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On the amount of regularization for super-resolution

reconstruction
Yann Traonmilin*, Saı̈d Ladjal, Andrés Almansa

Abstract—Modern digital cameras are quickly reaching the
fundamental physical limit of their native resolution. Super-
resolution (SR) aims at overcoming this limit. SR combines
several images of the same scene into a high resolution image
by using differences in sampling caused by camera motion.
The main difficulty encountered when designing SR algorithms
is the ill-posedness of the general SR problem. Assumptions
on the regularity of the image are then needed to perform
SR. Thanks to advances in regularization priors for natural
images, producing visually plausible images becomes possible.
However, regularization may cause a loss of details. Therefore,
we argue that regularization should be avoided when possible,
especially when the restored image is needed for further precise
processing. This paper provides principles guiding the local
choice of regularization parameters for SR. With this aim, we give
an invertibility condition for affine SR interpolation. When this
condition holds, we study the conditioning of the interpolation
and affine motion estimation problems. We show that these
problems are more likely to be well posed for a large number of
images, leading to the possibility of a regularization-free super-
resolution. When conditioning is bad, we propose a local total
variation regularization for interpolation and show its application
to multi-image demosaicking.

EDICS : TEC-ISR Interpolation, Super-Resolution and Mo-

saicing: Interpolation and superresolution; Mosaicing, registra-

tion and alignment; Multi-image fusion

I. INTRODUCTION

A. Problem statement and state of the art

Super-resolution aims at recovering a high resolution (HR)

image from several low resolution (LR) images. In the most

generic formulation of SR, we need to estimate camera

blur, motion and the HR image simultaneously, which is

an ill-posed problem. SR techniques have been reviewed

several times in the literature [1], [2]. They mostly rely

on a regularized minimization of a functional linking the

acquired LR images and the unknown HR image. There is

a wide choice of such functionals, including L2 norm with

Tychonov regularization [3], bilateral total variation (TV)

regularization [4], [5], and L1 norm with TV regularization

[6], [7]. The choice of a regularizer is an implicit hypothesis

(or a priori information) on the content of the image. For

example, perfect reconstruction with TV regularization is not

possible if the image contains too many textures [8], [9].

Even recent non-local regularization methods for single and

multi-image super-resolution [10], [11] need images which
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exhibit rotational [12] or multiscale [13] self-similarities.

When these hypotheses are not met, regularization fails

to recover perfectly the high resolution image. Our aim

is to recover as much of the HR image as possible. To

achieve this, we will avoid or minimize assumptions made

on the HR image, and consequently minimize the amount of

regularization.

The relative motion between LR images is often restricted

to translations and rotations. However, a small motion of the

camera in the depth direction can cause a linear zoom between

images. To describe this, we will consider affine motions of

the LR sampling grids. Affine motions have been considered

in [14]–[16] where conventional techniques for parameter

estimation and regularized reconstruction are described. As

we study the well-posedness of the SR problem, we will not

invert camera blur as this part of the SR problem is generally

ill-posed. With this configuration, super-resolution can be

split in two processes: (i) interpolation (i.e. SR inversion

with known motion parameters) and (ii) motion parameter

estimation. In the interpolation case, super-resolution is an

irregular to regular sampling interpolation problem which

could be solved with general techniques [17]–[20]. With

super-resolution sampling configurations, we can use the

fact that each LR image is acquired on a regular grid to

obtain dedicated results and methods. For example, the pure

translational case can be viewed as a multichannel sampling

problem. Thus, extending the result of Papoulis [21], Ahuja

and Bose [22] showed that if we have a super-resolution

factor M , only M2 LR images with pure translational

motions are needed to perfectly recover the HR image in a

noiseless set-up. In this case, no assumption on the content

of the HR image is needed (apart from the fact that it is

band-limited). It naturally leads to the following question: in

what conditions on the acquisition system can we perform

super-resolution without hypotheses on the image?

The other side of the SR reconstruction problem is the

registration of each LR image. It consists in estimating

motion parameters between LR images (6 parameters for

each affine motion). Some techniques for affine motion

estimation between a pair of well-sampled images already

exist [23]. However, in a non-trivial super-resolution set-up,

LR images are assumed to be aliased, and these methods

do not give estimates precise enough to perform a good

reconstruction [24], [25]. If the interpolation problem is

invertible, SR reconstruction can be viewed as a non-linear

minimization problem with respect to motion parameters

which is called variable projection [26]. [27] showed that

using a regularized variable projection method for super-
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resolution reconstruction gives stable results in practice.

However, the necessity for a regularization term in the

variable projection method is not questioned.

When the acquired data is contaminated by noise, having a

good conditioning of the system is critical for the quality of

the reconstructed image. The influence of the SR zoom has

been studied in the case of interpolation in [28]. Experiments

on the Cramer-Rao bound with respect to the number of

images were shown by Robinson [25] and Champagnat

[29], demonstrating that the reconstruction error of the

pseudo-inverse decreases when the number of images grows.

B. Overview and Contributions

In this paper, we first describe (Section II) the theoretical

context of super-resolution with affine motion, which requires

special attention in terms of how hypotheses are formulated,

and under which conditions the super-resolution, denoising

and deconvolution problems can be decoupled from one

another. Within this framework, we give in Section III a

sufficient condition on the invertibility of SR interpolation.

This extends the work of Ahuja [22] (which is restricted to

translational motions) to the invertibility of affine motion SR

interpolation. This result shows that the number of samples

needed for affine SR with random motions is the same as

the one for random sampling of trigonometric polynomials

as shown by Bass & Gröchenig [30]. In Section IV, the

asymptotic behaviour of translational SR interpolation shown

by Champagnat [29] is extended to affine motions. We show

that it is in the interest of acquisition system designers to

target the acquisition of a large number of LR images, as the

SR reconstruction is likely to be well-posed in that setting.

We also study the registration for large number of images

by calculating the Hessian of the non-linear least squares

motion parameter estimation problem. It allows for a better

understanding of how variable projection behaves and shows

that a regularization term (like in [27]) is not always necessary.

We prove with real images taken with a hand-held camera that

taking more images allows for the recovery of the true content

of the image, without regularization. In Section V, we show

that the conditioning is spatially varying. We calculate this

conditioning for small motions and use it to predict how SR

interpolation must be regularized. This prediction takes the

form of a new local weighting scheme of the total variation

regularizer. Finally, we apply it to multi-image demosaicking.

We show that regularization and cross-channel dependencies

used by even the most advanced demosaicking algorithms

can be avoided if multiple images are available. In this case

regularization assumptions are minimized by our procedure,

and demosaicking artifacts are avoided.

II. THEORETICAL CONSIDERATIONS

A. Problem set-up

The purpose of the super-resolution problem is to invert a

linear map A that produces N LR images from a single HR

image:

A : (CML×ML) → (CL×L)N

u → (SQiu)i=1,N

(1)

where N is the number of LR images, M is the super

resolution factor, L × L is the size of a LR image, u is the

HR image. S is the sub-sampling operator by a factor M and

Qi are the affine deformation associated with each LR image.

We call qi the corresponding affine motion of the sampling

grid i.e.

(Qiu)(x) = u(qi(x)). (2)

We decompose qi in its linear and translational parts:

qix = lix + ti. li are 2 × 2 matrices, ti are 2 dimensional

vectors. SR is the process of recovering u from w = Au+ n
(n is acquisition noise). If the Qi are known, the inversion of

A is called the super-resolution interpolation. The recovery

of both u and Qi is called super-resolution reconstruction.

B. Hypotheses

We make assumptions on the problem to simplify the study:

1) u is band-limited

2) the first LR image is the reference image (Q1 = Id)

3) affine maps on the coordinates (qi) are invertible

4) affine maps do not generate aliasing on the HR grid

Condition 1) is always fulfilled because diffraction caused by

the physical aperture of the camera act as a perfect low-pass

filter. In practice, a maximum SR factor of 2 to 4 can be

considered (see [31]). Condition 2) and 3) are always met

when affine motion are not degenerate. Condition 4) deserves

further explanation: let us consider a continuous image for-

mation model. LR images are generated by wi = SSHRQiu,

where SHR is the sampling at the HR resolution. In a practical

SR algorithm, we want to estimate SHRu, i.e. to commute the

HR sampling and the motion. This is possible if u is well

sampled by SHR before and after motion. We show that this

is equivalent to an adequate choice of the HR sampling step.

Let D be the support of the spectrum of u. Condition 4) means

that each SHRQiu is not aliased. Let Di be the support of

the spectrum of Qiu. Then Di = l−T
i (D) (property of the

Fourier Transform, l−T
i = (l−1

i )T ). Consequently, SHRu is

well sampled after any motion if
⋃

i Di ⊂ DHR, where DHR

is the reciprocal cell of SHR (i.e. the spectral domain where

the Shannon sampling theorem holds at the HR sampling rate).

We set the HR sampling step such that
⋃

i Di ⊂ DHR . The

configuration of these frequency domains is shown in Fig. 1. In

other words, from a given band-limited signal, we can always

define a HR sampling step which does not cause aliasing of

the continuous reference image u after motion. The strength of

this assumption depends on the amplitude of the affine maps.

The smaller they are (e.g. motions created by a hand-held

camera), the weaker it is.

C. About camera blur

Camera blur (noted F ) happens just before sub-sampling:

wi = SFQiu (3)
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Fig. 1. Representation of the signal spectrum (D and
⋃

i
Di ) and the spectral

Nyquist limit of the HR grid (DHR)

(a) (b)

(c) (d)

Fig. 2. Validity of the assumption of commutativity: (a) HR image (b) Blurred
HR image (c) image reconstructed from 16 LR images with M = 2 by
neglecting the blur. PSNR calculated with respect to (b) is 46.7 (d) blur kernel

In this paper, we do not try to remove the blur: we suppose that

blur is identical for all LR images and that we can commute

blur and motion. This assumption holds for purely translational

motions, and for rotations (as long as the blur kernel is

rotationally symmetric). The supposition is also justified for

more general blur kernels in the case of small motions. In fact,

the difference between the least-squares estimate ũ, when we

do not take into account camera blur and the filtered HR image

Fu is:

ũ− Fu = (AHA)−1

(

∑

i

QiS
Hwi − (AHA)Fu

)

= (AHA)−1

(

∑

i

QiS
HS(FQi −QiF )u

) (4)

This assumption is valid if the energy of S(FQi −QiF )u is

smaller than the energy of the acquisition noise. We show an

experiment of reconstruction with small affinities in Fig. 2: by

neglecting the blur in the model, we reconstruct the blurred

version of the HR image.

III. INVERTIBILITY CONDITION OF THE SR

INTERPOLATION

If the problem of SR interpolation is not invertible, the SR

problem is not feasible without regularization. As our objective

is the study of cases where no regularization is needed, we

begin by studying the critical condition for invertibility in

terms of the number of images. Then, we will be able to

adapt the SR reconstruction method to the conditioning of

the problem for invertible cases (which will be discussed in

the following sections). We give a sufficient condition (on the

motion of the sampling grids) for the invertibility with the

hypotheses defined in the previous section.

Let us name the following sampling grids: Γhr = [1,ML]2 ⊂
Z2 and Γ = M.[1, L]2. Γc is the complement of Γ in Γhr,

i.e. the support of images in the kernel of S. We give a

sufficient condition for A to be invertible: the difference

between the motion of two positions in Γc must not be an

integer, coordinate by coordinate.

Theorem III.1. If N ≥ M2 and for all pi, pj ∈ Γc, 1 ≤ k1 <
k2 ≤ N, ||q−1

k1
pi − q−1

k2
pj mod 1||0 = 2 , A is injective.

Proof: We show by induction over N that when adding

a LR image, the dimension of the kernel of the function

A decreases by a factor L2. For clarity, the proofs of the

necessary lemmas are shown in the appendix. Let:

An : (CML×ML) → (CL×L)

u → SQnu
(5)

We prove : for all 1 < n ≤ M2, dim∩k=1,n kerQk =
(M2 − n)L2

For n = 2: let pi ∈ Γc. Let vi = 1pi
. Let ui = Q−1

1 vi. We

have Svi = 0. Consequently A1ui = 0 and ui ∈ kerA1.

We just defined (M2 − 1)L2 independent ui generating

kerA1: span(ui)i=1,(M2−1)L2 = kerA1. Similarly we con-

struct span(u′
i)i=1,(M2−1)L2 = kerA2. With Lemma VII.2

(kerA1+kerA2 = C
ML×ML), the dimension of the intersec-

tion is:

dim(kerA1 ∩ kerA2) =dim(kerA1) + dim(kerA2)

− dim(kerA1 + kerA2)

=(M2 − 2)L2

(6)

Let n > 2. Let us suppose that dim∩k=1,n kerAk = (M2−
n)L2. We use Lemma VII.3: (∩k=1,n kerAk) + kerAn+1 =
CML×ML. By using the same dimensions relation as for n =
2, we get the result for n+ 1.

The main condition is the number of images which is the

same as the condition for translations by Papoulis. Example

of non invertible and invertible configurations are shown in

Fig. 3. The main consequence is that the SR interpolation

problem is almost-surely invertible for random motion:

Corollary III.1. If N ≥ M2 and motion parameters are

random, A is injective almost-surely.

Proof: The space of excluded affine motion parameters

E ⊂ R6N in Theorem III.1 has measure 0. Let θ ∈ R6N be

a parameter vector. (R.θ) ∩ E has measure 0 because it is

countable. By using Fubini, E has measure 0 in R6.
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(a) (b) (c)

Fig. 3. Invertible and non invertible configurations covered by Theorem III.1
for M = 2 and pure translations. Black dots represent the reference grid (a)
Invertible case meeting hypotheses (b) non invertible case excluded by the
theorem (c) configuration excluded by the theorem but still invertible

We can compare this result with [30] where it was shown

that the problem of random sampling of trigonometric poly-

nomials is invertible almost surely if there are at least as

many equations as unknowns (equivalent to N = M2). Our

probabilistic result is different because sampling locations are

not completely random. We also gave a deterministic condition

for this invertibility. This condition excludes non invertible

cases. For example, if the motion is translational in only one

direction, the hypothesis of the theorem is not met (as seen in

Fig. 3).

IV. CONDITIONING OF THE SR PROBLEM WITH RESPECT

TO THE NUMBER OF IMAGES

A. Interpolation

Measuring the difficulty of a linear inversion problem, such

as super resolution interpolation is often made using the

condition number of the linear map defining the problem.

Several factors have an influence on this conditioning. Baker

[28], shows that the condition number of the system grows

with the super-resolution factor M . The condition number also

depends on the sampling distribution [17]. For a controlled

motion, a condition number of 1 is obtained by regularly

spacing LR grids matching the HR grid when merged. When

motions are random and uniform, the condition number of

the affine SR interpolation problem converges to one when

the number of images grows. This fact was experimentally

illustrated for translational SR in [25] in terms of the Cramer-

Rao bound for HR image estimation. [29] shows that the

reconstruction error decreases to 0 when the number of images

grows. We suppose that N ≥ M2 and that the affine motions

meet the condition of Theorem III.1. The size of each sensor is

very small (of the order of 10 microns), causing the fractionnal

part of a motion caused by hand movement to be almost

random. In this case, the HR image can be perfectly recovered

by taking the pseudo inverse of A (Corollary III.1). The

condition number of the system is the ratio of the extremal

eigenvalues of AHA. We show the following using a similar

technique as in [29]:

Proposition IV.1. Let us suppose that the affine motions qi
have the following distribution: ti are uniform in [0,M ]2 and

the average of the li is Id. Then the conditioning κ of the

system converges to 1 (in the distribution sense) as the number

of images grows.

Proof: To recover u at a particular pulsation ω ∈ R2, we

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

e

Fig. 4. Convergence of the estimator 1

N
AHw. Interpolation error with respect

to the number of LR images.

first write û(ω) as a linear combination of the ŵi(ω) :

ŵi(l
T
i ω) =

1

M2

∑

k∈Z2

û(ω + l−T
i

2πk

M
)ej(ω.ti+

2πk
M

.(l−1
i

ti)) (7)

Only M2 terms in the sum are non-zero. If there is more than

M2 LR images, it is an overdetermined system of size N×M2

for each pulsation:

Cûal = w (8)

where ûal(k) = û(ω + l−T
i

2πk
M

), w(i) = ŵi(l
T
i ω) and Ci,k =

1
M
ej(ω.ti+

2πk
M

.(l−1
i

ti)). C is the product of 2 matrices:

C = ∆B (9)

with ∆ = 1
M2 diag(e

jω.ti) and Bi,k = ej
2πk
M

.(l−1
i

ti). The

conditioning of the system is consequently the conditioning

of R = BHB which is a Toeplitz matrix with term Rr,s =
∑

i e
j
2π(s−r)

M
.(l−1

i
ti). We can show with a direct application

of the central limit theorem that R converges to a multiple

of identity because the complex numbers ej
2π(s−r)

M
.(l−1

i
ti)

converge to a uniform distribution on the unit circle (for

s 6= r). By continuity of the condition number, the condition

number κ(R) converges to 1.

A large number of images is statistically better. This result

implies the following reconstruction method: as κ(R) → 1,

R ∼ N.Id and A† ∼ 1
N
AH . We can use 1

N
AH as a

reconstruction operator for a large number of images. We

plot in Fig. 4 the reconstruction error eN = ||u − uN ||
of uN = 1

N
AHw with respect to N . For each N value,

we generated 30 experiments with random affine motion

distributed as in Proposition IV.1. The same HR (from Fig. 2)

image is used for all experiments.

We now show in a deterministic setting that it is always inter-

esting to add an observation (a LR image). The reconstruction

noise decreases with the number of images. Our observation

model is:

w = Au + n (10)

n ∼ N(0, σ2I) is a white zero mean Gaussian noise. The

reconstruction noise will be:

nr = A†n (11)

and nr ∼ N(0, σ2A†A†H) = N(0, σ2(AHA)−1). The

reconstruction noise will have normalized energy e =
σ2tr((AHA)−1) =

∑

i
1
λi

where λi are the eigenvalues (e.v.)

of AHA.
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We consider adding an image:

A′ : (CML×ML) → (CL×L)N+1

u → (SQku)k=1,N+1

(12)

w′ = A′u+ n′ (13)

with n′ ∼ N(0, σ2I). We have : e′ = σ2tr((A′HA′)−1) =
∑ 1

λ′

i

with λ′
i = e.v.(A′HA′).

Proposition IV.2. Acquiring more images diminishes the

noise, i.e. e′ ≤ e

Proof: We first prove that λ′
i ≥ λi for all i. Using Weyl’s

inequalities:

λi ≤ λ′
i + λmax(A

HA−A′HA′) (14)

We have:

A′HA′ −AHA =
∑

k=1,N+1

QH
k SHSQk −

∑

k=1,N

QH
k SHSQk

= QH
N+1S

HSQN+1

(15)

which is a positive linear map. Thus λmax(A
HA−A′HA′) ≤ 0

and λi ≤ λ′
i. With this result we have 1

λ′

i

≤ 1
λi

for all i.

Consequently:

∑

i

1

λ′
i

≤
∑

i

1

λi

σ2
∑

i

1

λ′
i

≤ σ2
∑

i

1

λi

e′ ≤ e

(16)

This result shows that if we are able to recover the motion

parameters, the best strategy is to keep all the available LR

images for the reconstruction. This result matches the intuitive

idea that having more data points increases the signal-to-noise

ratio. Still, it must be noted that this property is dependent

on the structure of the linear map generating the data. We

discuss in the next section the difficulty of recovering the

motion parameters.

B. Parameter estimation

In a noiseless case, when N > M2, u = (AHA)−1Aw =
A†(θ0)w. θ0 are the parameters of affine motions. We use the

variable projection to estimate θ0 [5], [26]. We minimize:

G(θ̃) = ||A(θ̃)A†(θ̃)w − w||22, (17)

which is not a convex problem. With a first estimate (which

can be obtained with a dedicated registration technique), we

can minimize this functional with a gradient descent. The

speed of convergence and the precision of this method will

depend directly on the conditioning of the Hessian H at θ0

(we suppose that the first LR image is not translated, and that

H is not singular). We calculate this condition number. The

gradient has the following expression:

∂

∂θi
G(θ) = 2(A(θ)A†(θ)w − w)H(

∂

∂θi
[A(θ)A†(θ)]w)

= 2(A(θ)A†(θ)w − w)H(
∂

∂θi
[A(θ)]A†(θ)w

+A(θ)
∂

∂θi
[A†(θ)]w)

= 2(A(θ)A†(θ)w − w)H(
∂

∂θi
[A(θ)]A†(θ))

(18)

where the last line was obtained by orthogonality. The Hessian

is then (we do not calculate the constant):

Hi,j ∝ (
∂

∂θj
[A(θ)A†(θ)]w)H(

∂

∂θi
[A(θ)A†(θ)]w)

+ (A(θ)A†(θ)w − w)H(
∂2

∂θj∂θi
[A(θ)]A†(θ)w)

(19)

In particular, the Hessian at θ0 is:

Hi,j ∝ (
∂

∂θj
[A(θ0)A

†(θ0)]w)
H(

∂

∂θi
[A(θ0)]A

†(θ0)w) (20)

We set θ = θ0 (we write A = A(θ0)), as our aim is to

calculate the conditioning of the Hessian at the minimum of

the functional. Calculations (developed in the annex) lead to

the following expression of the Hessian:

Hi,j ∝

〈

∂

∂θj
[A]u

∣

∣

∣

∣

(I −AA†)
∂

∂θi
[A]u

〉

(21)

We call ∂
∂θj

[A]u = w′
j :

Hi,j ∝
〈

w′
j , (I − AA†)w′

i

〉

(22)

Because LR images are separated:

Hi,j ∝ γi,j
〈

w′
j , w

′
i

〉

−
〈

AHw′
j , A

†w′
i

〉

(23)

where γi,j = 1 when θi and θj are parameters related to the

motion of the same LR image, 0 otherwise. γi,j < w′
j , w

′
i >

define a block diagonal symmetrical matrix HB . Furthermore,

all blocks are of size 6× 6 and bounded in the 2-norm sense.

From the previous part, we have A† ∼ 1
N
AH . Consequently,

with Cauchy Schwartz inequality:

|
〈

AHw′
j , A

†w′
i

〉

| = O(
1

N
)|
〈

AHw′
j , A

Hw′
i

〉

|

= O(
1

N
)||AHw′

j ||||A
Hw′

i||
(24)

The quantities ||AHw′
j || are bounded because AHw′

j =
QH

j SHw′
j . Consequently:

|
〈

AHw′
j , A

†w′
i

〉

| = O(
1

N
) (25)

and

Hi,j ∝ γi,j
〈

w′
j , w

′
i

〉

(1−O(
1

N
)) ∼N→∞ γi,j

〈

w′
j , w

′
i

〉

(26)

we finally have : H → H0 and κ(H) → κ(HB) by continuity

of the condition number. Let us calculate one 6× 6 block HB

corresponding to one LR image k0. We suppose that θj and θi
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N 4 12 40

||ũ0 − u||/||u|| 3.19 0.2 0.1

||ũ− u||/||u|| 2.5 0.06 0.04
TABLE I

AVERAGE RECONSTRUCTION ERROR WITH RESPECT TO THE NUMBER OF

IMAGES

are two motion parameters of the motion Q = Qk0 . We have:

HBi,j ∝

〈

∂

∂θj
[A]u

∣

∣

∣

∣

∂

∂θi
[A]u

〉

∝

〈

S
∂

∂θj
[Q]u

∣

∣

∣

∣

S
∂

∂θi
[Q]u

〉 (27)

HB represent the conditioning relative to the estimation

of parameters of one affine transformation. We calculated

experimentally eigenvalues of 1000 different HB matrices

using equation (27). We generated u as a Gaussian i.i.d.

process to have a full band signal which is uncorrelated with

the acquisition parameters. It leads to a maximum possible

condition number for H0 under 100. Compared to a pure 1D

translational case where H0 is diagonal with condition number

1, the more general affine case is slightly more difficult due to

the intrinsic difficulty of motion estimation. In practice, this

difficulty is limited as shown by the next experiment.

In Table I, we calculated the average reconstruction error of

10 experiments with parameter estimation with respect to the

number of images. We used a non linear conjugate gradient

algorithm, stopped after the same number of iterations for each

number of images. For each experiment, the starting point of

the non linear conjugate gradient algorithm ũ0 is a random

perturbation of the solution (simulation of an estimation with

a LR method).

C. Summary and experiments with real images

In this section, we studied the evolution of the conditioning

with N . For SR reconstruction, interpolation and parameter

estimation each play a part in the difficulty of the problem.

When we make the hypothesis that motions are random with

a reasonable distribution, the interpolation part converges to

a conditioning of 1 when N grows. The global estimation

part is more difficult as each affine motion has an intrinsic

conditioning for its estimation. This conditioning depends on

the frequency content of the HR image and on the value

of the motion parameter. If the motion is a translation, this

conditioning is 1 for full band signals. In the generic affine

case, when the number of images grows and no motion is

degenerate (the zoom part of affinities is close to identity),

the conditioning becomes good experimentally.

We show in Fig. 5, the result of two regularization free SR

experiments. We used pictures which are not aliased by the

native sampling grid of the camera to be able to simulate a

ground truth image. Experiment 1 is a series of pictures of a

printed image of a town on a wall. Experiment 2 is a series

of outdoor pictures of leafs. For each experiment, we took 20

images with a hand-held camera. We subsampled these images

by a factor 2 and then performed a super-resolution without

regularization with M = 2. We compare the result with the

(a) LR (b) LR

(c) Reference (d) Reference

(e) No reg SR (f) No reg SR

Fig. 5. A real regularization free super-resolution (a) (b) Low resolution image
for experiments 1 and 2, (c) (d) reference images (ground truth + noise) (e)
(f) images reconstructed without regularization.

reference image which is a noisy version of the ground truth.

We observe that all the details are perfectly reconstructed,

especially aliased edges, and that noise has been reduced.

V. LOCAL CONDITIONING AND REGULARIZATION

A. Local conditioning

The fusion of LR grids is a sampling grid which is generally

not periodic. If motions are small, we observe local variations

of the spatial distribution of the samples leading to a spatial

variability in the noise generated in the inversion process.

In this section, we predict this conditioning in the case of

small motions (which is a reasonable hypothesis for hand held

camera), and use this prediction to adaptively regularize with

respect to local conditioning.

We study the conditioning in the near critical case: N ≥ M2,

N is close to M2 and the problem is invertible (from the

previous section). We propose to use the conditioning of an

equivalent pure translational SR problem at each location.

This is justified by the comparison of the reconstruction noise

nrec of the system and the reconstruction noise of a pure

translational model. When the LR images are contaminated
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by a noise n:

nrec = A†n (28)

We calculate the power of the noise locally. We restrict the

image space of the application A† to one LR pixel in the HR

image space to study its local behavior. Let x0 = [x0, y0]. Let

x ∈ [x0, x0 +M − 1]× [y0, y0 +M − 1] = D ⊂ Z
2. Let 1x

be the indicator function x ∈ D in the HR image. We now

consider the mapping:

A†
x0

: E = A(span((1x)x∈D) → F = span((1x)x∈D)

w → A†w
(29)

We call local conditioning at position x0, the conditioning

of A†
x0

. This conditioning is the ratio of the bounds of the

quantity (greatest and smallest singular values):

||A†
x0
w||, ||w|| = 1 (30)

We can calculate equivalently the bounds of ||Ax0u||, ||u|| =
1. Let u =

∑

bk1xk
∈ F with ||u|| = 1. We have :

||Ax0u||
2 = ||

∑

bkA1xk
||2 (31)

=
∑

k1,k2

b̄k1bk2(1xk1
)HAHA1xk2

(32)

=
∑

k1,k2

b̄k1bk2

∑

i=1,N

∑

y∈Γ

sincd(y − τi,k1 )sincd(y − τi,k2)

(33)

where sincd is the finite discrete Shannon interpolator and

τi,k = qixk. Because sincd is differentiable, we can use the

mean value theorem to compare this expression to a pure

translational one and obtain an expression of the form:
∣

∣‖Ax0u‖
2 − ‖Atr

x0
u‖2
∣

∣ ≤ K‖θ − θ
tr‖2 (34)

where θ = (qi)i is the set of translations induced by the

motion, θtr is θ averaged over the HR pixel (over index k) and

Atr
x0

is the pure translational SR operator associated with θ
tr

and K is a constant which does not depend on x0. Thus, for

sufficiently small motions, the noise of the system will behave

as in a pure translational case. Experiments showed that for

affinities in a small range (rotation in the range -5,+5 degrees,

zoom in the range ×0.9,×1.1), we can use κ(x0) = cond(R)
as a local conditioning measure, with R defined as in Part IV

with the translations θ
tr. The result of the this prediction is

shown in Fig. 6.

B. Local regularization

Two types of regularization have been used mostly: Ty-

chonov regularization and TV (or bilateral TV) regulariza-

tion [1], [3], [7], [25]. We propose a local total variation

regularization scheme where our local conditioning measure

defines weights for the total variation term. In [32], the authors

proposed to weight the bilateral TV by the diagonal entries of

the operator which is an empirical way of taking into account
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(d)

Fig. 6. Local conditioning of the SR problem. (a) Zoom on the fusion of the
4 LR grids (60 × 60 pixels upper left corner). (b) Example of a LR image.
(c) Amplitude of the reconstruction noise (sampled on a LR grid) normalized

by the input noise variance. (d) Local conditioning 2
√

κ(x).

local conditioning. We minimize the function:

Jα(ũ) = G(ũ) + βHα(ũ)

Hα(ũ) =

∫

α.|∇ũ|
(35)

where α(x) = min(r, log(κ)) with r a tolerance parameter

and β is the global regularization parameter. When α = 1, H
is a conventional total variation regularizer. In [33], α(x) =
log(κ(x)) was chosen experimentally. We justify this new

choice of α using a simple model.

Let us consider a pure translational SR problem with global

TV regularization. Regularization can fail and destroy details

in the data while the noise generated by the inversion is not

correlated to the image. Our aim is to best preserve the data.

We look for the smallest α0 minimizing the following risk

function (with ǫ2 a tolerance parameter) and under a gaussian

model for n:

α0 = argminα min(E‖ũα − u‖2, ǫ2)

with ũα = argminũJα(ũ).
(36)

It was shown in [34] that the solution of a TV regularized

problem can be calculated with a fixed point algorithm, using

a linearization of the gradient of the TV ∂TV (u). At each

step we linearize this term using the previous estimate ũn−1:

(∂TV )n ≈ Bn = − div ∇
|∇ũn−1|

. Let B be this linear operator

when the algorithm has converged. We have (recall that R =
AHA):

ũα = (R + αβB)−1AHw. (37)

Using independence between signal and noise,

E‖ũα − u‖2 =‖(R+ αβB)−1αβBu‖2

+ E‖(R+ αβB)−1AHn‖2.
(38)
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Fig. 7. Optimal regularization parameter with respect to conditioning Our
choice for alpha is the curve in red (a) Estimated optimal regularization
parameter with respect to conditioning for translational SR (b) Regularization
parameter for translational SR obtained by minimizing the risk function in
eq (40)

We write this equality in each eigen subspace of R+αβB. If R
and B commute, the eigenvalues are the sum of eigenvalues of

R and B. We suppose that they commute approximately. Let

λi the eigen values of R and the µi the associated eigenvaluse

of βB in the joint diagonalization. Then we can decompose

the risk ρ(α) =
∑

i ρ
2
i with:

ρ2i ≈ (λi + αµi)
−2(α2‖β(Bu)i‖

2 + ‖(AHn)i‖
2). (39)

Each ρ2i is minimized by α0 = µi‖(A
Hn)i‖

2

λi‖β(Bu)i‖2 = ‖ni‖
2

µi‖ui‖2 (close

to the Wiener filtering solution). If the regularization is perfect

( i.e. µi‖ui‖
2 is a constant), the regularization parameter does

not depend on A. However, the behaviour of
∑

i ρ
2
i under a

noise model for µi‖ui‖
2 is generally more complex. We look

for

α0 = argminαmin

(

∑

i

ρ2i , ǫ
2

)

(40)

We plot in Fig. 7 the relation between the optimal α and

log(κ). To check this result, an experiment was generated by

calculating the optimal α for different realisations of a transla-

tional SR with TV regularization with the image baboon. The

other one is generated using minimization (40) and constant

parameters for µi, |(Bu)i| and |ni| . In both cases, α follows

our proposed model with respect to conditioning.

The complexity of our local regularization algorithm is the

complexity of the global TV super-resolution algorithm plus

the cost of calculating the local conditioning. The cost of local

conditioning calculation is O(CM,N (ML)2), where CM,N is

the cost of calculating the condition number of a M × N
system (translational SR systems are quickly calculated in the

Fourier domain as shown by equation (8) ). Local conditioning

should be used when the number of images is close to M .

The cost of this additional calculation is small compared

to the cost of the TV-regularized super-resolution which is

O(KitCSR) operations, where Kit is the small number of

iterations (typically 3) required for the convergence of the

fixed point algorithm, and CSR is the cost of the L2 affine

SR minimization without regularization.

C. Experiments

We show in Fig. 8 the result of local regularization for

M = 2. We generate 4 noisy LR images from a 240×240 HR

image (SR with M = 2, rotations between −5 and 5 degrees,

translations distributed in [0,M ]2, zoom between 0.95, 1.05)

and perform SR interpolation without regularization, with

optimal global TV regularization and optimal local regular-

ization. In the global regularization case, the resulting image

is excessively smoothed in areas with better conditioning and

not enough elsewhere. With local regularization, the smoothing

only occurs in the badly conditioned areas. This results in a

better reconstruction of the HR image. Visual differences are

particularly visible on the zoom of the images in Fig 9. In

Fig. 10, we perform another experiment with M = 3. Signal

preservation is improved with local regularization compared

to global regularization. This preservation is mainly seen on

differences map (Fig. 10 (e)(f))

In Fig.11, our local regularization is applied with a real

dataset. We use 4 images from experiment 2 of Fig. 5. The

result of super-resolution without regularization shows the

local behaviour described previously. This behaviour is well

predicted by the local conditioning measure. The result of

SR with local regularization has improved sharpness in well

conditioned area compared to global regularization. The area

benefiting from local regularization is shown in Fig. 12.

D. Application to demosaicking

We show here that we can apply our algorithm for multi-

image demosaicking. [35] showed the benefits of multi-image

demosaicking. Because no hypotheses are made on the regu-

larity of the image, reconstructing the HR image is possible

when single image demosaicking fails. If the user has the

opportunity to take 4 pictures of the same scene, we can use

our optimal regularization scheme to reconstruct a HR image

with M = 2 from the raw RGB components independently.

We show in Figure 13 the comparison between a multi-image

demosaicking with noise and a mono-image state of the art

demosaicking (self-similarity driven demosaicking [36]) with

noise. We generated a synthetic example by generating 4 LR

versions a HR image and adding noise. The input for the

mono-image demosaicking is a Bayer pattern generated from

the HR image. We specifically chose an image where self-

similarity driven demosaicking fails to illustrate the possible

benefits of super-resolution with local regularization. Multi-

image demosaicking with our local TV regularization gives

a HR image without chromatic anomalies when compared to

self-similarity driven demosaicking.

VI. CONCLUSION

We have studied super-resolution under a particular aspect.

To avoid regularization (and subsequently hypotheses on the

regularity of images), we outlined contexts where we can

perform unregularized SR. We began by giving an invertibility

condition on the affine motion super resolution interpolation

problem. We showed that little to no regularization is needed

in the context of affine motion SR with a largenumber of

images, and more precisely that it is always in the best

interest of SR interpolation to acquire more images. We also

studied a critical case where regularization is necessary, but not

everywhere. To minimize zones where holes are filled using
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(a) Ideal HR image (b) One LR image

(c) SR without regularization (d) Reconstruction error (c-a)
PSNR= 22.70dB

3

(e) SR with optimal global regular-
ization

(f) Reconstruction error (e-a)
PSNR=30.56dB

(g) SR with our local regulariza-
tion scheme

(h) Reconstruction error (g-a)
PSNR = 31.26dB

Fig. 8. Local TV regularization for critical super resolution. M = 2.
Reconstruction errors are shown in a blue-red color scale representing the
gray level interval [0,30] (images are in [0,255]).

the total variation term in the objective functional, we proposed

a local conditioning measure which we used as local weights.

This local regularization scheme could be extended to other

regularization and more complex motion.
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VII. APPENDIX

A. Intermediate results for the invertibility

Lemma VII.1. For 1 ≤ i ≤ N , let ui ∈ Cn×n,

ui(r, s) = xr
i y

s
i , we call ui 2D Vandermonde vectors with

seed [xi, yi]. If for all 1 ≤ i < j ≤ N, xi 6= xj , yi 6= yj ,

dim(span(ui)i=1,N ) = min(N,n2).

Proof: We show that the ui are linearly independent if

N ≤ n2. Let us suppose
∑

λiui = 0. Let ui(s) = Xiy
s
i with

Xi = (xr
i )r. for all s,

∑

λiui(s) =
∑

λiXiy
s
i = 0. The Xi

form an independent family of 1D Vandermonde vectors. It

implies that
∑

λiy
s
i = 0 which we rewrite

∑

λiYi = 0, but

the Yi are also independent. Consequently, for all i, λi = 0.

Lemma VII.2. If for all pi, pj ∈ Γc, ||q−1
1 pi − q−1

2 pj
mod 1||0 = 2, kerA1 + kerA2 = CML×ML.

Proof: We prove this lemma for affine motions Qi on

finite discrete signals. Q−1
i are performed by finite discrete

Fourier interpolation. In practice, calculating Qi the same

way is a good approximation. We can construct a basis of

kerA1 and kerA2 by taking the inverse transformations of the

indicator functions of the pixels zeroed by the sub-sampling.

In the Fourier domain, these bases are:

ûi(ω) = e−j〈ω, q
−1
1 pi〉, û′

i(ω) = e−j〈ω, q
−1
2 pi〉 (41)

which are 2D Vandermonde vectors with seed [e−j〈ex, q−1
k

pi〉,

e−j〈ey , q−1
k

pi〉]. We use Lemma VII.1: kerA1 + kerA2 =
span((ûi), (û

′
i)) = CML×ML (the seeds are all different

because fo rall pi, pj , ||q
−1
1 pi − q2p

−1
j mod 1||0 = 2).

Lemma VII.3. Let n < M2.If for all pi, pj ∈ Γc, 1 ≤ k1 <
k2 ≤ N, ||q−1

k1
pi − q−1

k2
pj mod 1||0 = 2 and

dim(∩k=1,n kerAk) = (M2 − n)L2 then ∩k=1,n kerAk +
kerAn+1 = CML×ML.

Proof: Let (ei) be a basis of ∩k=1,n kerAk of size (M2−
n)L2. In the basis (uj)j=1,n of kerA1,:

ei =
∑

αi,juj (42)

Let u′
i a basis of kerAn. With the hypothesis, any linear

combination of ei, u
′
i is a linear combination of independent

2D Vandermonde vectors. Therefore, dim(span((êi), (û
′
i))) =

min
(

(ML)2, (M2 − n)L2 + (M2 − 1)L2
)

= (ML)2. Thus,

we have ∩k=1,n kerAk + kerA2 = span((êi), (û
′
i)) =

CML×ML.

B. Intermediate calculation for the Hessian

Using conventional differentiation rules, we have at θ0:

∂

∂θi
[AA†] =

∂

∂θi
[A]A† +A

∂

∂θi
[A†] (43)

=
∂

∂θi
[A]A† −A(AHA)−1 ∂

∂θi
[AHA]A†

+A(AHA)−1 ∂

∂θi
[AH ] (44)

=
∂

∂θi
[A]A† −AA† ∂

∂θi
[A]A†

− (A†)H
∂

∂θi
[AH ]AA† + (A†)H

∂

∂θi
[AH ] (45)

=(I −AA†)
∂

∂θi
[A]A† + (A†)H

∂

∂θi
[AH ](I −AA†)

(46)

=2Re((I −AA†)
∂

∂θi
[A]A†) (47)


