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On the amount of regularization for super-resolution
reconstruction

Yann Traonmilin*, Said Ladjal, Andrés Almansa

Abstract—Modern digital cameras are quickly reaching the Our aim is to avoid or minimize assumptions made on
fundamental physical limit of their native resolution. Super- the HR image, and consequently minimize the amount of
resolution (SR) aims at overcoming this limit. SR combines regularization.

several images of the same scene into a high resolution image_l_h lati Hi bet IR i is oft tricted
by using differences in sampling caused by camera motion. e realv_e motion eween Images 1s often res. rcte
The main d|ff|cu|ty encountered when designing SR a|gorithm to tl‘anS|atIOI’lS and rotations. HOWeVer, a Sma” motion Of
is that the general SR problem is ill-posed. Assumptions on the camera in the depth direction can cause a linear zoom
the regularity of the image are then needed to perform SR. petween images. To describe this, we will consider affine
Thanks to advances in regularization priors for natural images, motions of the LR sampling grids. Affine motions have
producing visually plausible images becomes possible. Hewer, . . . .
regularization may cause a loss of details. Therefore, we gue been considered |n. [14]__[16] where con\{entlonal techqul_Je
that regu|arization should be used as Sparing|y as possibJe fOI‘ parameter estimation a.nd regula”zed reconstruction
especially when the restored image is needed for further pise are described. As we study the well-posedness of the SR
processing. This paper provides principles guiding the loal problem, we will not try to invert camera blur as this part of
choice of regularization parameters for SR. With this aim, we give the SR problem is generally ill-posed. With this configuoati

an invertibility condition for affine SR interpolation. Whe n this uti b fit in t agint lati
condition holds, we study the conditioning of the interpolaion  SUP€r-resolution can be split in two procesggsnterpolation

and affine motion estimation problems. We show that these (i-6. SR inversion with known motion parameters) afi)
problems are more likely to be well posed for a large number motion parameter estimation. In the interpolation caspesu

of images. When conditioning is bad, we propose a local total resolution is an irregular to regular sampling interpalati
variation regularization for interpolation and show its application problem which could be solved with general techniques
to multi-image demosaicking. - . A . .
[17]-[20]. With super-resolution sampling configurations
EDICS : TEC-ISR Interpolation, Super-Resolution and Mowve can use the fact that each LR image is acquired on a
saicing: Interpolation and superresolution; Mosaicimgjstra- regular grid to obtain dedicated results and methods. For

tion and alignment; Multi-image fusion example, the pure translational case can be viewed as a
multichannel sampling problem. Thus, extending the result
. INTRODUCTION Papoulis [21], Ahuja and Bose [22] showed that if we have
A. Problem statement and state of the art a super-resolution factab/, only M? LR images with pure

. . . . . IH nslational motions are needed to perfectly recover tRe H
Super-resolution aims at recovering a high resolution (H r)r? . . ) )
image in a noiseless set-up. In this case, no assumption on

imagg from several low resolution (LR) imageg. In the mo%e content of the HR image is needed (apart from the fact
generic formulation of SR, we need to estimate came_{ﬁlat it is band-limited). It naturally leads to the followgn

blur, motion and the HR image simultaneously, which is Lo " T
! . : %ldesnon. in what conditions on the acquisition system can w
an ill-posed problem. SR techniques have been review

. i i i ?
several times in the literature [1], [2]. They mostly rel)Prerform super resolution without hypothe;es on the Image -

: R . S he other side of the SR reconstruction problem is the
on a regularized minimization of a functional linking the

acquired LR images and the unknown HR image. There r§g|strat|on of each LR image. It consists in estimating

a wide choice of such functionals, including? norm with motion parameters between LR images (6 parameters for

S . - each affine motion). Some techniques for affine motion
Tychonov regularization [3], bilateral total variation \(J estimation between a pair of well-sampled images alread
regularization [4], [5], andL' norm with TV regularization P P 9 y

61, 1. The choic o a requlnzer s an mplot ypties 5% 231 Howeser n o superresauton ot
(or a priori information) on the content of the image. For, g '

: : ...~ “do not give estimates precise enough to perform a good
example, perfect reconstruction with TV regularizatiomat ) . . )
) . . : econstruction [24], [25]. If the interpolation problem is
possible if the image contains too many textures [8], [9]. : : : .
o , nvertible, SR reconstruction can be viewed as a non-linear
Even recent non-local regularization methods for singld an

o ) ; . Winimization problem with respect to motion parameters
multi-image super-resolution [10], [11] need images which . ™ : L
o : ; T which is called variable projection [26]. [27] showed that
exhibit rotational [12] or multiscale [13] self-similaits. . . . L
using a regularized variable projection method for super-
Y. Traonmilin, S. Ladjal and A. Almansa (email: resolution reconstruction gives stable results in practic
{yann.traonmilin ladjal,andres.almangatelecom-paristech.fr) are  with However. the necessity for a regularization term in the
Telecom ParisTech, CNRS LTCI, 46 rue Barrault, 75013 Pé&tiance. Tel: . T . .
+33145817777 variable projection method is not questioned.

Work partially funded by FUI-9 CEDCA project. When the acquired data is contaminated by noise, having a



good conditioning of the system is critical for the quality o
the reconstructed image. The influence of the SR zoom has
been studied in the case of interpolation in [28]. Experitaen
on the Cramer-Rao bound with respect to the number of
images were shown by Robinson [25] and Champagnat
[29], demonstrating that the reconstruction error of the
pseudo-inverse decreases when the number of images grows.

Fig. 1. Representation of the signal spectrum and the spédyquist limits

B. Overview and Contributions of the HR grids with affinities applied
In this paper, we first describ&éction 1) the theoretical

context of super-resolution with affine motion, which reqgi
special attention in terms of how hypotheses are formujatéd: are the affine deformation associated with each LR image.
and under which conditions the super-resolution, dengisiiVe call ¢; the corresponding affine motion of the sampling
and deconvolution problems can be decoupled from of&d i.e.
another. Within this framework we give iSection Ill a (Qiu)(x) = u(gi(x)). (2)
sufficient condition on the inv_ertibility of_SR_ interpt_)lari. We decomposeg; in its linear and translational parts:
This ex_tends the_ work of Ah_UJa [2.2-].(WhICh is restrl_cted t%ix — lLix +1t,. ; are2 x 2 matrices,t; are 2 dimensional
Franslatlopal motllons) to the invertibility of affine moticSR vectors. SR is the process of recoveringrom w — Au + n
interpolation. This resqlt aIIows_ to show that t_he qumber fis acquisition noise). If th€); are known, the inversion of
samples needed for affine SR.W'th “’”.‘dom motions is the SaM8s called the super-resolution interpolation. The recpver
as the one for random sanjplmg _Of trigonometric polynomial y1h 4, and Q; is called super-resolution reconstruction.
as shown by Bass & Grochenig [30]. I8ection IV, the
asymptotic behaviour of translational SR interpolatioovsh
by Champagnat [29] is extended to affine motions. We show
that it is in the interest of acquisition system designers to
target the acquisition of a large number of LR images, as the Hypotheses
SR reconstruction is Iikgly tp be well-posed in that s_etting We need to make some assumptions on the problem to
We also study the registration for large number of |mag%§mp“fy the study:
by calculating the Hessian of the non-linear least squares
motion parameter estimation problem. It allows for a better 1) v is band-limited
understanding of how variable projection behaves and showg) the first LR image is the reference image: (= 1d)
that a regularization term (like in [27]) is not always nexy. ~ 3) affine maps on the coordinateg)(are invertible
In Section V, we show that the conditioning is spatially 4) affine maps do not generate aliasing on the HR grid

varying. We calculate this conditioning for small motiomela Condition 4) deserves further explanation: Let us consider
use it to predict how SR interpolation must be regularizedeontinuous image formation model. LR images are generated
This prediction takes the form of a new local Weighting,y w; = SSurQ:u, whereSgr is the sampling with the HR
scheme of the total variation regularizer. Finally, we gpipl sampling step. In a practical SR algorithm, we try to estémat
to multi-image demosaicking. We show that regularizatiod a 5, .+, i.e. we commute thed R sampling and the motion.
cross-channel dependencies used by even the most advanced possible to do so ifi is well sampled bySyr before
demosaicking algorithms can be avoided if multiple imagegd after the motion. We show that this is equivalent to an
are available. In this case regularization assumptions @equate choice of the HR sampling step.
minimized by our procedure, and demosaicking artifacts argt p, be the support of the spectrum of Condition 4)
avoided. means that eacly z Q;u image is not aliased. For each affine
motion, the frequency domain satisfying the Shannon condi-
II. THEORETICAL CONSIDERATIONS tion is given by its reciprocal celD;. u is well sampled after
any motion if its spectrum is contained i = () D;.More
over Dy is a square containing. We set the HR sampling
The purpose of the super-resolution problem is to invertstep such thaf, c D. The configuration of these frequency
linear mapA that producesV LR images from a single HR domains is shown in Figure 1. In other words, from a given
image: band-limited signal, we can always define a HR sampling step
A (CMIXMLY _ (LXL\N which does not cause aliasing of the continuous reference
(1) imageu after motion. The strength of this assumption depends
u— (SQiu)i=1.N on the amplitude of the affine maps. The smaller they are, the
where N is the number of LR images)M is the super weaker it is. As our images are spatially limited, we only
resolution factor, x L is the size of a LR imagey is the consider the reconstruction of the trigonometric polyraimi
HR image.S is the sub-sampling operator by a facfar and associated with them.

A. Problem set-up
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Fig. 3. Invertible and non invertible configurations cowkly Theorem IIl.1
for M = 2 and pure translations. Black dots represent the refereridga@

Invertible case meeting hypotheses (b) non invertible eastuded by the
theorem (c) configuration excluded by the theorem but stleitible

badly conditioned (which will be discussed in the following
sections). We give a sufficient condition (on the motion of
the sampling grids) for the invertibility with the hypothess
defined in the previous section.

Let us name the following sampling grid&*” = [1, M L]?> C

7Z? andT = M.[1, L]%. T'° is the complement of in """,

i.e. the support of images in the kernel 6f We give a

© (d)

Fig. 2. Validity of the assumption of commutativity: (a) Hffage (b) sufficient condition for A to be invertible: the difference

Blurred HR image (c) image reconstructed from 16 LR imageh Wi = 2

1 1+ C
by neglecting the blur. PSNR calculated with respect to $b46.7 (d) blur between the motion of two positions in” must not be an

kernel integer, coordinate by coordinate.
Theorem Ill.1. If N > M? and for allp;,p; € I'°,1 < ky <
C. About camera blur ks < N, lla;'pi — a;,'p; mod 1|[o =2, Ais injective.
Camera blur (noted”) happens just before sub-sampling:  proof: We show by induction oveN that when adding
wi = SFQiu (3) @ LR image, the dimension of the kernel of the function

_ o _ A decreases by a factai?. For clarity, the proofs of the
In this paper, we suppose that it is identical for all LRhecessary lemmas are shown in the appendix. Let:
images and that we can commute blur and motion. This MLxML LxL

- i - An o (C ) = (C7)

assumption holds for purely translational motions, and for
rotations (as long as the blur kernel is rotationally symiogt u— SQnu
The supposition is also justified for more general blur kEwneWe prove : for alll < n < M2, dimMger , kerQp —
in the case of small motions. In fact, the difference between »"_ n)Lg' - ’ -
the least-squares esUr_naIewhen we do n<_)t take into accounteg, 9. et pi €T¢ Lety, = 1, Letu; = Ql—lvi_ We
camera blur and the filtered HR imad#: is:

(5)

have Sv; = 0. Consequentlyd;u; = 0 and u; € ker A;.
We just defined(M? — 1)L? independentu; generating
i—Fu=(A"A)™" (Z QiSMw; — (AHA)FU> ker Ay: span(u;)i—1,(v2—1yr2 = ker A;. Similarly we con-
i (4) struct span(u;);—1,(m2—1)r> = ker As. With Lemma VII.2

(ker A, +ker Ay = CMLXML) the dimension of the intersec-

= (AT A)! (Z QiS"S(FQ; — QiF)U> tion is:

This assumption is valid if the energy 6{FQ; — Q;F)u is dim(ker Ay M ker 4z) _dlm.(ker Ar) + dim(ker 4z)
smaller than the energy of the acquisition noise. We show an — dim(ker A; + ker Ap) (6)
experiment of reconstruction with small affinities in Figu2: =(M? -2)L?

by neglecting the blur in the model, we reconstruct the eldirr

version of the HR image. Letn > 2. Let us suppose thafm My ,, ker A, = (M?—

n)L?. We use Lemma VII.3{Ng_1, ker Ag) + ker A,,11 =
CMIxML By ysing the same dimensions relation as/’oe
2, we get the result fon + 1. ]

_ o _ i The main condition is the number of images which is the

If the problgm_ of SR interpolation IS n_ot |nv_ert|ble, thesame as the condition for translations by Papoulis. Example
SR problem is ill-posed, and regularization will play they non invertible and invertible configurations are shown in
most important part in the interpolation process. Inteapol gjg e 3. A direct corollary is that, if the motion parameter

ing without regularization requires an invertible probleAs .o random, the SR interpolation problem is almost-surely
our objective is the study of cases where no regularizatign o tip|e-

is needed, we begin by studying the critical condition for
invertibility in terms of the number of images. We will thea b Corollary 1ll.1. If N > M? and motion parameters are
able to distinguish two invertible cases: well conditiorsadl random, A is injective almost-surely.

II1. I NVERTIBILITY CONDITION OF THE SR
INTERPOLATION



Proof: The space of excluded affine motion parameters
E C R% in Theorem Ill.1 has measure 0. Létc R%" be oot
a parameter vectofR.0) N E has measure O because it is
countable. By using Fubini& has measure 0 iRS. [ ]
We can compare this result with [30] where it was shown
that the problem of random sampling of trigonometric poly-  os-
nomials is invertible almost surely if there are at least as i
many equations as unknowns (equivalentNio= M?2). Our i
probabilistic result is different because sampling lamadi are
not completely random. We also gave a deterministic comdliti
for this invertibility. This condition excludes non inviste
cases. For example, if the motion is translational in onlg on !“”Hii"ii' i |
direction. the h i i i 01F e “lI“'II!”!!“l'“““'l!”*
, ypothesis of the theorem is not met (as seen i s
Figure 3). o ‘ ‘ ‘ ‘ ‘ ‘

0 10 20 30 40 50 60
N

0.8

0.7

IV. CONDITIONING OF THESRPROBLEM WITH RESPECT Fig. 4. Convergence of the estimator. Interpolation errith wespect to the
TO THE NUMBER OF IMAGES number of LR images

A. Interpolation

. - . . . 1 ojwti+ZE.07 ) o icas:
Measuring the difficulty of a linear inversion problem, such7© " - C is the product of 2 matrices:

as super resolution interpolation is often made using the C =AB 9)
condition number of the linear map defining the problem.. Lo - 2mk (g o1p)
Several factors have an influence on this conditioning. Bak¥ith A = 37 diag(e’ ‘) and B = e 1) The
[28], shows that the condition number of the system grov@nd't'on'gg of the system is consequently the conditignin
with the super-resolution factdi. The condition number also f R;(ET)B)’IVh'Ch is a Toeplitz matrix with termi,.; =
depends on the sampling distribution [17]. For a controllet; ¢/~ » < ). We can show with a direct application
motion, a condition number of is obtained by regularly of the central limit theorem thai? converges to a multiple
spacing LR grids matching the HR grid when merged. Whef identity because the complex numbers (i )
motions are random and uniform, the condition number eébnverge to a uniform distribution on the unit circle (for
the affine SR interpolation problem converges to one when# 7). By continuity of the condition number, the condition
the number of images grows. This fact was experimentaiumbers(R) converges to 1. u
illustrated for translational SR in [25] in terms of the Crim A large number of images is statistically better. This resul
Rao bound for HR image estimation. [29] shows that thean be illustrated by the following reconstruction methas:
reconstruction error decreases to 0 when the number of snagéRr) — 1, R ~ N.Id and AT ~ £ A, We can uset A"
grows. We suppose thaf > M? and that the affine motions as a reconstruction operator for a large number of images. We
respect the condition of Theorem IIl.1. In this case, the HRlot in Figure 4 the reconstruction erreg, = ||u — uy|| of
image can be perfectly recovered by taking the pseudo iavetsy = %AHw with respect toN. For eachN value, we gen-

of A. The condition number of the system is the ratio of therated 30 experiments with random affine motion distributed
extremal eigenvalues od” A. We show the following using as in Proposition IV.1. The same HR (from Figure 2) image
a similar technique as in [29]: is used for all experiments.

We now show that it is always interesting to add an obser-
vation (a LR image). The reconstruction noise decreasds wit
the number of images. Our observation model is:

Proposition IV.1. Let us suppose that the affine motians
have the following distributiont; are uniform in[0, A/]? and
the average of thé; is Id. Then the conditioning: of the
system converges to 1 (in the distribution sense) as the @umb w=Au+n (10)

of images grows. . . . .
ges g n ~ N(0,02I) is a white zero mean Gaussian noise. The

Proof: To recoveru at a particular pulsatiow € R?, we reconstruction noise will be:
first write (w) as a linear combination of th&;(w) :

n. = Afn (11)

N _ 1 “ 27k (.t 427k (=1
Wi (17 w) = B Z (w + s i Yed (WLt D) 7y gnd n, ~ N(0,02ATATHY = N(0,02(A”A)~1). The
kez? reconstruction noise will have normalized energy =

Only M2 terms in the sum are non-zero. If there is more thafi t7((A” A)~") = 3=, & where); are the eigenvalues (e.v.)
M LR images, it is an overdetermined system of size /72 of A7 A.
for each pulsation: We consider adding an image:

Cligq =w (8) A (CMEXMLY _, (CLxL)N+1

12
wheredq (k) = d(w + L;EE), w(i) = @;(l; 'w) and C;, = u— (SQru)k=1.N11 (12)



w = Au+n' (13)

with n’ ~ N(0,0%1). We have ¢’ = o%tr((AHA)1) =
> with X} = e.v.(AH A4).

gradient has the following expression:

)
50, G(0) = 2(A(0)AT(8)w — “’)H(aei

0
= 2(A(0)AT(0)w — w) ([A(0)]AT(6
Proposition [V.2. Acquiring more images diminishes the (BB =) (891'[ OO
L
noise, i.e.e’ <e + A(6) 6(3 [AT(8))w)

Proof: We first prove that, > \; for all 5. Using Weyl's

0

= 2(A0)AT(O)w — w)" (- [A(0)]AT(9))

inequalities: 00;
! H 1H 71 (18)
Ai SN F Apag (AT A — A AT (14)
where the last line was obtained by orthogonality. The Hessi
We have: is then (we do not calculate the constant):
AP A — AT A = QIS SQ, — QHESTSQ, d d
k:LZNH g ng g Hi j o (87j[A(G)AT(9)]W)H(a—&[A(9)AT(0)]w) .
= QN5 SQN 1 0?
T —_)\H T
(15) +(AOATO)w = 0) (5 [AB) AT O)u)
which is a positive linear map. Thus, o, (A A—A"M A’) <0 |n particular, the Hessian &, is:
and \; < \;. With this result we havel. < % for all i. P 5
Consequently: ' H; j (W[A(GO)AT(OO)]W)H((Q)Q‘ [A(60)]AT(60)w) (20)
J 7
1 1
N < ~ We setfd = 0, (we write A = A(6y)), as our aim is to
i 7 i ot calculate the conditioning of the Hessian at the minimum of
o2 Z i/ < o2 Z 1 (16) the functi(_)nal. Calcul_ations (develop_ed in the annex) lead
Z Al p Ai the following expression of the Hessian:
e<e 0 0
= - — _ T
. H;; x < a0, [AJu| (I — AA )891- [A]u> (21)

This result shows that if we are able to recover the motioie call - [AJu = wj :
parameters, the best strategy is to keep all the available LR , b
images for the reconstruction. This result matches thetiveu Hij o <wjv (I —AA )wi> (22)
idea that having more data points increases the signabi®en gacause LR images are separated:
ratio. Still, it must be noted that this property is depertden
on the structure of the linear map generating the data. We Hij o< i (wh, wh) — (AP ), ATw]) (23)

discuss in the next section the difficulty of recovering the
motion parameters. where~; ; = 1 whenf; and§; are parameters related to the

motion of the same LR image, otherwise.y; ; < w}, w; >
define a block diagonal symmetrical matiiks. Furthermore,
all blocks are of siz& x 6 and bounded in the 2-norm sense.
From the previous part, we havé’ ~ %AH. Consequently,
with Cauchy Schwartz inequality:

1
B. Parameter estimation | (A%, Atw]) | = O(Nﬂ (AT, Afw)) | 24)
24
1
= (A" wjl[[ A" wi]]
In a noiseless case, whe¥i > M?, u = (A A)"1Aw = . "o _
AT(8)w. 6, are the parameters of affine motions. To estimafé® the quantitieg| A™wj|| are bounded:
6y, we try to minimize [5], [26]: |<AHw;-, ATw;> = O(%) (25)

G(0) = [|A()AT(6)w — wl]3 a7
and

which is not a convex problem. With a first estimate (which 1

can be obtained with a dedicated registration technique), w Hi.j o 7ij (wj, w;) (1 — O(()) ~N—o Yig (w), wy)
can minimize this functional with a gradient descent. The (26)
speed of convergence and the precision of this method wilk finally have :H — H, andx(H) — «(Hpg) by continuity
depend directly on the conditioning of the Hessifinat 8, of the condition number. Let us calculate dhe 6 block Hp
(we suppose that the first LR image is not translated, and ticatresponding to one LR imadg. We suppose that; andd;
H is not singular). We calculate this condition number. The



N 4 12 40 In this section, we predict this conditioning in the case of
|0 —wl[/[Jul| | 319) 0.2 | 0.1 small motions (which is a reasonable hypothesis for hand hel
|| —uf|/[lu]| | 2.5 ] 0.06 | 0.04 camera), and use this prediction to adaptively regularite w

TABLE | respect to local conditioning.

AVERAGE RECONSTRUCTION ERROR WITH RESPECT TO THE NUMBER OF \\fe study the Conditioning in the critical cag¥ > M?
IMAGES where the problem is invertible (from the previous section)
We propose to use the conditioning of an equivalent pure

translational SR problem at each location. It is justifiecttoy

are two motion parameters of the motiGh= Qy,. We have: comparison of the reconstruction noisg.. of the system and
the reconstruction noise of a pure translational model. Whe

) ) ; . )
Hpij <%[A]u‘ 5 [A]u> the LR images are contaminated by a naise
5 5 (27) Nree = ATn (28)
x <SBTJ»[Q]U SB_HZ-[Q]U> We calculate the power of the noise locally. We restrict the

Hp represent the conditioning relative to the estimatiof'29€ space of the applicatiot’ to one LR pixel in the HR

of parameters of one affine transformation. We calculaté#29€ SPace to study its local behavior. begt= [x02, Yol. Let

experimentally eigenvalues of 1000 differefit; matrices * < [z0, zo + M —1] X [yo,yo + M — 1] = D C Z*. Let 1

using equation (27). We generated as a Gaussian i.i.d. be th_e indicator fu_nc'uonc € D in the HR image. We now

process to have a full band signal which is uncorrelated Wiﬁzl')n5|der the mapping:

the acquisition parameters. It leads to a maximum possibl@&j{0 : E = A(span((1x)xep) — F = span((1x)xen)

condition number foriy under 100. Compared to a pure 1D

translational case wherté, is diagonal with condition number

1, the more general affine case is slightly more difficult cue ¥e call local conditioning at positiorx,, the conditioning

the intrinsic difficulty of motion estimation. In practicenis ©0f AL . This conditioning is the ratio of the bounds of the

difficulty is limited as shown by the next experiment. quantity (greatest and smallest singular values):

In Table I, we calculated the average reconstruction erfor o T -

10 . . S | A% wll [|w]| =1 (30)
experiments with parameter estimation with respect¢o th

number of images. We used a non linear conjugate gradidk¢ can calculate equivalently the bounds|ofx, ull, ||u|| =

algorithm, stopped after the same number of iterationsdohe 1. Let u = Y b;1x, € F with ||[u]| = 1. We have :

number of images. For each experiment, the starting point of

29
w— Afw (29)

the non linear conjugate gradient algorithig is a random [l Asoull* = |l Z b Al ||
perturbation of the solution (simulation of an estimatioithw = Z bioy by (1, ) TAT ALy,
a LR method). P ! 2
=Y bibr, > Y sincdy — 7k, )sincdy — 7ix,)
C. Summary k1,ko i=1,N yel’
In this section, we studied the evolution of the conditignin (31)

with V. For SR reconstruction, interpolation and paramet@fere sincd is the finite discrete Shannon interpolator and
estimation each play a part in the difficulty of the problem, , — ¢,x,.. Because sincd is differentiable, we can use the
When we make the hypothesis that motions are random Wi{ean value theorem to compare this expression to a pure

a reasonable distribution, the interpolation part coreer® translational one and obtain an expression of the form:
a conditioning ofl when N grows. The global estimation

. . X . . .. 2 t 2 tr(2
part is more difficult as each affine motion has an intrinsic | Axoull® = A% ul?| < K60 — 6" (32)
conditioning for its estimation. This _conditioning depsmah  \vhereg — (¢:); is the set of translations induced by the
the frequency content of the HR image and on the valygation @' is @ averaged over the HR pixel (over indexand
of the motion parameter. If the motion is a translation, thigt i the pure translational SR operator associated @ith
conditioning is1 for full band signals. In the generic aﬁinear’]‘&K is a constant which does not dependsan Thus, for
case, when the number of images grows and no motiondgticiently small motions, the noise of the system will beha
degenerate (the zoom part of affinities is close to identityjs jn a pure translational case. Experiments showed that for

the conditioning becomes good experimentally. affinities in a small range (rotation in the range -5,+5 degre
zoom in the rangex0.9,x1.1), we can uses:(xg) = cond(R)

V. LOCAL CONDITIONING AND REGULARIZATION as a local conditioning measure, withdefined as in Part IV

A. Local conditioning with the translation®"". The result of the this prediction if

The fusion of LR grids is a sampling grid which is generallfhOWn In Figure 5.

not periodic. If motions are small, we observe local vapiasi
of the spatial distribution of the samples leading to a spati
variability in the noise generated in the inversion process



by replacing in 34 :
u (ATA+ aB) AP w
(AH A+ a\B)u ~ A" (Au+n)

a)||Bul| = ||Afn|| (36)
_ [[A%n|
|| Bull
We write the relationship between the extremal singulanes
of AA" (which are the same asl” A): oy, = Zme=
and suppose thaB is independent fromn. We find that
a\ = a% + b were a,b are constants depending of,

B, v andn. We add the hypothesis that the optinalis O
with a conditioning of 1. This is equivalent as saying that no
regularization is needed when no inversion is needed. dislea
to b = —a we identify the constant depending on the dafa
with A (A = v/b). Consequentlyg = /1 — 1.

We choose\ which is minimizing the reconstruction noise.

© (d)

Fig. 5. Local conditioning of the SR problem. (a) Zoom on thsidn of the C. E . t
4 LR grids 60 x 60 pixels upper left corner). (b) Example of a LR image.™~* Xperments

(c) Amplitude o_f the re_construction noise (S'_cl_mp_led on a Lid)gnormalized We show in Figure 5 how we predict local conditioning. We
by the input noise variance. (d) Local cond|t|on|ﬁg/@. generate 4 noisy LR images from2d0 x 240 HR image (SR
with M = 2, rotations between-5 and5 degrees, translations
distributed in[0, M]?, zoom between.95, 1.05) and perform
SR interpolation without regularization, with optimal bkl
TV regularization and optimal local regularization. glbbeg-
ularization case, the resulting image is excessively shembt

Two types of regularization have been used mostly: Ti- areas with better conditioning and not enough elsewhere.

chonov regularization and TV (or bilateral TV) regularizab Ig; Iocald_rcleguliajrization, t:_e smoloth_ing tc:nly occurs in the
tfion [1], [3, [7], [25]. We propose a local tofal variationPadly conditioned areas. This results in a better recoctitm

regularization scheme where our local conditioning measff the HR image (in this example, 1dB PSNR gain).
defines weights for the total variation term. In [31] the a@uth
proposed to weight the bilateral TV by the diagonal entries ®. Application to demosaicking

the operator which is an empirical way of taking into account we show here that we can apply this algorithm for multi-

B. Local regularization

local conditioning. We minimize the function: image demosaicking. [34] showed the benefits of multi-image
Jo(@) = G(@t) + \Hq () demosaicking. If the user has the opportunit_y to take 4 mstu
) ) (33) of the same scene, we can use our optimal regularization
H (1) = /a.IVUI scheme to reconstruct a HR image witli = 2 from the
raw RGB components independently. We show in Figure 7
wherea(x) = /1 — ﬁ and \ is the regularization param-the comparison between a multi-image demosaicking with

eter. Whena = 1, H is a conventional total variation regu-n0ise and a mono-image state of the art demosaicking (self-
larizer. In [32],a(x) = log((x)) was chosen experimentally.s'm”a”ty driven demosaicking [35]) with noise. We gerterh
We now show the new choice is optimal. a synthetic example by generating 4 LR versions a HR image

Let us consider a pure translational SR problem with glob@Nd adding noise. The input for the mono-image demosaicking
TV regularization. We suppose that optimal TV regularizati 'S & Bayer pattern generated from the HR image. Multi-image
gives a good approximation @f. The optimala is: Qemosalgklng with our local TV_reguIarlzatlon gives a HR
~ image without chromatic anomalies when compared to self-
a [/ Uamu (34) similarity driven demosaicking.
with @, = argmin, J, (@)

it was shown in [33] that the solution can be calculated with a VI. CONCLUSION
fixed point algorithm, using a linearization of the gradiefiit =~ We have studied super-resolution under a particular aspect
the TV OTV (u). At each step we linearize this term using th&o avoid regularization (and subsequently hypotheses en im

previous estimat&,,_1: (0TV), ~ B,, = —div %. Let ages), we outlined contexts where we can perform unreg-
B be this linear operator when the algorithm has convergadarized SR. We began by giving an invertibility condition
We have: on the affine motion super resolution interpolation problem

o = (AT A+ aB) 1AM w (35) We showed that little to no regularization is needed in the



(b) One LR image

(c) SR without regulariza{d) Reconstruction error (c-a)
tion PSNR= 22.70

(e) SR with optimal globalf) Reconstruction error (e-a)
regularization PSNR=31.12

(4]
(5]

(6]

(7]

(g) SR with our local regu{h) Reconstruction error (g-a)
larization scheme PSNR = 32.16dB

(8]

Fig. 6. Local TV regularization for critical super resolutiofReconstruction
errors are shown in a blue-red color scale representing réne lgvel interval
[0,30] (images are in [0,255]). 9]

context of affine motion SR with a large humber of imageél,o]
and more precisely that it is always in the best interest of SR
interpolation to acquire more images. We also studied eatit [11]
case where regularization is necessary, but not everywhere
To minimize zones where holes are filled using the total
variation term in the objective functional, we proposedealo

conditioning measure which we used as local weights. (12]
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VII. APPENDIX
A. Intermediate results for the invertibility

Lemma VIL1. For 1 < ¢ < N, let u; € C*x7,
ui(r,s) = aly;, we call u; 2D Vandermonde vectors with
Seed[xi,yi]. Ifforall 1 <i < 7 < N,x; 7§ Tj,Y; }é Yis
dim(span(u;)i=1,n) = min(N,n?).

Proof: We show that theu; are linearly independent if
N < n?. Let us suppos€_ \;u; = 0. Let u;(s) = X,y with
form an independent family of 1D Vandermonde vectors. It
implies that)" \;yf = 0 which we rewrited> " \;Y; = 0, but

dheY; are also independent. Consequently, forial; = 0.

Lemma VIL.2. If for all p;,p; € chqu_lpi _ q;lpj
mod 1|[p = 2, ker A; + ker Ay = CMEXML,

Proof: We prove this lemma for affine motion@; on
finite discrete signaIsQ;1 are performed by finite discrete
Fourier interpolation. In practice, calculating; the same
way is a good approximation. We can construct a basis of
ker A; andker As by taking the inverse transformations of the
indicator functions of the pixels zeroed by the sub-sangplin
In the Fourier domain, these bases are:

i (w) = e—i(w,qflpw)’ ) (w) = eI {w ay " pi) (37)
which are 2D Vandermonde vectors with sded’ {4 '7:)

. —1
eI {ew 4 ’“‘>]. We use Lemma VIl.1ker A; + ker Ay =
span((4;), (@})) = CML*ML (the seeds are all different

because fo ralp;, p;, ||, 'pi — qep; ' mod 1fjp=2). m
Lemma VII.3. Letn < MZ2.If for all p;,p; € T¢,1 < ky <

ko < N, ||qk_11pl- — qk_zlpj mod 1||p =2 and

dim(Ng=1,n ker Ay) = (M? — n)L? then Ng—1 , ker Ay +
kerAn_H — (CMLXML.

Proof: Let (e;) be a basis of\,— ,, ker Ay, of size(M?—
n)L2. In the basig(u;);—1, of ker A;,:

€; = ZO&Z'J"UJJ'
Let u, a basis ofker 4,,. With the hypothesis, any linear
combination ofe;, v} is a linear combination of independent
2D Vandermonde vectors. Therefodgm (span((é;), (i})))
min ((ML)?,(M? —n)L? + (M? — 1)L?) = (ML) Thus,
we have Ng=1, ker Ay + ker Ay = span((é;), (4}))

(38)

(CMLXML_ ]
B. Intermediate calculation for the Hessian
Using conventional differentiation rules, we havefgt
0 0 0
- 12 T At
891-[AA ] 891-[A]A +A89i[A ]
0 0
_9 T H -1 Y9 r4H +
20, [AJAT — A(AT A) 0, [A" AJA
0
Hp\-1Y 14H
+ A(A7A) 0, [A7]
0 0
__ T T2 I
90, [AJAT — AA o0, [A]A
(AN AT AAT + (AN (AT
0 0
—(T — 1 Y T TH_Z [ AH _ 1
(I AA)aei[A]A + (A1) 891_[14 J(I — AAT)
=2Re((I — AAT)%[A]AT)

(39)



