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Resonant tunneling of surface polaritons across a subwavelength vacuum gap between two polar or
metallic bodies at different temperatures leads to an almost monochromatic heat transfer which can
exceed by several orders of magnitude the far-field upper limit predicted by Planck’s blackbody theory.
However, despite its strong magnitude, this transfer is very far from the maximum theoretical limit

predicted in the near field. Here we propose an amplifier for the photon heat tunneling based on a passive
relay system intercalated between the two bodies, which is able to partially compensate the intrinsic
exponential damping of energy transmission probability thanks to three-body interaction mechanisms. As
an immediate corollary, we show that the exalted transfer observed in the near field between two media
can be exported at larger separation distances using such a relay. Photon heat tunneling assisted by three-
body interactions enables novel applications for thermal management at nanoscale, near-field energy

conversion and infrared spectroscopy.

Two bodies held at different temperatures and separated
by a vacuum gap exchange in permanence heat throughout
the thermal electromagnetic field they radiate. At a long
separation distance (i.e., in the far field) this exchange of
energy results exclusively from propagative photons emit-
ted by these sources. The blackbody limit given by the
famous Stefan-Boltzmann law sets the maximum heat
flux these media can exchange. However, at subwavelength
distances (i.e., in near-field regime) the situation radically
changes. Indeed, at this scale, evanescent photons which
remain confined near the surface of materials are the main
contributors to transfer and they participate via tunneling
through the vacuum gap [1-8]. A significant heat-flux
increase results from this transport. In the presence of
resonant surface modes such as surface plasmons or surface
polaritons, collective electron or partial charge oscillations
coupled to light waves at the surface, the radiative-heat
exchanges can even drastically surpass by several orders
of magnitude the prediction of Planck’s blackbody theory.
This discovery opened new possibilities for the develop-
ment of innovative technologies for nanoscale thermal
management, such as near-field energy conversion (ther-
mophotovoltaic conversion devices [9,10]), heating
assisted data storage (plasmon assisted nanophotolitogra-
phy [11]) or IR sensing and spectroscopy [12,13].

Recent theoretical developments [14,15] have estab-
lished that the nanoscale heat transfer between two media
separated by a distance d can be revisited using the same
concepts as in mesoscopic physics of charge transport. The
first step is the expression of the distance-dependent heat
flux ¢(d) under the form of a spectral decomposition

old) =[5 ‘21—‘7‘; ¢(w, d). Hence, the monochromatic near-
field heat flux transferred between two media at tempera-
tures T and T, is described in a Landauer-like formalism
[14—17] as the sum over all modes
d’k
d(w,d) = hwnlz(w)z [—2 T ,(0.k d) (1)
=) @m)

of the energy fiw of each mode (w, Kk, p) [identified by the
frequency w, the transverse wave vector k = (k,, k,) and
the polarization p], times a transmission probability
Tp(a), Kk, d) through the separation gap (assuming values
between 0 and 1), with n;(w) = n(w,T;) — n(e, T)),
n(w, T) = (/%7 — 1)~ being the distribution function
inside the reservoir of modes at temperature 7. Analysis of
arbitrary systems has revealed a rather small efficiency of
transfer coefficient for each exchange channel even in the
presence of resonant surface modes such as surface polar-
itons. In this situation the total number of channels (i.e.,
number of modes) contributing to the heat transfer per
unit of surface is set by the position of the cutoff

for the transverse component of wave vector k.=
log[2/4/Tm(g;)Im(e,)]/d [15,18], where Im(g;) denotes
the imaginary part of the dielectric permittivity of the
material i (i = 1, 2). This allows us to estimate two fun-
damental limits [14] o = k3(T7 — T3)k?/6h  and
hinax = 8ok2/ 7 (g9 = k3T /3h is the quantum of ther-
mal conductance at temperature T, respectively, for the
monochromatic flux and total heat transfer coefficient
between two media. However, these limits are intrinsic to
two-body systems but are not universals in general. In the
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present Letter we describe heat transfer in three-body
systems and we highlight the concept of three-body ampli-
fication of heat flux exchanged at nanoscale between two
media. In addition we propose a device based on an inter-
mediate passive relay, which is able to increase the number
of coupled modes. This investigation belongs to the vast
category of few-body problems whose richness has been
largely explored in atomic physics, quantum chemistry,
and celestial mechanics. Recently, interesting effects
have been theoretically discussed in the context of heat
transfer [19,20].

We consider two parallel slabs identified for convenience
by the indexes i = 1 and i = 3, as shown in Fig. 1(a). Each
slab has a finite thickness, whereas its transverse extension
is much larger than the distance between the slabs, so that
they can be considered infinite with respect to the xy plane.
We compare this system to a configuration in which a
third slab, labeled with i = 2 and having thickness &, is
placed between slabs 1 and 3 [see Fig. 1(b)]. The system
is placed in both cases in a stationary thermodynamical
configuration, in which each body is held at temperature
T; (i = 1,2, 3). As far as the material properties of the three
slabs are concerned, we describe them in terms of three
complex dielectric permittivities €;(w), meaning that their
electromagnetic response is local and nonmagnetic.

Herein we are interested in comparing the heat flux on
body 3 in two- and three-body configurations. The heat-
transfer problem in the case of a couple of arbitrary bodies
in a thermal environment has been recently solved [21]. In
this case, the heat flux on a body can be expressed as a sum of
an evanescent and a propagative contribution: the former (the
latter) depends only on the modes of the electromagnetic
field for which the transverse wave vector k satisfies ck > w
(ck < w). The evanescent contribution, only connected to
the temperatures 7 and T3 of the two bodies, largely domi-
nates on the propagative one at distances between them
smaller than the thermal wavelength (some microns at ambi-
ent temperature). In this near-field regime the monochro-
matic heat flux on body 3 at frequency w can be written under
the form of a Landauer expansion

bato.d =non@3 [ 3 O T kd)
2
where
41 I —2Im(k,)d
’TZW((U, k, d) _ m(plp) m(p3p)zfm(kz)d|2 ) 3)

|1 ~ P1pP3p€

These quantities depend also on the thicknesses of slabs 1 and
3 through the reflection coefficients p; of slab i [22].

The scattering procedure developed to investigate heat
and momentum transfer between two bodies described
detail in Ref. [21] has been generalized to the case of three
bodies in a thermal environment [23]. In this case, as
expected on physical grounds, the evanescent contribution

(a) d

_
(b) d 0 d

FIG. 1 (color online). Geometry of the system in the (a) two-
and (b) three-slab configurations. The distance d between
adjacent slabs (1-2 and 2-3) in the three-body configuration
equals the distance between slabs in the two-body case.

is a function of the three temperatures 7, T,, and T3, while
the environmental temperature 7, enters only in the prop-
agative term. In order to reduce the number of free pa-
rameters for the analysis of the amplification mechanism,
we will focus our attention on the symmetric case in which
the distances between adjacent slabs in the three-body
configuration (1-2 and 2-3) are both equal to d, i.e., the
distance between slabs 1 and 3 in the two-body configura-
tion (see Fig. 1). This choice makes d the only relevant
distance in both scenarios. Moreover, it makes the minimal
distance between any couple of adjacent bodies the same
for the two configurations and the optical distance between
slabs 1 and 3 double in the three-slab case with respect to
two slabs. For the three-slab system the near-field expres-
sion of the monochromatic heat flux on slab 3 reads [23]

bl d, ) = ho¥ [ (27r>2

X [nlz(w)’fgszl),(w, Kk, d, 5)

+np3(@) TS (0,k,d, 8)] (@)

with

T(IZ) (w,

02 (w,k,d,8)

4|T2p(8)|21m(plp)Im(p3p)e_4Im(kz)d
| 1— P12p(5)}03p€721m(k1)d|2| 1— plppr(B)eizlm(kz)dlz
41mlp 5, (3)]Im(ps, e 2k )0

- /012p(5)/03p€_2hn(kz)d|2

T3 (w,k,d, )= 1

&)
In the right-hand side of Eq. (4) the dependence on the
couple (w, k) is implicit. We note that the evanescent term
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splits into two contributions, associated to the couples of
temperatures (7', T,) and (75, T3), each one containing a
different Landauer transmission probability which is
weighted using the corresponding difference n;;(w) of
thermal populations. The amplitudes (5) contain the trans-
mission amplitude 7, of slab 2 and the reflection amplitude
associated to the couple of slabs (1,2) treated as a unique
body, taking the form [for a given couple (w, k)],

T%p(a)plpe_zlm(kz)d

|1 - PlpP2p(5)€

p12p(6) = p2p(8) + —21m(kz)d|2' (6)

The expressions (5) and (6) depend on the thickness 6 of
the intermediate slab exclusively through the reflection and
transmission coefficients p,, and 7,, of slab [22].

Let us now consider the choice of temperatures. To
avoid the introduction of a supplementary thermal source
and thus keep the comparison between the two configura-
tions meaningful we choose for T, the value such that the
heat flux on body 2 is zero. In the particular case of a
quasimonochromatic flux at frequency wp, (quite accurate
in the near-field regime, as we will see) it can be shown
[22] that T, is the solution of 2n(wgp,, T2) = (@, Ty) +
n(wgpp, T3). For the present calculation we take T} =
400 K and 75 = 300 K, resulting in 7, = 357 K. Finally,
we discuss the material properties of the three slabs. As for
media 1 and 3, we have chosen two SiC slabs of thickness
5 um. As for the intermediate slab, it is a metalliclike
medium described by a simple Drude model e(w) = 1 —
w3/w(w + iyp), defined by a plasma frequency @p and a
relaxation rate yp. As it is well known [24], this model
predicts the existence of a surface mode, a plasmon, at a
frequency close to wp/ V2. Hence, a natural choice for
wp to maximize heat transfer is wp = \/Zwspp, Wgpp =
1.787 X 10'* rad s~ ! being the surface plasmon-polariton
frequency supported by SiC, matching the SiC and Drude
surface-polariton frequencies.

We are now ready to calculate the ratio between the total
heat flux on slab 3 in the three-slab case with respect to the
two-slab configuration. Figure 2 shows this ratio for dis-
tances d € [50, 800] nm and thicknesses of the central slab
8 € [0, 1] wm. This figure clearly shows the existence of a
region of parameters in which the three-body heat flux is
larger than its two-body counterpart. Concerning the value
of the amplification, in our physical configuration it
reaches 60% for short distances (around 150 nm). As
shown in the inset of Fig. 2, the amplification effect is
robust with respect to the relaxation rate yp over a range
going up to values typical of metals. Moreover, the ampli-
fication exists up to distances around 650 nm and, for each
value of d, is limited to a finite interval of . More in detail,
for a given d, we see that the amplification assumes a
maximum for 6 =~ d.

In order to get insight on this amplification mechanism, we
first analyze the flux spectra ¢,,(w, d) and ¢s,(w, d, 5) for
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FIG. 2 (color online). Total heat-flux amplification
@3,(d, 8)/ ¢,,(d) as a function of distance and slab thickness.
The black dashed line corresponds to ¢3,(d, 8)/¢@,,(d) = 1. The
dielectric permittivity of SiC is described using a Drude-Lorentz
model [25], and for slab 2 we have chosen yp = 10 3wp. The
inset shows the dependence of amplification rates on the relaxa-
tion rate yp for d =200 nm (black solid line), d = 400 nm
(green dashed line) and d = 600 nm (purple dot-dashed line).
For each value of d the associated optimal value of 6 has been
used, respectively, 6 = 265, 53, and 755 nm. In the region of
amplification, the curve 6 = 0.014 nm + 1.267d (light blue dot-
dashed line in the main part of the figure) reasonably describes
the dependence of the optimal value of & with respect to d.

different values of d and for the associated optimal value of
6. The results plotted in Fig. 3 show that when the distance
between the two slabs approaches zero, the flux tends to
become monochromatic at the surface-polariton frequency.
As for the three-slab term, we see that in both cases the
spectral component of the flux at wgy, is enhanced with
respect to the two-body case. Nevertheless, the presence of
slab 2 does not amplify the contribution at smaller frequen-
cies, providing on the contrary a quasimonochromatic
enhancement around the surface-polariton frequency wgy,.
This explains why, when increasing d, the amplification is
less important and eventually the flux ratio goes below one.

This behavior can be understood by looking at the mode
coupling efficiencies (3) and (5). We remark that in the
two- and three-body configurations the transmission prob-
abilities are multiplied by different weighting functions
n;;. In the two-body case, this weight is the difference
ny3, while ny, and n,; appear in presence of three slabs.
However, due to the quasimonochromaticity of the flux, the
temperature T, is such that nj(wg,) = ny(wg,) =
n]3(a)spp)/ 2. Hence, we compare the transmission proba-

bility T, with T, = (712 + T%)/2.
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FIG. 3 (color online). Monochromatic fluxes ¢,,(w, d) (red
dashed line) and ¢s,(w, d, 8) (black solid line) in arbitrary units
for two different values of d. For each distance the associated
optimal value of & has been used (6 =265 nm and 0 =
870 nm, respectively).

These quantities are plotted in Fig. 4 for w = wg,, and
d = 200 nm, as a function of the wave vector k and thick-
ness 6. We consider only TM polarization, giving the main
contribution to the heat transfer [22]. Let us first discuss in
Fig. 4(b) the two limiting regimes with respect to 6. For
6 = 0 the system reduces to two SiC slabs separated by a
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FIG. 4 (color online). Transmission probabilities of a three-
body SiC-Drude-SiC system for @ = wg,, and d = 200 nm
as a function of dimensionless wave vector ck/w,, and thick-
ness 8. (a) T oy (b) T3, = O.S(T(;f) + T(ff)); (c) O.ST(ff);
@ 0.57 glsz); (e) Three-slab transmission probabilities for 6 =
0 nm (orange double-dot-dashed line), 6 = 265 nm [optimal
thickness, green dashed line, same in panel (b)], and 6§ — +o0
(purple dot-dashed line) compared to the two-slab transmission
coefficient (black solid line).

distance 2d. By comparing this case to the two-slab con-
figuration at distance d in Fig. 4(a) we observe a shift of
the peak and of the cutoff wave vector k., associated to the
difference of distance from d to 2d. Otherwise, when the
thickness & is larger than d, T 5, becomes independent on
8, corresponding to the fact that the slab 2 is seen as semi-
infinite. In this limit, Fig. 4(b) shows that the replacement
of the SiC slab 1 with a semi-infinite metallic slab produces
a shift of k. toward larger values. This is consistent with the

fact that k. is an increasing function of 1/4/Im(g;)Im(e,)
and that at the plasmon frequency wg,, the imaginary part
of the Drude dielectric permittivity is smaller than the one
of the Drude-Lorentz model describing SiC. Despite this
shift, the integral over k (i.e., the monochromatic flux) is
still smaller than in the case of two slabs at distance d. This
is a direct consequence of the fact that 7, < T7.

Hence, we can say that the cases 6 = 0 and 6§ > d are
as a matter of fact two-body configurations (SiC-SiC
and Drude-SiC, respectively). The intermediate region,
corresponding to values of 6 around d, results from a
purely three-body effect in which the results are intimately
connected to the presence of both bodies 1 and 2. A deeper
understanding of this transition comes from Figs. 4(c) and
4(d), representing separately the two contributions to the
three-slab configuration 0.57 (3233) and O.STngz), respec-
tively. The former has exactly the structure of a two-body
transmission amplitude, as evident from the comparison
between (3) and (5). It corresponds to the exchange
between the couple (1,2) treated as a unique body at
temperature 7, and the body 3. The plot of this coefficient
in Fig. 4(c) shows that this term can be associated to the
transition, as a function of &, from body 2 to body 1. The
range of wave vectors contributing to the effect moves
from the one associated to a Drude material at distance d
to the one corresponding to a SiC slab at distance 2d. On
the contrary, the contribution Tg?) can be thought of as an
exchange between bodies 1 and 3 mediated by the presence
of body 2. The presence of the intermediate slab is manifest
both in the temperature-dependent term 7,(w) and in the
fact that the product of the imaginary part of reflection
coefficients p; and p; is weighted over a coefficient de-
pendent on body 2 and in particular proportional to |7,[?.
This explains why this term starts contributing below a
given value of § (around 300 nm in the figure), at which the
slab 2 is no longer seen as semi-infinite. In proximity of
this value the system exploits the shift of the cutoff k. due
to the replacement of the SiC with the Drude material and
at the same time the contribution for smaller wave vectors
guaranteed by the presence of slab 1. This is even more
evident in Fig. 4(e). In this case we represent the two-slab
configuration at distance d, and the three-slab cases for
6 =0, 0 > d, and 6 = 265 nm, representing in this case
the optimal value. The curve corresponding to this value of
o0 shares the behavior for k — oo with the case 6 >> d, but
differs from this curve at smaller values of k.
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In conclusion, we have proposed and characterized a
new passive amplifier based on a three-body assisted tun-
neling mechanism. By remarkably enhancing near-field
exchanges with respect to a two-body system, it allows
us at the same time to increase the magnitude of heat
transfer and to double the separation distance, without
any additional source of energy. Due to its quasimonochro-
maticity and filtering effect, this mechanism could also be
exploited to considerably improve the efficiency of near-
field energy conversion devices by increasing the photo-
current generation in thermophotovoltaic cells, as well as
reducing the heating of the cell. This work also paves the
way to the study of near-field heat transport in complex
plasmonic systems mediated by many-body interactions at
mesoscopic scale.
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