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SUMMARY

New GPS measurements in Chiapas (Mexico), Guatemala, and El Salvador are used to constrain
the fault kinematics in the North America (NA), Caribbean (CA) and Cocos (CO) plates triple
junction area. The regional GPS velocity field is first analysed in terms of strain partitioning
across the major volcano-tectonic structures, using elastic half-space modeling, then inverted
through a block model. We show the dominant role of the Motagua fault with respect to the
Polochic fault in the accommodation of the present-day deformation associated with the NA
and CA relative motion. The NA/CA motion decreases from 18-22 mm/yr in eastern Guatemala
to 14-20 mm/yr in central Guatemala (assuming a uniform locking depth of 14-28 km), down
to a few mm/yr in western Guatemala. As a consequence, the western tip of the Caribbean plate
deforms internally, with ≃9 mm/yr of east-west extension (≃5 mm/yr across the Guatemala
City graben alone). Up to 15 mm/yr of dextral motion can be accommodated across the volcanic
arc in El Salvador and southeastern Guatemala. The arc seems to mark the northern boundary of
an independent forearc sliver (AR), pinned to the NA plate. The inversion of the velocity field
shows that a 4 blocks (NA, CA, CO, AR) model, that combines relative block rotations with
elastic deformation at the block boundaries, can account for most of the GPS observations and
constrain the overall kinematics of the active structures. This regional modeling also evidences
lateral variations of coupling at the Cocos subduction interface, with a fairly high coupling
(≃0.6) offshore Chiapas and low coupling (≃0.25) offshore Guatemala and El Salvador.

Key words: Satellite Geodesy, Kinematics of crustal and mantle deformation, Seismic cycle,
Subduction, Caribbean Plate, Central America.

1 INTRODUCTION

The complex surface deformation observed in northern central

America results from the interaction between the North Amer-

ica (NA), Cocos (CO) and Caribbean (CA) plates (figure 1). The

main active structures related to this interaction are the Polochic

and Motagua left lateral strike-slip faults at the NA/CA bound-

ary, the north-striking grabens south and east of it in Guatemala

and Honduras, the mid-America trench and the volcanic arc asso-

ciated with the CO subduction under the CA plate (e.g., Plafker,

1976; Burkart, 1983; Burkart & Self 1985). In the past decade, sev-
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Figure 1. Tectonic setting of the Caribbean plate. Gray rectangle shows

study area of Figure 2. Faults are mostly from Feuillet et al., 2003. PMF:

Polochic-Motagua faults. EF: Enriquillo Fault. TD: Trinidad Fault. GB:

Guatemala Basin. Topography and bathymetry are from Shuttle Radar To-

pography Mission (Farr and Kobrick, 2000) and Smith & Sandwell (1997),

respectively. Plate velocities relative to Caribbean plate are from Nuvel1

(DeMets et al., 1990) for Cocos plate, DeMets et al. (2000) for North Amer-

ica plate and Weber et al. (2001) for South America plate.

eral seismological and geodetic studies have tried to quantify the

kinematics of these structures accommodating the active deforma-

tion (e.g. DeMets, 2001; Guzman-Speziale, 2001; Lyon-Caen et al.,

2006) and to understand the different factors and the tectonic forces

that control this deformation (e.g. Alvarez-Gomez et al., 2008; Ro-

driguez et al., 2009; Correa-Mora et al., 2009).

From GPS measurements and modeling, Lyon-Caen et al.

(2006) documented a 20 mm/yr rate of the NA/CA relative mo-

tion in easternmost Guatemala, mostly accommodated across the

Motagua fault. This rate decreases westwards, reaching nearly 0

mm/yr near the Mexico-Guatemala border, as part of the defor-

mation is being transferred southwards into the grabens (mainly

the Guatemala city graben). Lyon-Caen et al. (2006) also suggest

a weak coupling at the CO/CA subduction interface and a dextral

slip component across the volcanic arc in Guatemala. More recent

studies (Correa-Mora et al., 2009; Rodriguez et al., 2009; Alvarado

et al., 2011) have used a dense GPS network in Honduras, El Sal-

vador and Nicaragua to build a regional model of the deformation

of the western part of the Caribbean plate. A main outcome is that

the extension relative to the stable Caribbean plate is not limited

to Guatemala but is observed in a broader area (Guatemala and

western Honduras, Rodriguez et al., 2009). Another important re-

sult is that coupling at the CO/CA subduction interface offshore

El Salvador and Nicaragua, inferred from finite element modeling

(Álvarez-Gómez et al., 2008; Correa-Mora et al., 2009), is likely

weak as well. These models also suggest that the volcanic arc is

a rheologically weak zone. It separates the undeformed, trench-

parallel moving forearc, which is pinned to the NA plate (Correa-

Mora et al., 2009; Alvarado et al., 2011), and the wedge-shaped

western Caribbean plate, which inner deformation is influenced

by the direction of the NA/CA motion relatively to the strike of

the curved Polochic-Motagua fault system (Álvarez-Gómez et al.,

2008; Rodriguez et al., 2009).

In this paper, we densify the Lyon-Caen et al. (2006) data set

including a third campaign of GPS measurements in Guatemala.

We also extend the study area using new GPS measurements in Chi-

apas (southern Mexico) and El Salvador. This allows us not only to

refine previous results but also to complement the regional dataset

Figure 2. GPS network: campaign sites in Guatemala/El Salvador (black

triangles), Chiapas and Mexico (open triangles) and permanent sites (white

triangles with names in bold). MAT: Mid-America Trench, PF: Polochic

Fault, MF: Motagua Fault, JF : Jocotan Fault, GG: Guatemala-city Graben,

IG: Ipala Graben, HD: Honduras Depression, SF: Swan Fault.

and to propose a kinematic block model in the critical area of the

triple junction between the CO/CA/NA plates. In particular, we dis-

cuss the present-day GPS derived coupling along the subduction

zone from southern Mexico to El Salvador.

We first present the GPS dataset, the processing strategy and

a first order analysis of the GPS velocity field in terms of strain

partitioning across the major volcano-tectonic structures. The GPS

velocity field at the regional scale is then inverted using the DEFN-

ODE model that combines relative block rotations and elastic de-

formation due to coupling at the block boundaries (McCaffrey,

2002). Finally we discuss the implication of this new dataset and

modeling for the understanding of the complex regional tectonics.

2 DATA AND PROCESSING

2.1 GPS sites and data acquisition

We use GPS data from 34 campaign sites (figure 2, Table 1) : 23

sites in Guatemala, 3 sites in El Salvador, and 8 sites in Chiapas

(southern Mexico). Data from 4 regional permanent stations be-

longing to the Servicio Sismologia Nacional (SNN) mexican net-

work (site TPCH) or to the International GPS Service (IGS) net-

work (sites ELEN, HUEH, SSIA) complement this campaign data

set (figure 2).

The first two campaigns of measurements in Guatemala were

carried out in February 1999 and 2003 and are described in Lyon-

Caen et al. (2006). Remeasurements were done in January 2006,

(including 6 new sites first measured in 2003) using 9 Ashtech ZX-

trem receivers with Geodetic IV antennas, and 3 Trimble 5700 re-

ceivers with Zephyr Geodetic antennas. All sites were occupied for

at least two sessions of 12h to 24h, with two sites that were mea-

sured continuously during six and ten days (PIN and COB, respec-

tively, figure 2), as in 1999 and 2003.

The three sites in El Salvador were measured in February 2003

during the campaign in Guatemala, with 48h of occupation at each

site, using Ashtech Z12 receivers and Geodetic III and IIA anten-

nas. They were remeasured in march 2006 using Z-Max Thales re-

ceivers and antennas, together with the ZAC guatemalan site (figure

2), during four consecutive, 10h-long daily sessions.

Measurements in Chiapas, conducted by UNAM (Universidad

Nacional Autónoma de Mexico), began in 2002 and were repeated
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each year until 2005. Leica SR520 receivers were used with Le-

ica A504 Dorne Margelin antennas. Each site was measured during

two to five 24h sessions. Table A1 in Supporting Information sum-

marizes the sites occupation.

2.2 Processing strategy

We use the GAMIT software (King and Bock, 2002) to process data

from the campaign and permanent stations mentioned above. The

GAMIT unconstrained solutions of daily station coordinates and

their associated covariances are combined with selected SOPAC

(Scripps Orbital and Permanent Array Center) solutions, using

GLOBK (Herring, 2002), to obtain stations positions and veloc-

ities in the ITRF2000 reference frame. Velocity uncertainties are

estimated using a Markovian error model during the GLOBK daily

solution combination (Herring, 2002). We authorize for each sta-

tion a random walk of 2 mm/
√
yr around their position. Velocity

vectors are determined without introducing a Markovian noise.

Several earthquakes occurred within our regional network be-

tween 1999 and 2006. We select all earthquakes with an hypocen-

tral depth shallower than 30 km, and the Mw≥6 deeper earthquakes

that are located within 500 km from the center of our study area

(15.1◦N, 269.7◦E). We estimate their rupture parameters (slip and

rupture size), based on the CMT catalog and scaling laws (Wells

&Coppersmith, 1994). For the 2001, Mw=7.7 earthquake in El Sal-

vador in particular, these parameters are given by Bommer et al.

(2002) and Vallée et al. (2003). We use an elastic half-space model

(Okada, 1985) to estimate the cumulative coseismic displacements

associated with the selected earthquakes at each GPS site (Tables

A2 and A3), and take them into account during the GLOBK combi-

nation process. This changes velocities by up to 1.8 mm/yr for site

CON in eastern Guatemala (figure 2) but no more than 1mm/yr for

the other sites.

Due to the short overlapping in time between measurements

made within the Guatemala/El Salvador sub-network, and those

made within the Chiapas sub-network (Table A1), we first com-

pute two independent GLOBK velocity solutions for these two sub-

networks, following the procedure described above. While both

referenced to ITRF2000 with comparable residuals (∼ 5 mm on

positions, 1.3 mm/yr on velocities for Guatemala/El Salvador, ∼
4.5 mm on positions, 2.5 mm/yr on velocities for Chiapas), the

two resulting velocity fields are not fully consistent, with common

sites such as TPCH showing different velocity vectors (figure A1a).

To make both velocity fields consistent, we use the more robust

Guatemala/El Salvador solution as a reference, and we estimate

the angular velocity that best adjusts the Chiapas velocity vectors

with the Guatemala/El Salvador ones, at the common regional site

TPCH and at the IGS stations used by GLOBK for the stabilization

in ITRF2000 (figure A1a). We use the same strategy to adjust the

resulting Guatemala-El Salvador-Chiapas velocity field to that of

DeMets et al. (2007) in ITRF2000 (figure A1b). Angular velocities

used to obtain the ITRF2000 velocities (Table 1) are listed in Table

A4.

This procedure allows us to use the CA/ITRF2000 and

NA/ITRF2000 angular velocities estimated by DeMets et al. (2007)

(Table A5) to reference our final regional velocity field in the CA

and NA reference frames (figure 3). Note that we do not propagate

the uncertainties of the angular velocities into the uncertainties of

our sites velocities in these two frames. We estimate them to be on

the order of 1 mm/yr at our regional stations, by comparison with

velocity fields obtained using different values of the CA/ITRF2000

Table 1. GPS sites information. Lon, Lat, Ve, Vn, σe, σn, σ are longitude,

latitude, east and north velocities referenced to ITRF2000, east and north

standard errors and form factor, respectively. Sites in bold are permanent

sites, * indicates velocities calculated by DeMets et al., 2007.

Lon (◦E) Lat (◦N) Ve Vn σe σn σ Site

Chiapas

266.063 16.225 -5.46 1.53 1.27 1.23 -0.027 AZTE

267.307 16.125 -2.61 5.67 1.30 1.23 -0.017 CONC

267.927 15.696 -1.25 6.86 1.28 1.23 -0.021 ESPI

266.396 15.935 -4.98 4.63 1.27 1.23 -0.024 ESPO

267.143 16.419 -4.84 1.71 1.56 1.50 0.002 GRUT

267.106 15.459 -2.00 4.33 1.27 1.23 -0.023 MAPA

267.611 15.281 -2.07 9.92 1.28 1.23 -0.041 SELE

267.481 16.675 -4.64 4.12 1.30 1.23 -0.014 SOLE

267.704 14.883 -0.96 6.72 1.53 1.49 -0.026 TPCH

Guatemala

270.182 15.605 -3.25 0.44 1.29 1.16 0.028 CAH

270.941 15.394 -0.3 -0.66 1.38 1.21 0.075 CAM

270.348 14.779 9.25 4.71 1.25 1.14 0.053 CHI

269.618 14.075 5.45 4.79 1.36 1.18 0.026 CHL

269.196 14.638 2.33 0.87 1.25 1.14 0.035 CML

269.611 15.464 -2.53 0.24 1.20 1.10 0.087 COB

270.548 14.517 12.73 4.84 1.26 1.15 0.040 CON

270.760 14.854 5.09 3.22 1.87 1.23 0.052 CPJ

270.132 16.916 -6.78 -0.32 1.21 1.19 0.024 ELEN

269.478 14.590 3.20 2.80 1.71 2.40 -0.118 GUAT*

270.385 15.030 1.89 0.74 1.31 1.19 0.026 HON

268.531 15.282 -1.24 1.03 1.31 1.17 0.052 HUE

268.497 15.318 -2.65 3.76 1.22 1.20 0.063 HUEH

269.174 15.011 -3.22 0.36 1.27 1.21 0.003 JOY

268.450 14.537 2.55 3.16 1.66 1.47 -0.200 MAZ

270.329 15.084 1.42 1.41 1.26 1.15 0.039 MIN

270.766 15.930 -5.63 0.36 1.31 1.21 0.040 MOD

269.370 15.458 -2.42 4.7 1.23 1.20 0.043 PAM

269.620 14.551 7.62 2.39 1.20 1.10 0.098 PIN

268.486 14.871 0.53 -2.51 1.28 1.14 0.051 QUE

269.553 15.990 -5.52 0.73 1.26 1.15 0.046 RUB

269.719 15.075 0.09 1.38 1.29 1.16 0.038 SAL

269.751 14.816 6.02 1.41 1.26 1.15 0.054 SAN

268.506 15.571 -2.61 1.37 1.29 1.16 0.044 SOL

269.130 15.348 -5.08 -1.92 1.24 1.20 0.061 USP

270.499 14.981 5.45 4.92 1.47 1.30 0.012 ZAC

El Salvador

270.680 13.495 -0.69 13.05 1.39 1.29 0.010 SIGN

270.883 13.697 4.48 8.60 1.40 1.00 0.500 SSIA

270.895 14.175 10.37 5.39 1.38 1.29 0.010 TEJU

270.500 14.116 12.67 5.17 1.38 1.29 0.010 TEXW

Honduras

272.794 14.090 8.90 5.70 1.60 1.20 0.000 TEGU*

and NA/ITRF2000 angular velocity within their error bars. We ne-

glect them in the following.

3 GPS VELOCITY FIELD AND ANALYSIS AT FAULT

SCALE

Figure 3 illustrates the complexity of the velocity field in the

CO/CA/NA triple junction area. We first describe its main features
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Figure 3. GPS velocity field from table 1 in (a) North America and (b)

Caribbean plates reference frames. Euler NA/ITRF2000 and CA/ITRF2000

angular velocities as well as velocity vectors of sites GUAT and TEGU

(white arrows) are from DeMets et al. (2007). Dark gray bold lines outline

active faults (names as in Figure 2). Light gray lines indicate location of

profiles shown in Figure 4. Dotted line follows volcanic arc.

in the NA and CA reference frames before analyzing the slip parti-

tioning among the different faults, the volcanic arc and the subduc-

tion zone.

3.1 Overall description

In the North America reference frame, the three sites ELEN, RUB

and MOD, to the north, form a consistent group with small residual

velocities (Figure 3a), comparable to those of sites CHET, VILL

and CAMP on the Yucatan peninsula. On the first order, they can be

considered as part of the stable North America plate, as the Yucatan

sites (Marquez-Azua & DeMets, 2009).

In the Caribbean reference frame, the three sites CON, TEXW

and TEJU show small residual velocities and can be considered at

the first order as representing the stable Caribbean plate (Figure

3b). In the western, wedge-shaped part of the plate in between the

Motagua fault and the volcanic arc, an east-west internal extension

is observed across the grabens, confirming results from Lyon-Caen

et al. (2006).

Figure 3 also shows the overall left-lateral motion between

the NA and CA plates and the associated velocity gradient across

the Polochic and Motagua faults. In the NA frame, all stations in

Chiapas have a consistent motion towards north-east, roughly per-

pendicular to the trench, suggesting coupling at the CO/NA slab

interface (Figure 3a). In contrast, in the CA frame, the velocities

of the coastal sites south of the volcanic arc are mostly trench-

parallel (Figure 3b). This could result from a low coupling at the

CO/CA slab interface, as already proposed by Lyon-Caen et al.

(2006). However, the velocities in El Salvador also indicate a right-

lateral motion across the volcanic arc relatively to the stable CA

plate (Figure 3b). The velocity field in southern Guatemala thus re-

flects the combined effects of coupling at the CO/CA interface and

motion across the arc.

3.2 Strain partitioning across the major tectonic structures

Assuming first that the effect of the CO subduction on the ve-

locity field is low in Guatemala and El Salvador (Lyon-Caen et

al., 2006), we quantify the slip rates across the Polochic-Motagua

faults (PMF), the grabens south of them and the volcanic arc, and

refine the previous analysis by Lyon-Caen et al. (2006), taking

advantage of the network densification and remeasurement. We

project the ITRF2000 velocities along 3 north-south trending pro-

files (East E, Central C, and West W) roughly perpendicular to

the Polochic and Motagua faults (Figures 3b, 4a, 4d, 4f). We also

project the horizontal CA-fixed velocities along a southern, east-

west trending profile (South S) perpendicular to the grabens (Figure

3b and 5).

3.2.1 The Polochic-Motagua fault zone

We first use a one fault, half-space elastic model (e.g. Savage and

Burford, 1973) as in Lyon-Caen et al. (2006). We invert for the in-

terseismic velocity, the locking depth and the location of the fault

trace along profiles E and C (Figures 4a to e). While strain accumu-

lation is clearly concentrated on the northern trace of the Motagua

fault on profile E, it seems offset by ∼15 km north of it on profile

C. Based on the χ2=1 contour, the far-field velocity and locking

depth ranges are 18-22 mm/yr (best fit 20 mm/yr) and 14-28 km

(best-fit 20 km) for profile E (best constrained model), and 14-26

mm/yr (best fit 20 mm/yr) and 12-66 km (best-fit 39 km) for profile

C. The 20 km best-fit locking depth for profile E is consistent with

the maximum depth of the seismogenic zone across the Polochic-

Motagua fault system, derived from the present crustal seismicity

distribution (Franco et al. 2009). We thus assume a constant 20 km

locking depth along the entire fault system, and favor a model with

a velocity of 20 mm/yr across profile E, decreasing to 16 mm/yr

across profile C (figures 4a to 4e). At least 4 mm/yr seems to be

accommodated by the PMF across profile W (velocity difference

between SOL and QUE, figure 4f), although the limited length of

the profile and its small number of sites do not allow any elastic

modeling.

The new data set and analysis thus confirm the decrease

of the far-field velocity across the PMF from eastern to western

Guatemala, probably tending towards zero in the triple junction

area. It also confirms the dominant role of the Motagua fault with

respect to the Polochic fault in the accommodation of the deforma-

tion associated with the NA and CA relative motion (Lyon-Caen

et al., 2006). An homogeneous half-space elastic model including

the two faults (with a fixed location) shows that at least 88% of

the total strain is accommodated by the Motagua fault in the east-

ern part of Guatemala (Figure 4c). This fault is generally consid-

ered as the geological boundary between the NA and the CA plates

(e.g. Carfantan, 1986; Donelly et al., 1990, Martens et al., 2007).

However the area in between the Polochic and Motagua faults is

a wide complex metamorphic zone. Furthermore there is no doubt

on the Holocene activity of the Polochic fault as attested by the

similarities of its morphology, Holocene slip rate, historical and

present-day seismicity with that of the Motagua fault (Carr, 1976,

Burkart, 1978, Schwartz et al., 1979, Burkart 1983, White, 1985,

White and Harlow, 1993, Ambraseys and Adams, 2001, Kovach

2004, Franco et al. 2009, Suski et al. 2009). The lack of strain ac-

cumulation across the Polochic fault remains a puzzling result. We

investigate below the possible influence of rigidity contrasts across

the Polochic-Motagua fault zone and of post-seismic effects fol-

lowing the 1976 earthquake on the present-day velocity field.

A recent Receiver Function study suggests variations of the

Moho depth (resp. Vp/Vs ratio) across the Polochic and Motagua

faults (Franco et al. 2009), with a Moho depth thinner by 4-6 km

(resp. a Vp/Vs decreased by 6-7%) in between the two faults. Such

variations, that are likely related to the geological history of this re-

gion, could result in asymmetric velocity profiles across faults, as-
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Figure 4. (a) Topography (top) and ITRF2000 GPS velocities projected

onto fault-parallel components along eastern profile, E (bottom), with fit

model for a locking depth of 20 km. Main active fault traces are indicated

by dotted lines. Volcanic arc area is shaded. (b) χ2 = 1 contour line for

locking depth and rate estimated using half-space elastic modeling (see sec-

tion 3 in text). Cross shows model for a 20 km locking depth (best-fit). (c)

χ2 = 1 contour line for a two fault model, showing the relative contribution

of the Polochic fault to the NA/CA motion, as a function of the asymmetry

coefficient K across fault (Le Pichon et al., 2005). Case K=0 corresponds

to an homogeneous half-space model. (d) and (e): same as (a) and (b), re-

spectively, for central profile, C. Shaded area on (e) is that consistent with

the locking depth range estimated from eastern profile in (b). (f): same as

(a) and (d) for western profile, W. See Figure 3 for the location of profiles.

Figure 5. Topography and GPS vectors in CA plate reference frame pro-

jected perpendicularly to the mean grabens orientation along southern pro-

file, S. Sites names are indicated at bottom. See Figure 3 for the location of

profiles.
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sociated with contrasts in elastic parameters or elastic thicknesses

on both sides of the faults (Le Pichon et al., 2005; Schmalzle et al.,

2006; Chéry, 2007; Jolivet et al., 2008). Our tests on velocities of

profile E, using a modified half-space elastic model taking into ac-

count asymmetry (formulation of Le Pichon et al., 2005), still show

that the Polochic fault does not accommodate more than ∼15% of

the total deformation (figure 4c).

To estimate the contribution to the present-day velocity field

of postseismic relaxation related to the 1976 earthquake, we use a

3D-viscoelastic model developed by Yu et al. (1996). We consider

an elastic layer, with a thickness H=30 km and a shear modulus

µ = 3.1010 N.m, above an homogeneous viscous half-space, char-

acterized by a viscosity η ranging from 10
18 to 10

21 Pa.s. The 1976

rupture on the Motagua fault is modeled using an infinitely-long

vertical fault extending from the surface to a depth of 15 km, with

an homogeneous coseismic slip of 1.5 m consistent with field ob-

servations by Plafker et al. (1976). Figure A2 shows the modeled

post-seismic displacements as a function of time normalized by the

relaxation time ( t
τ

, with τ = 2
η

µ
), for various distances y from the

fault. Maximum velocities related to postseismic relaxation are on

the order of 0.6 mm/yr: 0.4 cm between the 1999 and 2006 GPS

campaigns, at a distance of 40 km from the Motagua fault trace and

for a viscosity of 1019 Pa.s. In any case, we conclude that postseis-

mic effects can not explain the apparent lack of strain accumulation

across the Polochic fault.

3.2.2 East-West Extension

The southern profile S shows an extension rate of ∼9 mm/yr across

the Caribbean graben series north of the volcanic arc, between sites

TEJU to the east and TPCH in south-western Chiapas (figure 5).

This gives only a first order estimate as we do not take into ac-

count the rotation of microblocks separating the active grabens.

Most of the extension is concentrated across the Guatemala city

grabens (rate of 5 ± 2 mm/yr), which confirms previous estimation

by Lyon-Caen et al. (2006). The remaining extension, given our

GPS network geometry and error bars, is not clearly localized on

specific structures. Seismicity and fault plane solutions (Guzman-

Speziale, 2001, Caceres et al., 2005, Franco et al, 2009), as well

as complementary GPS observations (Rodriguez et al., 2009; note

that data are referenced to ITRF2005 instead of ITRF2000 in this

study) and finite element modeling (Alvarez-Gomez et al., 2008) in

northern central America indicate that some extension is accommo-

dated eastward from Guatemala city, up to north-eastern Honduras,

across the Ipala graben and the depression of Honduras in particu-

lar.

3.2.3 Volcanic arc

In the Caribbean plate reference (figure 3b), GPS sites along the

coast in Guatemala and El Salvador (TPCH, MAZ, CHL, SIGN,

SSIA) show velocity vectors parallel to the Mid-America Trench

(MAT), consistent with dextral motion across the volcanic arc at

a rate of up to 14mm/yr in El Salvador (see TEJU-SSIA-SIGN

velocity gradient in figure 4a). Such dextral shear is in agree-

ment with previous GPS measurements in Guatemala by Lyon-

Caen et al. (2006). Similar rates are also observed by GPS in El

Salvador and Nicaragua (≃15 mm/yr; Turner et al., 2007; Correa-

Mora et al., 2009; Alvarado et al., 2011) and Costa-Rica (Nor-

abuena et al., 2004) or attested by dextral mechanisms of recent

crustal earthquakes (M6.6, 02/13/2001 earthquake in El Salvador

in particular, Canora et al., 2010). It can be interpreted as dextral

slip on a northwest-striking, intra-arc, sub-vertical fault, bounding

to the north an independent forearc sliver. Such dextral fault sys-

tem within the volcanic arc has been evidenced in the field in El

Salvador (Martinez-Diaz et al.,2004, Corti et al., 2005). Satellite

images and topography analysis suggest that it may continue west-

wards under the volcanic deposits in Guatemala (Carr, 1976). In

Nicaragua, Lafemina et al.(2002) suggest that the dextral shear is

rather accommodated by book-shelf faulting involving northeast-

striking left-lateral faults perpendicular to the trench. Slip parti-

tioning related to the obliquity of the convergence of the Cocos

plate has been proposed to explain the observed dextral shear across

the arc (DeMets, 2001). However, it would require strong coupling

along the subduction interface, in contradiction with the most re-

cent studies (Lyon-Caen et al., 2006, Turner et al., 2007, Correa-

Mora et al., 2009, this paper). Instead, the trench-parallel, north-

westwards, forearc motion may be related to the indentation of the

Cocos ridge on the Caribbean plate, offshore Costa Rica (LaFemina

et al., 2009; Alvarado et al., 2011).

4 REGIONAL MODELING OF THE VELOCITY FIELD

To refine the proposed first-order interpretation of the crustal de-

formation, we model the GPS velocity field using the 3D-inversion

method DEFNODE developed by McCaffrey (2002). GPS veloc-

ities are considered as resulting from the combination of relative

block rotations and elastic deformation due to coupling at the block

boundaries. The relative block motions are defined by spherical

Earth angular velocity vectors (Euler rotation poles and rates) while

the interseismic deformation is modeled as backslip on the faults

that separate blocks (Okada, 1985, Savage, 1983). The faults at the

boundary of the finite blocks are defined in 3D, by a series of nodes

along the fault planes (forming an irregular grid of points along

strike and down dip). Fault locking is parameterized at each node

by a coupling factor φ, which represents the fractional part of the

relative block motion that is not accommodated by steady, aseis-

mic slip. φ ranges between 0 (no coupling) and 1 (full coupling).

Block angular velocities and coupling factors φ can be inverted by

minimizing the misfit between observations (e.g. GPS velocities

and slip vectors) and predicted data, using a simulated annealing

method.

4.1 Input data, model geometry

We constrain our models using the horizontal GPS velocities and

their associated uncertainties listed in Table 1. However, given the

poor density of points that defines the east-west extension in the

westernmost part of the Caribbean plate, we can not model this ex-

tension and do not take into account velocities at sites QUE, CML,

GUAT, PIN (Figure 3). We also use slip vectors of subduction earth-

quakes of Mw≥5.9 (Table 2) from the complete CMT catalog, to

provide constraints on the slip direction along the subduction plane.

We define two sets of model geometries : (1) a 3 blocks (North

America, NA, Caribbean, CA, and Cocos, CO) and 2 faults (Mo-

tagua fault, MF, and Middle-America Trench, MAT) model, called

3B model hereafter, and (2) a 4 blocks (NA, CA, CO, and the fore-

arc microplate, AR) and 3 faults model (MF, MAT, and the Vol-

canic Arc Fault, VAF), called the 4B model (figure 6). The MF

that marks the NA/CA boundary follows the Motagua fault surface
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Table 2. Selected earthquakes from CMT-Harvard catalog with slip vector

azimuths to constrain slip direction along the subduction (see section 4 in

text).

Long. Lat. Azimuth Depth Magnitude Reference

(◦E) (◦N) (◦) (km) CMT Mw CMT

272.84 12.7700 38 40.3 6.5 053178A

268.95 13.8800 33 25.0 6.3 103078A

270.36 13.1500 31 29.4 6.1 120678B

269.12 13.8300 27 29,8 6.8 102779A

269.27 13.7800 26 27.6 6.8 102779B

267.89 14.2700 36 42.6 5.9 040682A

268.06 14.0500 27 31.0 7.0 120283A

273.44 11.5900 34 54.6 6.1 082384A

273.44 11.9300 40 50.0 6.1 041985A

trace to the east. To the west, we extrapolate this fault trace un-

der the volcanic deposits, and connect it to the Polochic fault near

the Mexican border, then to the MAT (Figures 2 and 6). The MF is

considered as a vertical fault. The VAF, defined as a vertical fault as

well, is the continuation to the west, below the volcanic arc, of the

well known trace of the dextral fault that runs from Costa-Rica to

northern Salvador (e.g. Corti et al., 2005). We use the bathymetry

and the microseismicity distribution relocated by Engdhal & Vil-

lasenor (2002) to delineate the depth contours of the Cocos plate

slab (Figure 6).

4.2 Model parameters

For both the 3B and 4B models, the CO and NA angular velocity

vectors relative to the CA block are from DeMets et al. (2007) and

DeMets et al. (1990) (Nuvel1-A), respectively. There is no clear

evidence neither onland, nor offshore, nor in the seismic activity,

that the western continuation of the MF west of its junction with the

volcanic arc (named MFw hereafter, Figure 6), exists and is active.

As we need to materialize all block limits between the CO/NA/CA

plates in the DEFNODE model, we assign to MFw a uniform full

coupling, from the surface down to 250 km. This is equivalent in the

model to considering that the AR block is pinned to the NA block

(Alvarez-Gomez et al., 2008; Rodriguez et al., 2009). In any case,

Figure 6. 4 blocks (4B) model geometry. The NA, CA, CO and AR blocks

are delimited by 3 faults: the Mid-America Trench (MAT), the Volcanic Arc

Fault (VAF) and the Motagua Fault (MF, noted MFw west of its junction

with VAF). The 3 blocks (3B) model follows the same geometry, with AR

and CA blocks combined into a single CA block.

Figure 7. Inverted coupling coefficients along the MFe, MFc, MATch and

MATgs, and residual velocities for best-fit 3B model.

the geodetic data onland would not allow to test other hypothesis.

We have tested that our main conclusions are not sensitive to this

modeling choice.

In the 3B model, we invert for the coupling along the MF (east

of MFw, Figure 6) and the MAT. In the 4B model, we fix the cou-

pling along the MF according to the results from the 3B model and

invert for the coupling along the VAF, MAT and for the AR/CA

angular velocity (Figure 6). We discuss the trade-off between the

inverted parameters.

Along the MAT subduction interface, we assume that coupling

can occur down to 25 km depth (Marquez-Azua & DeMets, 2003,

Lyon-Caen et al., 2006). The locking depth along the MF is initially

fixed to 20 km, as deduced from the analysis in section 3.2.1, and to

15 km along the VAF (same order of magnitude as found eastward

in El Salvador, Correa-Mora et al., 2009).

A series of resolution tests (Figure A3) indicate that our data

distribution allows to constrain along-strike variations of coupling

on the subduction interface while along-dip variations can not be

resolved.

4.3 Results

4.3.1 3B models

Given the complex internal deformation (extension in the western

part, dextral slip across the volcanic arc) within the CA block as de-

fined in the 3B model, this model obviously can not account for the

observed GPS velocities on the CA block. We thus only consider

the GPS vectors on the NA block for this first set of models.

We start from a simple parametrization of the MF and MAT

(same coupling factor at all nodes for each fault) and progressively

allow for potential along-strike variations in the coupling. The anal-

ysis of the residual velocities of this series of test models shows

that, given our data distribution, a model with two sections along

the MF (MFe, MFc for the east and central sections, respectively)

as well as along MAT (MATch and MATgs under Chiapas and

Guatemala/El Salvador respectively), is a good compromise to ac-

count for the observed GPS velocities (Figure 7). Assuming a con-

stant locking depth of 20 km all along the MF (see discussion in

section 3.2.1), the resulting 3B model shows a decreasing coupling

on the fault from eastern (φ=0.9 along MFe) to central (φ=0.38

along MFc) Guatemala (Figure 7). We interpret these coupling lat-

eral variations as resulting from the westwards velocity decrease on

the MF. The coupling values correspond to average velocities of 18
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Figure 8. Same as Figure 7 for best-fit 4B model, with coupling along VAF

fixed to 1.

mm/yr and 8.5 mm/yr along the MFe and MFc respectively. These

velocities that represent average values on fault section are con-

sistent with that deduced from the elastic half-space modeling on

local profiles in section 3.2.1. Figure 7 also shows the resulting cou-

pling along the subduction zone below Chiapas that is fairly high

(φ=0.79 along MATch) compared to the coupling below Guatemala

and El Salvador (φ=0.34 along MATgs). This apparent contrast of

coupling is better constrained and discussed from the 4B models

below.

4.3.2 4B models

All GPS vectors are now inverted after fixing the coupling along

the MFe and MFc to the values estimated in the previous section.

Coupling along the VAF is considered uniform given our data dis-

tribution, although we would expect it to decrease westwards, as

along the MF, due to the CA plate internal extension.

Assuming first that the VAF is fully locked on the upper 15

km (φV AF =1, corresponding to a velocity of 15 mm/yr ), the best

fit model (Figure 8) also shows lateral variations of coupling along

the subduction zone as in model 3B, with a CO/NA high coupling

offshore Chiapas (φ=0.61 along MATch), and a CO/AR low cou-

pling south of the volcanic arc offshore Guatemala and El Salvador

(φ=0.25 along MATgs). However there is a trade-off in the in-

version of the forearc velocity field between the contributions of

the AR/CA rotation and the coupling along the VAF and MAT in

Guatemala and El Salvador. In order to evaluate these relative con-

tributions, we fix the CO/NA coupling (φ=0.61 along MATch, fig-

ure 9) and run a series of inversion of the AR/CA angular velocity

for different sets of coupling along the VAF and the MATgs. Note

that in El Salvador, Correa-Mora et al. (2009) suggest that φV AF

is larger than 0.85.

All best fit models indicate a CO/AR coupling (φMATgs )

around 0.25±0.1, independently of the φV AF value (Figure 9),

confirming the contrast with the CO/NA coupling (φMATch
).

Pacheco et al., 1993 estimated a low coupling value along the CO

subduction interface (0.2), from the analysis of the cumulative seis-

mic moment during the XXth century. However, this was an ”av-

eraged” value from Chiapas to Costa Rica. A GPS-derived, low

coupling value offshore El Salvador was obtained more recently by

Correa-Mora et al. (2009), consistent with our results.

Figure 9. Reduced χ2 as a function of φMATgs
, for φV AF fixed to 0, 0.5

and 1. φMATch
is fixed to 0.61. Only the Euler AR/CA rotation parameters

are inverted.

5 SUMMARY AND DISCUSSION

The new GPS measurements presented herein represent the first

from the Chiapas region of Mexico, complement previous work

from Guatemala and El Salvador, and enable the refinement of re-

gional kinematic models previously proposed for the Cocos-North

America-Caribbean plate triple junction (Lyon-Caen et al., 2006;

Plafker, 1976). The joint analysis of our results from the elastic

half space modeling (section 3) and the DEFNODE block model-

ing (section 4) of the GPS velocity field brings new constraints on

the kinematics of the active structures as well as on the coupling

along the subduction zone, as summarized in figure 10. Our results

are in overall agreement with recent models based on GPS data in

El Salvador, Honduras and Nicaragua and on geological and strain

rate data (Alvarez-Gomez et al., 2008, Correa-Mora et al., 2009;

Rodriguez et al., 2009).

5.1 Regional fault kinematics

The Motagua fault concentrates the present day strain accumulation

due to the NA/CA relative motion. The absence of resolvable strain

accumulation across the active Polochic fault cannot be explained

in the modeling by postseismic relaxation or rheological lateral

variations. This suggests that slip on the Polochic and Motagua

faults may vary with time as a result of mechanical interactions

within this strike slip fault system. Transient slip rate and activity

switch between faults have already been observed from geodesy

(east California shear zone, Peltzer et al., 2001), or from historical

seismicity analysis and modeling (north and east Anatolian fault,

Hubert-Ferrari et al., 2003).

The NA/CA motion decreases from 18-22 mm/yr in eastern

Guatemala to 14-20 mm/yr in Central Guatemala assuming a uni-

form locking depth of 14-28 km (best contrained by profile E, Fig-

ure 4) and to ∼4 mm/yr in western Guatemala. West of the Mex-

ican border, the Motagua fault likely connects with the Polochic

fault but does not accommodate any significant deformation. The

east-west extension across the grabens in Guatemala at a rate of

∼ 9 mm/yr is mostly localized on the Guatemala city graben ( ∼5

mm/yr), while the remaining part is not clearly localized on specific

grabens. A more complete discussion of the extension accommo-

dation from western Guatemala to Honduras would require a joint

analysis of all regional GPS data in a common reference frame. Up

to 15 mm/yr of dextral motion could be accommodated across the
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Figure 10. Proposed model of faults kinematics and coupling along the

Cocos slab interface, revised from Lyon-Caen et al. (2006). Numbers are

velocities relative to CA plate in mm/yr. Focal mechanisms are for crustal

earthquakes (depth ≤30 km) since 1976, from CMT Harvard catalog.

volcanic arc in El Salvador and southeastern Guatemala, consis-

tent with estimations by Alvarado et al. (2011) in El Salvador and

Nicaragua.

Kinematically, the extension in the western wedge of the

Caribbean plate requires a westward decrease of both the Polochic-

Motagua fault slip-rate and the volcanic arc fault slip-rate (figure

10). This decrease can only be partly modeled herein given the lim-

ited spatial sampling of our velocity field.

5.2 Lateral coupling variation along the Mid-America

Trench

The coupling along the Cocos subduction zone varies along the

Mid-America Trench with a fairly high coupling (∼0.6) offshore

Chiapas and a low coupling offshore Guatemala (∼0.25).

Lateral variations of coupling along subduction zones have

been evidenced by cumulative seismic moment and geodetic stud-

ies in many areas (e.g. Pacheco et al., 1993). In recent years, the

increasing space and time density of GPS data, in particular, have

allowed to obtain maps of interseismic coupling along subduction

interfaces, that are generally interpreted in terms of seismic hazard

assessment, as in Sumatra (Prawirodirdjo et al., 1997, Chlieh et al.,

2008), Kamchatka (Bürgmann et al., 2005), the Aleutian Islands

(Cross & Freymueller, 2007) or South America (e.g. Pritchard &

Simons, 2006, Ruegg et al. 2009, Perfettini et al. 2010). Segments

with high coupling in the seismogenic zone are considered as the

loci of large (M > 8) mega-thrust earthquakes, while segments

with low coupling are associated with aseismic slip and moderate

seismicity. Such along-strike variations of coupling are likely rep-

resentative of heterogeneities in the mechanical properties at the

interface. They are assumed to be rather stable in space and time

through successive seismic cycles, although it may depend on their

origin. A correlation between the degree of coupling and the age of

the subducting lithosphere or the convergence rate has been sug-

gested by Ruff & Kanamori (1983), in contradiction with more

recent studies (Heuret & Lallemand, 2005) and the occurrence of

mega-thrust earthquakes in Sumatra (2004 Sumatra-Andaman) and

Japan (2011 Tohoku-oki). High coupling areas along subduction

zones may be spatially correlated with forearc basins or thick sed-

iments in the trench, and associated with negative free air gravity

anomalies (e.g Ruff, 1989, Wells et al., 2003, Song &Simons, 2003,

Bürgmann et al., 2005, Loveless et al., 2010). Low coupling areas

have also been correlated with the location of subducting ridges or

seamounts (e.g. Cloos et al., 1992).

The analysis of free air gravity anomalies and marine seis-

mic profiles offshore Mexico and Central America allows to derive

a map of sediment thickness in this region (Divins et al., 2003).

Lateral variations of both Bouguer gravity anomalies and sediment

thickness are observed offshore Chiapas and Guatemala (Figure

11). The observed gradients, although rather low, would be consis-

tent with, and may explain the coupling decrease at the subduction

interface that we model (figure 8) from Chiapas to Guatemala and

El Salvador (Song &Simons, 2003). However, the historical seis-

micity, although poorly documented (White et al., 2004), does not

reveal any clear lateral variations of the seismic behavior along the

subduction zone. Several M7.5 − 8.1 subduction earthquakes are

reported, that seem to release less than 50% of the accumulated slip

(White et al., 2004). This would be consistent with the overall low

coupling values (0.25-0.6) that we model. The significance of such

low values and of their lateral variations, in terms of seismic hazard

for the study area, as well as their permanent or transient feature,

thus remain open questions.
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Table A1. Occupation history of campaign GPS sites

Measurement duration (days)

Site 1999 2002 2003 2004 2005 2006

Chiapas

AZTE 3.2 3 2.5 2.6

CONC 3 2.7 2.5 3

ESPI 4 2.3

ESPO 3.2 2 2.5 2.6

GRUT 2 2

MAPA 2 2.6 3

SELE 3.6 2.5 3 2.8

SOLE 3 3.3 3.2 3

Guatemala

CAH 2 2 2

CAM 1.4 2

CHI 2 4 4

CHL 2 2 4

CML 2 1.8 4

COB 8 7.3 8

CON 2 2.5 2+2

CPJ 1.8 2

HON 2 2.7+0.5 2

HUE 2 2 2

JOY 0.6 2

MAZ 2 2 2

MIN 2 4 3

MOD 1.3 2

PAM 2 2

PIN 8 9 5

QUE 2 3 2

RUB 3 3 4

SAL 2 2 2

SAN 2 1 2

SOL 2 2 2

USP 2 2

ZAC 2 4

El Salvador

SIGN 2 4*0.5

TEJU 2 4*0.5

TEXW 2 4*0.5

Figure A1. (a) ITRF2000 velocity field for the Guatemala/El Salvador GPS sub-network (black arrows), Chiapas sub-network (gray arrows) and DeMets et

al. (2007) solution (white arrows), before adjustment to a common reference frame (see processing strategy in text and Table A5). Inset shows common IGS

permanent sites used in GLOBK (squares) and for reference frame adjustment (circles) for both Guatemala/El Salvador and Chiapas solutions. (b) ITRF2000

velocity field after adjustment (see Table 1).
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Table A2. Cumulative coseismic displacement modeled at each station, for all events that occurred between 1999-2006 or 2003-2006. No estimate was done

for sites ELEN, GUAT and SSIA (we use velocities computed by DeMets et al. (2007).

Cumulated displacement (mm)

Site 1999-2003 2003-2006 1999-2006

East North East North East North

CAH 2.06 4.51 0.01 -0.28 2.07 4.23

CAM - - -0.14 -0.36 -0.14 -0.36

CHI 7.95 0.37 0.46 -1.25 8.41 -1.62

CHL 3.78 -7.07 0.14 -0.75 3.92 -7.82

CML 3.43 -3.62 0.05 -0.31 3.48 -3.93

COB 2.07 0.47 0.08 -0.2 2.15 0.67

CON 12.65 -3.45 -0.31 -1.62 12.34 5.07

CPJ - - -0.33 -0.66 -0.33 -0.66

HUE 1.49 -1.02 0.04 -0.05 1.53 -1.07

HUEH - - 0.04 -0.05 0.04 -0.05

HON 5.99 3.99 -0.07 -0.63 5.92 3.36

JOY - - 0.1 -0.14 0.1 -0.14

MAZ 0.42 -2.10 0.22 -0.23 0.64 -2.33

MIN 5.52 3.77 -0.03 -0.61 5.49 3.16

MOD - - -0.04 -0.21 -0.04 -0.21

PAM - - 0.08 -0.13 0.08 -0.13

PIN 5.37 -4.65 0.14 -0.61 5.51 -5.26

QUE 1.35 -1.78 0.09 -0.13 1.44 -1.91

RUB 0.43 1.82 0.04 -0.11 2.25 -0.07

SAL 4.09 -0.87 0.15 -0.37 4.24 1.24

SAN 5.28 -2.50 0.20 -0.54 4.74 -2.30

SOL 1.20 -0.52 0.02 -0.03 1.22 -0.55

USP - - 0.08 -0.09 0.08 -0.09

ZAC - - -0.14 -0.52 -0.14 -0.52

SIGN - - -0.68 -0.26 -0.68 -0.26

TEJU - - -1.04 -1.27 -1.04 -1.27

TEXW - - -1.27 -2.17 -1.27 -2.17

TPCH - - 0.04 -0.03 0.04 -0.03

Figure A2. Cumulative post-seismic displacements, estimated along a profile perpendicular to the Motagua fault, for each GPS campaign in 1999, 2003, 2006,

corresponding to 23, 27 and 30 years after the 1976 Guatemala earthquake, respectively, and for viscosity of 1018, 1019, 1020 and 1021 Pa.s.
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Table A3. Coseismic displacement (mm) modeled at each station, for each event that occurred between 1999-2006 or 2003-2006.

Date (YYMMDD), Mw 990508, 6.0 990711, 6.7 010113, 7.7

Site East North East North East North

CAH -0.04 -0.04 0.05 1.46 1.89 4.27

CHI -0.05 -0.04 1.25 1.99 5.86 1.12

CHL 0.00 -0.01 0.48 0.55 5.12 -3.22

CML -0.12 -0.09 0.32 0.45 2.75 -1.25

COB -0.07 -0.08 -0.05 0.75 2.03 1.51

CON -0.01 -0.01 1.12 1.94 9.37 -1.66

HON -0.03 -0.02 1.59 2.40 3.79 3.50

HUE -0.20 -0.31 0.05 0.28 0.94 -0.21

MAZ -0.75 -0.56 0.13 0.41 0.51 -0.81

MIN -0.03 -0.03 1.49 2.25 3.53 3.44

PIN -0.05 -0.04 0.55 0.85 4.87 -1.75

QUE -0.36 -0.55 0.06 0.44 1.22 -0.49

RUB -0.05 -0.08 -0.96 0.68 1.22 2.26

SAL -0.06 -0.06 0.46 0.94 3.26 0.54

SAN -0.05 -0.04 0.53 1.00 4.46 -0.57

SOL -0.08 -0.22 -0.23 0.31 1.16 0.27

Date (YYMMDD), Mw 010213, 6.5 010625, 5.2 021109, 6.0

Site East North East North East North

CAH -0.03 -0.02 0.52 -0.48 -0.09 -0.13

CHI -0.01 -0.04 1.57 -1.81 -0.10 -0.11

CHL 0.01 -0.01 0.59 -1.10 -0.24 -0.30

CML 0.03 0.01 0.67 -0.66 -0.22 -0.62

COB -0.18 -0.16 0.58 -0.61 -0.06 -0.12

CON 0.01 0.01 2.70 -3.19 -0.05 -0.05

HON 0.01 0.01 1.41 -1.21 -0.16 -0.08

HUE 0.01 0.03 0.45 -0.22 0.01 -0.10

MAZ 0.02 0.02 0.19 -0.39 0.06 -0.38

MIN 0.01 -0.02 0.99 -1.12 -0.06 -0.08

PIN 0.03 -0.04 1.11 -1.01 -0.21 -0.28

QUE 0.04 0.03 0.24 -0.31 0.04 -0.22

RUB -0.04 -0.04 0.37 -0.40 -0.03 -0.10

SAL 0.10 -0.09 0.81 -0.83 -0.10 -0.18

SAN 0.06 -0.06 1.02 -1.09 -0.13 -0.20

SOL -0.03 0.03 0.32 -0.30 -0.03 -0.14



Regional kinematics model in Northern Central America 15

Date (YYMMDD), Mw 030121, 6.4 030825, 5.9 041120, 6.3

Site East North East North East North

CAH -0.24 -0.55 0.08 0.07 -0.06 -0.32

CAM - - 0.04 0.04 -0.18 -0.42

CHI -0.57 -0.74 0.07 0.08 -0.36 -0.65

CHL -2.18 -2.98 -0.19 0.01 0.19 -0.70

CML 0.0 -1.46 0.05 0.04 0.05 -0.36

COB -0.18 -0.82 0.10 0.11 -0.01 -0.31

CON -0.49 -0.49 0.07 0.02 -0.50 -1.66

CPJ - - 0.07 0.06 -0.54 -1.01

HUE 0.23 -0.49 0.02 0.03 0.02 -0.09

HUEH - - 0.02 0.03 0.02 -0.09

HON -0.62 -0.61 0.11 0.07 -0.18 -0.69

JOY - - 0.07 0.20 0.04 -0.31

MAZ 0.26 -0.39 0.21 -0.23 0.02 0.00

MIN -0.41 -0.67 0.10 0.05 -0.11 -0.68

MOD - - 0.04 0.05 -0.09 -0.29

PAM - - 0.10 0.18 0.01 -0.32

PIN -0.93 -2.38 0.11 0.12 0.13 -0.76

QUE 0.11 -0.68 0.11 -0.10 -0.01 -0.03

RUB -0.08 -0.50 0.06 0.08 -0.01 -0.20

SAL -0.38 -1.19 0.14 0.10 -0.01 -0.51

SAN -0.61 -1.54 0.25 0.10 0.07 -0.68

SOL 0.09 -0.47 0.03 0.07 0.00 -0.10

USP - - 0.08 0.04 0.03 -0.14

ZAC - - 0.08 0.08 -0.30 -0.78

SIGN - - -0.02 0.01 -0.72 -0.29

TEJU - - 0.02 0.02 -0.90 -1.68

TEXW - - 0.01 0.02 -1.21 -2.59

AZTE - - 0.00 0.00 0.00 0.00

ESPO - - 0.00 0.00 0.00 0.00

MAPA - - 0.00 0.00 0.00 0.00

SELE - - -0.01 -0.01 -0.01 -0.01

ESPI - - 0.00 -0.02 0.00 -0.02

SOLE - - 0.00 -0.02 0.00 -0.02

GRUT - - 0.00 -0.02 0.00 -0.02

CONC - - 0.00 -0.01 0.00 -0.01

TPCH - - 0.05 -0.03 0.00 0.00
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Date (YYMMDD), Mw 041213, 5.9 050518, 5.3

Site East North East North

CAH -0.01 0.01 0.00 -0.03

CAM -0.02 0.01 0.02 0.01

CHI -0.03 0.11 0.78 -0.79

CHL 0.07 -0.01 0.07 -0.05

CML -0.01 0.01 -0.04 0.00

COB -0.01 0.01 0.00 -0.01

CON -0.01 0.31 0.13 -0.29

CPJ 0.01 0.12 0.13 0.17

HUE 0.01 0.01 -0.01 0.00

HUEH 0.01 0.01 -0.01 0.00

HON -0.02 0.09 0.02 -0.10

JOY 0.01 -0.02 -0.02 -0.01

MAZ 0.01 0.00 -0.01 0.00

MIN -0.02 0.07 0.00 -0.05

MOD 0.00 0.02 0.01 0.01

PAM -0.01 0.01 -0.02 0.00

PIN -0.03 0.04 -0.07 -0.01

QUE 0.00 0.00 -0.01 0.00

RUB -0.01 0.01 0.00 0.00

SAL -0.02 0.03 0.04 0.01

SAN -0.03 0.04 -0.09 0.00

SOL 0.00 0.00 -0.01 0.00

USP -0.01 0.01 -0.02 0.00

ZAC -0.01 0.09 0.09 0.09

SIGN 0.06 0.02 0.00 0.00

TEJU -0.18 0.40 0.02 -0.01

TEXW -0.07 0.39 0.00 0.01

AZTE 0.00 0.00 0.00 0.00

ESPO 0.00 0.00 0.00 0.00

MAPA 0.00 0.00 0.00 0.00

SELE 0.00 0.00 -0.01 0.00

ESPI 0.00 0.00 -0.01 0.00

SOLE 0.00 0.00 0.00 0.00

GRUT 0.00 0.00 0.00 0.00

CONC 0.00 0.00 0.00 0.00

TPCH 0.00 0.00 -0.01 0.00

Table A4. Angular velocities used in this study. Ref 1: DeMets et al. (2007), Ref 2: DeMets et al. (1990) and DeMets et al. (1994).

Eulerian poles Errors

Blocks Reference Latitude Longitude Rotation rate σxx σyy σzz σxy σxz σyz
◦N ◦E ◦.Myr−1

CA-ITRF2000 Ref 1 36.3 -98.5 0.255 0. 0.831 0.175 -0.262 0.000 -0.184

NA-ITRF2000 Ref 1 -7.64 -86.21 0.196 0.011 0.182 0.107 0.015 -0.011 -0.125

NA/CA Ref 1 75.9 191.5 -0.182 0.143 1.013 0.282 -0.247 -0.011 -0.309

blocks Reference Latitude Longitude rotation rate(w) σmax σmin σw
◦N ◦E ◦.Myr−1 ◦N ◦E ◦.Myr−1

CO/CA Ref 2 24.1 -119.4 1.31 2.5 1.2 0.05 - - -

Table A5. Rotation parameters used to adjust the Guatemala/El Salvador, Chiapas, and DeMets et al. (2007) solutions in the same reference frame.

Eulerien poles

Solutions Latitude Longitude Rotation rate
◦ N ◦ E ◦.Myr−1

Chiapas and Guatemala/El Salvador -44.261 88.285 0.0085

Guatemala/El Salvador and DeMets et al. (2007) -7.706 29.69 0.0058
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Figure A3. Resolution tests for 3B models. (a): Forward model imposing along-strike and along-dip coupling variations along the subduction zone. (b):

Coupling inverted from (a) and residual velocities. The synthetic GPS vectors obtained in (a) are associated with uncertainties from Table 1, and inverted for

coupling along the MAT (all other parameters are fixed). Along-dip variations cannot be retreived. (c): Same as (a) with along-strike variations of coupling

only. (d): Same as (b). Lateral variations are well retrieved by inversion.


