(x)) = oC : (E + ZP(§)§(§) : (eL(x))) (29)
¢

where 6C = CM — ¢! and the brackets denote the volume
average over the cell. Function P(¢) is defined by:

P {10 o} (30)

which uses the volume fraction of inclusions fand a shape
function I(¢) which depends explicitly on the distribution
of inclusions within the periodic cell, being defined by:

108) - /Qe"f"dx (31

on the volume Q of the inclusions.
The relation between the macroscopic strain E and the
volume average of the free strain becomes:

[A-Q)]: (e'(x)) =E (32)
where:
A=osC":CM

- a 33
Q=Y PS5 (33)
¢
Now, taking the volume average of Eq. (24) produces
the volume average of the stress field, which is related to
the macroscopic strain by the effective elasticity tensor,
leading to:

CYE=C":E-fCM: (€'(x)) (34)

From Eqs. (32) and (34) used for any value of the mac-
roscopic strain, the effective modulus is solution of a linear
equation:

fcM = (@M . q:"”) (A -Q) (35)

By using Eq. (33), it becomes:
fr=(c"-c): (a‘c-‘ - ir«:)f‘(é)) (36)
¢

This last expression produces an explicit relation allow-
ing the computation of the effective elasticity tensor for
any distribution of heterogeneities (through function
P(&)). Obviously, the accuracy of the approximate solution
obtained in this way must be compared with the full solu-
tion of the integral equation in order to know in which case
such a solution can be used. This is the objective of the fol-
lowing section.

4. Two examples of elastic composites and comparison
with a complete solution

4.1. A cubic array of spheres

For a first illustration, we consider a periodic composite
having cubic symmetry. Its basic cell is a cube of size A
containing a centered spherical inclusion of radius R. Let
the material of the cell be linearly isotropic elastic with
the elasticity tensor C. The solution of Eq. (36) will be
made clearer by using matrix expressions of fourth-rank
tensors.

We consider the fourth-rank elasticity tensor L of com-
ponents Ly which possesses the major symmetry and the
minor symmetry related to couples (i,j) and (k,[). The ten-
sorial relationship between second order tensors a and b
using tensor L is given by:

b=L:a (37)

This can be translated into the matrix form:

[B] = [’-uf} [A,,] (38)
where:
by an
bz az
b - as3
1B V2.by A= V2.0ay3 (39)
V2.b3 \/2-031
\/i-blz \/5-012
[ 2
It = [ 12] [ 22] (40)
L] [

with:

Linn Lnzz Luss
[L“] = | L2 Loz Lo (41)
L33 Lszzz  Lasss

L]123 L1131 L]l]Z

[le] =V2|Lan Lon Lo (42)
L33z L3z Lanz
Loz L3zt Lasiz
[Lzz] =2|L3123 L3z L3z (43)
L2z Lizsi L2z

Eq. (36) can be rewritten as follows:

fi=(c-c): (" -c) ' -s) (44)
where:

1 1
St=mra VUt oY (45)



with:
U =Y P(&)E(&)
: (46)

’

V=Y P

¢

The matrix expression of the effective elasticity tensor
is finally given by:

[c“”] - [c’"] —fD|! (47)
with:

D] = [6C) " ! ! 48
[D] = [o€] *m[m*m["] (48)

Tensors U and V are obtained from tensors [, and E4 which
themselves can be expressed by using two tensors G'") and
G, This expression is given in matrix form by:

E2) = [67]

B - [6")] - 2[c?] (49)

The components of matrix [G‘”], [G‘Z)] are given in (C).

These components are functions of nine scalar functions
of the wave vectors hi(&), k= 1...9. Finally, matrices [U]
and [V] are functions of nine constants S, k= 1...9, with
Sk = 32 P(&)hi(8).

For the chosen cubic symmetry, it can be noticed that
matrices [6C]', [U], [V] can be diagonalized by using the
same eigenvectors. It allows to compute the inverse of ma-
trix (D] in the form:

1 1
PR TR T

I - QD - D)@ (50
where: [D,], [D,], [D,] are the diagonal matrices contain-
ing eigenvalues ay, uy, vy of matrix [6C|", [U], [V].

[Q] is the matrix of base change given by:

1 -1 -1 000
1.0 1 000
1 1 0 000

Q=10 0 0 100 (51)
00 0 010
00 0 001

Finally, the matrix associated with the overall elasticity
tensor is given by:

€] = [€] ~ fre[H] (52)
with:

Hy] = Q|[Fp] Q™ (53)
Iy = 1 _vk_F(k)ij = (Sik(Sjk (54)

- llk -
U~ 52y~ 2y

where the matrices [Hg,] depend only on the geometry of
the inclusions and of the cell.

It can be noticed that this expression takes the form of a
rational fraction of the elastic modulus of the components,
which will be the main property used for producing the
extension to the effective properties of viscoelastic com-
posites in the following section.

The shape function which must be introduced into Eq.
(31) for the particular geometry of the simple cubic array
of spheres is given by Nemat-Nasser et al. (1982):

vln’('f) _ 3(sinn ’—I3qcos 1) (n#0) (55)
with
= 2”(%)]/3(’%”::)1/2
o (56)
&j

I )

Another simplification comes from the symmetry of the
cell, because the independent values of coefficients S
which appear in the computation of matrices [U] and [V]
are only three, due to:

$1=5=8
S4=S85=5 (57)
S7=5=5

The homogenized material has a cubic symmetry. Con-
sequently, the effective elasticity tensor is defined by three
independent coefficients:

- The effective incompressibility modulus .y defined by:

i eff
Keg = Cin *’32(-1122 (58)

- The first effective shear module f,; defined by:

Her = Cz'lsfza (59)
- The second effective shear module /i given by:
(Z]] - 27_2) = 2[(:,”(511 - Ezz) (60)
or
X C('IT . cf/f
My = 111 > 1122 (61)

Then, an application is performed on a specific compos-
ite whose elastic properties of phases are given in Table 1.

Figs. 2 and 3 show the values of the first effective shear
modulus and of the incompressibility modulus as func-
tions of the concentration of the spherical inclusions, com-
pared with the full FFT solution of the integral equation
and to the bounds of Voigt and Reuss, showing that these
vales are coherent with first-order bounds and that the

Table 1

Elastic properties of the composite.
Elastic modulus (GPa) Matrix Inclusion
Incompressibility modulus x 30 100
Shear modulus u 20 50
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Fig. 2. Estimate of the first effective shear modulus for a simple cubic

array of spheres. Comparison with the full FFT solution and with the
bounds of Voigt and Reuss.
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Fig. 3. Estimate of the incompressibility modulus for a simple cubic array
of spheres. Comparison with the full FFT solution and with bounds of
Voigt and Reuss.

approximate solution provides a very good approximation
on the full range of concentrations.

The calculation of the effective properties depends on
the computation of coefficients S, which come from infi-
nite summations on all wave numbers. Finally, the result
depends on the quantity of wave numbers which is used
in the summation. Figs. 4 and 5 show the values of effective
modulus obtained for different choices of the number of
wave vectors. These figures show that a wave number in
the formula (18) with n; € [-64:63] for each direction,
giving a total number of waves vectors: 128 x 128 x 128,
ensures the convergence of the sums appearing in the
expression of the overall modulus.

It is worthwhile noticing that it was found that the
quantity of wave-numbers for obtaining the convergence
is higher than the one which produces convergence when
using the complete FFT solution.

32_ ........... i £ 10 1A i B st i A cadba b 4 e 4 :
__N=8'88 ' :

___N=161616 |
NZ=128*128'128 :

30t
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Fig. 4. Study of the convergence for different numbers of wave vectors
when computing the first shear modulus.
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Fig. 5. Study of the convergence for different numbers of wave vectors
when computing the incompressiblility modulus.

4.2. A squared array of fibers

The second example which is considered is a composite
containing a squared array of fibers, both matrix and fibers
being incompressible. The comparison is made with the re-
sults of complete FFT iterative scheme, but using the exact
shape functions, as performed in Bonnet (2007). The shear
modulus of the matrix is y,, = 70 GPa and the one of the
inclusion is z¢; = 5 GPa.

The shape functions related to the squared array of
fibers to be introduced into Eq. (31) are given by
Nemat-Nasser et al. (1982):

_2.54:(n)
—

where J; is the Bessel function of first order.S, is the area of
inclusion, 7 is given by:

[.(£) (62)



o B 2
n=RE+3)" (63)

where, R is the radius of the fiber.
The Green's tensor is given in the incompressible case
by:

S E4

I = by (64)

The non null components of the symmetric tensor 4

are determined by:

Enin=4(8 - &) Enn=4(8-8)
Enpp = -488 Eniz =288 (1 -28)

p 2 2+ (65)
Esizi = & Epiy =&+ & -488
Eyps =8 Eniy =26 5(1-28)

Fig. 6 shows the comparison between the shear modu-
lus obtained from the approximate solution and from the
complete FFT solution. Results show that the approximate
solution is close to the full FFT solution up to concentra-
tions which are close to 0.5. From a more general point
of view, the precision of the approximate method depends
on the contrast o = %’;between inclusion and matrix. Fig. 7
shows the error coming from the approximate solution as a
function of the contrast and shows that the error increases
with the contrast, but remains small for all contrasts at
concentrations inferior to 0.3. The results presented here
correspond to contrasts inferior to 1, but similar results
are obtained for contrasts superior to 1. Another important
parameter is the number of wave vectors which are used in
the computation. The number of wave-vectors used for the
approximate solution is 256 x 256, while the one used for
the FFT solution is 64 x 64. Generally, it was found that the
number of wave-vectors for reaching convergence is high-
er for the approximate solution than for the full FFT
solution.

The result show that the quality of the approximate
solution depends not only of volume concentration but
also on the contrast of shear moduli. However, for concen-
trations lower than 0.3, the approximate solution is accu-
rate for any case.

70 e GRS Jiamncin S S 35 A O 2 25 A
\ : : Il FFT solution
pproximate method|.

0 0.1 0.2 0.3 0.4 0.5 0.6
Concentration of the inclusion
Fig. 6. Effective shear modulus obtained from the approximate solution

compared with the solution obtained by the FFT method. Both are
compared with the bounds of Voigt and Reuss.
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Fig. 7. Error on the approximate solution compared with the full FFT
solution for different contrasts of the shear modulus.

5. The viscoelastic solution

Let us consider now a microstructure characterized by a
cell having a cubic symmetry, the constituent materials
being characterized by a matrix having a viscoelastic behav-
ior of Kelvin, Maxwell or Burgers type and inclusions being
linearly elastic. Using Laplace transform, the effective elas-
ticity tensor in the Laplace-Carson space is given by (47):

cl(s) = cM(s) - fD(s)™ (66)
or in the matrix form:

6

€(s)] = (€6 -£Y (o) (67)
k=1

with:

rls) = ; (68)

ax(s) — A‘u(s)fkiums) - 7;::(:)
The eigenvalues of the matrix [U] and [V] are given by:
[Sq+ 257
Sa—S;
Sa—S7
25,
25;
PAYS

{u} = (69)

and:
[2S, —2S, - 4S;
25, — 254+ 28
25y — 254+ 25
254 — 4S;
254 — 4S;
254 — 4S;
The non null components of matrix [D] "' are given by:
Dy = Dyy = D33 = 1(r1(8) + 2r2(s))
Dy = Dy3 = D3 = 1(ri(s) — 12(s)) (71)
D4y = Dss = Des = I4(S)

{v} = (70)




The components of the effective elasticity tensor in the
Laplace-Carson space C¥(s) are given in the following
forms:

3K(s) + 4u(s) — fri(s) + 2ra(s))

Clh(s) = 3 (72)
T (s) = 2K6) = 216) ;f(n (s) —12(5) (73)
cLa(s) = 24(s) ;frll(s) (74)

In the following, we focus on isotropic materials for
which the behavior of the matrix is linearly viscoelastic,
according to models of Kelvin, Maxwell or Burgers, while
inclusions are linear elastic. So the incompressibility and
shear moduli in Laplace-Carson space are given by:

— BN
{'“(S) T Hpls)

(o) _ KN(S)
K(s) = Kp(s)

(75)

where [y, [y, Ky, Kp are polynomials in s. Finally, the val-
ues of functions ri(s) are given by:

6(3Gi6 +4Gsz — Ki(3Gse + 4G32))

' "8Gy — 901 (G — KiGsa) + 1Gss + 1,G3s (76)
Iy = 2/1,(3647 + 4628) - 2(3(;210 + 4629) (77)
$1Gag + 3(v2 — 1)Gra — P2Goa — 314,02Gr04
po - 2H4(3Gay +4Gz) ~ 2(3Ga10 +4Gzo) (78)
4 Z]GZS + 3(1/4 - 1)G74 - Zng4 - 3,[[,1/46104
where:
)y = (6 - ]8“] - ]21]1)
y = K(18uy + 12v4)
¢y = 6u; +4v, -4
79
¢y = 14, (6usz + 4v,) (79)
/1= 6Us +4vs -4
V2 = 1, (6ug + 4v4)
Gj = FiF; (i,j=1..10) (80)
where functions F; are given by:
Fi = K3(s) F2 = ()
Fs = K5(s) Fa=p(s)
Fs = kn(S)Kkp(s) Fs = [ty(S)Hp(S) (81)
F7 = Kkn(S)in(s)  Fs = Kp(S)ip(s)
Fo = Kp(s)itn(s)  Fro = Kn(S)Hp(s)

This set of equations shows that the effective moduli are
all rational fractions of the Laplace variable s. Its inverse can
be obtained explicitly as shown before in Section 2.

6. Numerical applications in the viscoelastic case

6.1. Examples of 3D composites with inclusions on a simple
cubic lattice

Toillustrate the method described above, an application
is made in the case of a microstructure with inclusions dis-
tributed over a simple cubic lattice. As previously, the
inclusions are assumed elastic and the matrix is viscoelas-
tic of isotropic Kelvin-Voigt type. From Appendix D3, the
relaxation functions in Laplace-Carson space are given by:

ﬁ,‘ - K+ 1,8 82)
wo /l + ’Ius
The constituent materials are isotropic and the structure is
cubic. So, the effective tensor possesses the cubic geome-
try, so that the elasticity fourth-rank tensor R(t) depends
only on three independent functions, namely:

- An effective relaxation function in compression Ky (t):

eff eff
Ker(t) = G (0 *32(-1122“) (83)

- Two effective relaxation functions in shear fi;(t) et
Heg (O):

Heg (1) = s (0) (84)

Ly (8) = SH0! ; 10 (85)

A numerical application is presented with the parame-
ters defined in Table 2.

Figs. 8-10 show the effective relaxation functions ver-
sus time for different wave-number discretizations used
in the computation of terms Sy. The results show the effect
of wave-number discretization on the relaxation functions
appears to be less important than in the case of elastic con-
stants. Indeed, the viscoelastic computations synthetize
numerous “pseudo-elastic” materials at different values
of s and the synthetized results seem to be less sensitive
to wave-number discretization.

The results being obtained in the form of a rational frac-
tion, it was possible to recover a rheological model for each
partial relaxation function of the effective behavior. The
rheological model is the same for all three partial relaxa-
tion functions and given in Fig. 11, the physical properties
of rheological components being described in Table 3.

Table 2
Mechanical properties of a periodic composite containing a viscoelastic
matrix of Kelvin-Voigt type.

Phase Inclusion Matrix
Volume concentration (%) 15 85
Incomp. modulus (GPa) 70 20
Shear modulus (GPa) 30 5
Viscosity in comp. (GPa - day) 0 7
Viscosity in shear (GPa - day) 0 5
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Fig. 8. Relaxation function for the first effective shear modulus of a
composite with a viscoelastic matrix of Kelvin-Voigt type obtained from
the FFT approximate solution for different wave-number discretizations.
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Fig. 9. Relaxation function for the effective bulk modulus of a composite
with a viscoelastic matrix of Kelvin-Voigt type obtained from the FFT
approximate solution for different wave-number discretizations.

To demonstrate the flexibility of the method, the case of
rheological models of Maxwell and Burgers types were also
studied. The results corresponding to these other rheolog-
ical models are reported in A.1 and A.2.

7. Validation of the method on a result of the literature

In this section, the results coming from the approximate
FFT solution are compared with those coming from an time
iterative solution used by Lahellec and Suquet (2007). The
material under study is a fiber reinforced composite con-
sisting of two phases. The fiber axis is aligned along x5 axis
and the material of the fibers will be identified as phase 1.
This phase is elastic, linear, isotropic and characterized by
the bulk modulus k" = 222.2 GPa and the shear modulus
21 = 333.3 GPa. Its volume concentration is given by
¢; = 0.25. The behavior of the matrix is viscoelastic of
Maxwell type, characterized by the incompressibility coef-
ficient k* = 58.33 GPa, shear 2 —53.84 GPa and vis-
cosity 7 = 10GPas.
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Fig. 10. Relaxation function for the second effective shear modulus of a
composite with a viscoelastic matrix of Kelvin-Voigt type obtained from
the FFT approximate solution for different wave-number discretizations.

The problem is two-dimensional and the loading is
characterized by giving a time path description of the mac-
roscopic strain as:

E(t) = Eni(t)ey @ ey — En(t)e; @ e; (86)

where: E;;(t) is a monotonically increasing function with a
constant strain rate E;; = 5.10 s

Fig. 12 shows the variation of the macroscopic stress
X1 as a function of time obtained by the approximate
FFT solution and by Lahellec and Suquet (2007). The result
shows that both results are identical, which validates again
the results coming from the approximate FFT solution used
in the present work.

8. Conclusion

In this paper, we proceeded to the determination of vis-
coelastic properties of periodic inclusion-matrix compos-
ites by an approximate FFT solution based on a
simplification of the solution of the integral equation for
heterogeneous media. The effect of the microstructure is
accounted for by using explicitly the distribution of inclu-
sions through the characteristic function of the domain
containing the inclusions. The overall modulus in La-
place-Carson's space for this type of solution presents itself
as a rational fraction, which allows the semi-analytical
inversion of the Laplace transform. This procedure allows
to calculate explicitly the relaxation function of the mate-
rial. The examples tested in the case of periodic micro-
structures of 3D simple cubic array of spheres or 2D
array of fibers have shown that the proposed method is
able to deal with the case of different types of behavior
for the matrix. A validation was performed successfully
by comparison with results coming from time-step inte-
gration of the solution. It is worthwhile mentioning that
the method rests on shape functions which are the Fourier
components of the characteristic function of the domain
containing the inclusions. As such, it allows to account
for complex distributions coming for example from 3D
tomography of the microstructure.
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Fig. 11. Rheological model associated with the macroscopic behavior of a viscoelastic periodic composite comprising a matrix of Kelvin-Voigt type using

the FFT approximation.

Table 3

Viscoelastic properties of rheological model associated with the macro-
scopic behavior of a periodic composite containing a matrix of Kelvin-Voigt
type as obtained by the FFT approximation.

Properties Element 1 Element 2 Element 3
Modulus (GPa)
Shear 46.57 187.77 9.32
Buld 133.23 32.44 1.86
Second shear 44.68 38.07 13.04
Viscocity (GPa - day)
Shear 4.97 100.35 9.32
Bulk 6.11 13.15 1.87
Second shear 5.38 2273 13.04
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Fig. 12. Response of a fiber reinforced composites under monotonic
loading. Comparison between the results of the FFT method and those
obtained by (Lahellec and Suquet, 2007).

Appendix A. Applications of the approximate FFT
solution for different rheological models

A.1. Maxwell’s model

A numerical application is presented for a rheological
model of Maxwell type with the parameters defined in Ta-
ble A.4 defining the different parts of the model. The relax-
ation function for the overall bulk modulus is reported in
Fig. A.13 while the ones related to both overall shear mod-
uli are reported in Figs. A.14 and A.15. These results show
that the convergence is still very good and ensured for 64
wavenumbers along each direction.

Table A4
Mechanical properties of a periodic composite containing a viscoelastic
matrix of Maxwell type.

Phase Inclusion Matrix
Volume concentration (%) 50 50
Incomp. modulus (GPa) 100 60
Shear modulus (GPa) 30 45
Viscosity in comp. (GPa - day) 0 14
Viscosity in shear (GPa - day) 0 5

A.2. Burgers's model

A numerical application is now presented for a Bur-
gers’s model which comprises two different parts: one
being built as a Maxwell model while the other is built
as a Kelvin model. The set of all the necessary parameters
is defined in Table A.5. Despite the larger set of rheological
parameters, the method can still be applied with success as
shown by Figs. A.16, A.17 and A.18 displaying the relaxa-
tion functions for the bulk modulus and shear moduli. This
shows again the ability of the method to deal with various
rheological models for the constituents of the composite
material.

Appendix B. Decomposition in the Walpole’s base

We recall the definition of the Walpole's base (Walpole,
1981) for tensors of order four with a transverse isotropic
symmetry. This base has some interesting properties for
performing the product between such tensors. From a gen-
eral point of view, transverse isotropy is characterized by a
plane within which isotropy is present. The direction of the
plane is characterized by the direction of the normal to the
plane. In the case of wave-number decompositon, the unit
normal to the plane is given for each wave vector by the
unit vector along the direction of the wave vector. Finally,
the elements of the Walpole's base are defined by:

(9] o k"
€3] 2k
(&) ok —E; (B.1)
B¢ =k ok+kak"
E(é)=kaok, B¢ =k ok
where k et k™ is defined by:
k-Leoe K-i ok (B.2)

4
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Fig. A.17. Relaxation function for the effective shear modulus of a
composite with a viscoelastic matrix of Burgers type.

with the condition |&| # 0.
For an isotropic material, the Green's tensor I' is given

by:
1 1
:TZ;IEZ +2—uE4 (B.3)

Second shear effective relaxation function (GPa)
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Appendix C. Components of tensors G
Fig. A.15. Relaxation function for the second effective shear modulus of a

composite with a viscoelastic matrix of Maxwell type. Full expressions of tensors G are given by:
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Fig. A.18. Relaxation function for the second effective shear modulus of a
composite with a viscoelastic matrix of Burgers type.

{ G,(Jlk), = L{G(0uk + oudr) + Ei(0aCk + o) } 1)

where (&), is the unit vector along the direction of the
wave vector &. For a parallelepipedic cell with three
orthogonal planes of symmetry, only 9 terms are involved:

h=G)? h=G)" h=G)’
ha=@GE), hs=@&)" h=@G)" (€2)
h = &&)° hs=Ga)° ho=(GEE)°

With the previous notation, the matrices associated
with tensors G are given by:

2h, 0 0 0 0 0

0 2h, O 0 0 0
b |0 0 2 0 0 0

[O]* 0 0 0 hy+hs 0O 0 €3)
0 0 0 0 hy +hy 0
0 0 o0 0 0 h+h
hy hgy hg O 0 0
hg hs h; 0 0 0

[C‘Z’] N hg h; he O 0 0 (C4)
0 0 O 2h; O 0
0 0 0 0 2h O
0 0 0 O 0 2hg

Appendix D. Tensorial decomposition of isotropic
elasticity and viscoelasticity tensors

D.1. Elasticity behavior

In the case of a heterogeneous material where each
phase has an isotropic elastic behavior, defined by the
shear modulus x and incompressibility x, the stiffness ten-
sor C and the compliance tensor S can be expressed as
Zaoui, 1998:

C =2 + 3KJ
(D.1)

§:2LHK+%J]

where fourth-order tensors < and J are spherical and devi-
atoric parts, respectively, and defined by:

1o
—stet (D.2)
K=1-J

where i is the second order identity tensor. The interest in
using fourth-order tensors < and J comes from the follow-
ing relations:

I:0=1 K: K=K J:J=J
K:J=0 l:i=J:i=1i K:i=0 (D.3)
J:K=0 K:e=e J:e=1tr(e)i

where e is the deviator of a second order symmetric
tensor €.

D.2. Viscoelastic behavior of isotropic Kelvin-Voigt's type

The isotropic viscoelastic behavior of the Kelvin-Voigt’s
type is given by:

6=C:e+1:6€ (D.4)

where # is the fourth-order tensor, defined by:

0 =3n,J+2n,K (D.5)
This produces in the Laplace-Carson space:

6" = (C+ns):€ (D.6)

which gives:

6" = [3(1\' +1,8)J + 2(;1 + )]“s) IK] c€" (D.7)

or:

¢ =R':¢€ (D.8)

with:

R = 3R,J + 2R} I (D.9)

and:

R, = K+1,S
(D.10)

Ry = pt+1,s

where 1,17, are the viscosity in shear and in compression,

respectively.

D.3. Viscoelastic behavior of the isotropic Maxwell’s type
The isotropic viscoelastic behavior of Maxwell type is

given by:

e=C':6+q "0 (D.11)

This produces in the Laplace-Carson’s space:
€ = (C" +];rr‘) 6" (D.12)

which gives:



. (1 1 1 1 .
€ = [(3—K+3']KS)J + (2—“+—2’IHS> K] g (D.13)

or:

¢ =R :€ (D.14)
with:
_ Ky
K~ K+,
o Hmys (D~]5)
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