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Université Paris-Sud 11, 2 Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France.

2Laboratoire Charles Coulomb UMR 5221, Université Montpellier 2, F-34095 Montpellier, France
3Laboratoire Charles Coulomb UMR 5221, CNRS, F-34095 Montpellier, France

We give in the following some technical details concerning the calculation presented in the paper. In particular, we
address the precise definition of the reflection and transmission operators describing the three slabs, we discuss the
calculation of the temperature T2 of the intermediate body, and consider the transmission probabilities in the (ω, k)
plane.

I. REFLECTION AND TRANSMISSION COEFFICIENTS

In the planar geometry considered, the three bodies are described in terms of their reflection and transmission
coefficients: these are functions of the thicknesses of the slabs and of their material properties. In particular, the
quantities ρip(k, ω) and τip(k, ω) associated to a given slab i = 1, 2, 3 (appearing in eqs. (3), (5) and (6) of the paper)
are defined as

ρp(ω,k) = rp(ω,k)
1− e2ikzmδ

1− r2p(ω,k)e2ikzmδ
, τp(ω,k) =

tp(ω,k)t̄p(ω,k)eikzmδ

1− r2p(ω,k)e2ikzmδ
. (1)

In the paper, we have defined δ = δ2 (see Fig. 1 of the paper). In these definitions we have introduced the z component
of the wavevector inside the medium,

kzm =

√
ε(ω)

ω2

c2
− k2, (2)

ε(ω) being the complex dielectric permittivity of the slab, the ordinary vacuum-medium Fresnel reflection coefficients

rTE =
kz − kzm
kz + kzm

, rTM =
ε(ω)kz − kzm
ε(ω)kz + kzm

, (3)

as well as both the vacuum-medium (noted with t) and medium-vacuum (noted with t̄) transmission coefficients

tTE =
2kz

kz + kzm
, tTM =

2
√
ε(ω)kz

ε(ω)kz + kzm
,

t̄TE =
2kzm

kz + kzm
, t̄TM =

2
√
ε(ω)kzm

ε(ω)kz + kzm
.

(4)

We observe that in the limit δ → +∞ of infinitely-thick slab 2 we have ρ2p → r2p and τ2p → 0. As a consequence, the

transmission coefficient T (12)
3s,p (see eq. (5) of the paper) vanishes and we recover the ordinary expression of the heat

transfer between two slabs (slabs 2 and 3 in this case). In absence of slab 1 (ρ1p → 0) we obtain again T (12)
3s,p → 0 and

ρ12p → ρ2p so that the two-slab expression is recovered.

II. TEMPERATURE OF THE INTERMEDIATE SLAB

The geometrical configuration we have chosen for our calculation is symmetric with respect to the exchange of slabs
1 and 3. This is true both because they are identical (same material and thickness) and because the distance between
slabs 1 and 2 coincides with the one between slabs 2 and 3 (equal to d in both cases). As a consequence, we have

ρ1p = ρ3p and moreover the transmission probabilities T (12)
3s,p and T (23)

3s,p (eq. (5) of the paper) are also independent
of the exchange 1 � 3. In order to express the heat flux on body 1 we can thus simply exchange 1 and 3 in the
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Boltzmann populations n12(ω) and n23(ω) in eq. (4) of the paper. Since we are dealing with the (evanescent) heat
exchanged between the bodies, the heat flux on body 2 can be expressed as the opposite of the sum of the heat fluxes
on bodies 1 and 3. We then have

φ3s(ω, d, δ) = −~ω
∑
p

∫
ck>ω

d2k

(2π)2

[(
n12(ω) + n32(ω)

)
T (12)
3s,p (ω,k, d, δ) +

(
n23(ω) + n21(ω)

)
T (23)
3s,p (ω,k, d, δ)

]
= ~ω

(
2n(ω, T2)− n(ω, T1)− n(ω, T3)

)∑
p

∫
ck>ω

d2k

(2π)2

[
T (12)
3s,p (ω,k, d, δ)− T (23)

3s,p (ω,k, d, δ)
]
.

(5)

We thus see that the geometrical and material properties contained in the difference of transmission probabilities
are weighted over the overall temperature-dependent factor 2n(ω, T2) − n(ω, T1) − n(ω, T3). As we see from Fig. 3
of the paper, the assumption of quasi-monochromatic heat-flux spectrum at ω = ωspp is reasonably accurate. As a
consequence, in order to make the flux on body 2 vanish, eq. (5) allows us to provide a very simple condition to
estimate the temperature T2: this temperature is the solution of the equation

2n(ωspp, T2)− n(ωspp, T1)− n(ωspp, T3) = 0, (6)

which gives

T2 =
~ωspp

kB

[
log
(

1 +
2

n(ωspp, T1) + n(ωspp, T3)

)]−1

. (7)

We have verified that the numerically-calculated temperature T2 and the estimate given by eq. (7) differ at most by
2%.

III. MODES OF THE THREE-SLAB SYSTEM

We discuss here the dependence of the two- and three-body transmission probabilities defined in eqs. (3) and (5)
of the paper on the ω and k, for a given couple (d, δ). In accordance with the discussion given in the paper, we will

compare T2s with T3s = (T (12)
3s +T (23)

3s )/2. These two quantities are plotted in Fig. 1 in the (ω, k) plane for d = 700 nm
and the associated optimal value of the thickness δ = 870 nm.

As a first observation, we see that the resonant peak in the spectral flux plotted in Fig. (3) of the paper is due
to the presence of a resonant surface modes which exist only in TM polarization. Moreover we note that, while
in the two-body case we have one symmetric and one antisymmetric mode [1], we observe the appearance of two
supplementary modes in presence of an intermediate slab which results from doubling the number of cavities (and
interfaces) in the system. Moreover, as clearly shown in Fig. 1, in the three-slab case these modes remain efficient
up to larger values of k. These features result in the enhancement and broadening of the resonance peak of the
spectral flux. For both polarizations, the presence of supplementary (frustrated) modes at low frequencies explains
the secondary peak in the spectral flux in Fig. 3 of the paper. The number and efficiency of those modes is reduced
in the three-body configuration: this explains why the amplification mechanism is centered around the resonance
frequency of both surface modes.

[1] E. N. Economou, Phys. Rev. 182, 539 (1969).
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FIG. 1: Two- (upper side) and three-body (lower side) transmission probabilities for both polarizations as a function of ω and
k at separation distance d = 700 nm and δ = 870 nm.


