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MULTIFRACTAL ANALYSIS OF SOME MULTIPLE
ERGODIC AVERAGES

AI-HUA FAN, JORG SCHMELING AND MENG WU

ABSTRACT. In this paper we study the multiple ergodic averages
1 n
Ezw(xkaxkqa"' ,ZquIZ—l), (:Cn) ezm
k=1

on the symbolic space ¥, = {0,1,--- ,m — 1} where m > 2,¢ >
2,q > 2 are integers. We give a complete solution to the problem of
multifractal analysis of the limit of the above multiple ergodic av-
erages. Actually we develop a non-invariant and non-linear version
of thermodynamic formalism that is of its own interest. We study
a large class of measures (called telescopic measures) and the spe-
cial case of telescopic measures defined by the fixed points of some
non-linear transfer operators plays a crucial role in studying our
multiplicatively invariant sets. These measures share many prop-
erties with Gibbs measures in the classical thermodynamic formal-
ism. Our work also concerns with variational principle, pressure
function and Legendre transform in this new setting.

1. INTRODUCTION

Let (X, T) be a topological dynamical system where 7" is a continuous
map on a compact metric space X. Fiirstenberg had initiated the study
of the multiple ergodic average:

1 n
;Zfl(Tkx)fz(T%x) s fo(T ) (1)

k=1
where fi,---, fs are s continuous functions on X with s > 2 when

he gave a proof of the existence of arithmetic sequences of arbitrary
length amongst sets of integers with positive density ([16]). Later on,
the research of such a kind of average has attributed a lot of attentions
(see e.g. [4, 6, 1, 17]).

The authors in [10] have recently proposed to analyze such multiple
ergodic averages from the point of view of multifractal analysis. They
have succeeded in a very special case where (X, T) is the shift dynam-
ics on symbolic space and fi,--- fs are Rademacher functions on the
symbolic space viewed as an additive group. It is a challenge to solve
the problem in its generality.

Key words and phrases. Multifractal, multiple ergodic average, Hausdorff
dimension.
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2 Multifractal analysis of some multiple ergodic averages

In the present paper, we shall consider the problem for the shift
dynamics and for a class of functions fi,---,fs;. The setting is as
follows. Let S = {0,---,m — 1} be a set of m symbols (m > 2).
Consider the shift map 7' on the symbolic space X = %,, = SV. Fix
two integers ¢ > 2 and ¢ > 2. For any given ¢ continuous functions
91,92, -+, ge defined on X, we consider the multiple ergodic average

1< )
An(g1, 92+, 90)(x) = o Zgl(Tkx)gz(qux) o 'gz(qul lsc).
k=1

This is a special case of (1) with s = ¢"', fs = g;—1 and f; = 1 for
other k # ¢/. Furthermore we assume that the functions fi, fo-- -, fo
depend only on the first coordinate of z = (z4)r>0 € X,,. So, under
this assumption of f;’s we have

Anlgngee 00 = 3 (o)) guloigr). (2)

For the time being, there is no idea for the multifractal analysis of (1)
in its general form. So we are content with investigating the special
case (2). Actually we can do a little more. Given a function ¢ : S* — R
we shall study

1 n
Ango(ﬂf) = gzgp(xkaqua"' ,.qu—1>. (3)
k=1

The average in (2) corresponds to the special case of (3) with ¢ =
g1 ® - ® ge. For a € R, we define

E(a) = {ZL‘ SIDIN nh_)rrolo App(z) = oz} :

Our problem is to determine the Hausdorff dimension of E(«). The
problem is classical when ¢ = 1 and the answers are well known (see
e.g. [9, 11, 3, 2]). Let

Omin = min @(ah te 7a5)7 Qmax = max @(alu e 7a5>-
ay,,ap€S a1, ,ap€S

We assume that o, < max (otherwise ¢ is constant and the problem
is trivial).

Let F(S*1, RT) be the cone of functions defined on S*~! taking non-
negative real values. For any s € R, consider the transfer operator L

defined on F(S“"1 RT) by
Lap(a) =) e Dy(Ta, j) (4)
jes
where T': S — S2 is defined by T'(ay, -+ ,a,1) = (az, - ,ap_1).
We also consider the non-linear operator N, on F(S*~1, RT) defined by

Nyb(a) = (Lsp(a))Ve.
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We shall prove that the equation
A/'sq/}s = ws (5)

admits a unique strictly positive solution ¢y = 1/1‘2671) S AR R*
(see Section 4, Theorem 4.1). The function 1), is defined on S*~1. We
extend it on S* for all 1 < k < ¢ — 2 by induction:

1

Y (a) = (Z ilfﬁkﬂ)(a,j)) , (aesh). (6)
jes

For simplicity, we will simply write ¥(a) = wgk)(a) for a € S* with

1 <k <{l—1. So, ar ts(a) is not only defined on S*~! but on

Ur<r<it St

Then we define the pressure function by
Po(s) = (= 1)q"log Y vs(j). (7)
j€S
Throughout this paper, log means the natural logarithm.
We will prove that P,(s) is an analytic convex function of s € R and

even strictly convex since omin < umax. The Legendre transform of P,
is defined as

Pi(a) = nf(~sa + Py(s)).
We denote by L, the set of & € R such that E(a) # (. One of the
main results of the paper is stated as follows.
Theorem 1.1. We have
Ly, = [Py(=00), P} (+00)].
If @ = P(q) for some s, € RU{~o00,+oc}, then E(a) # () and the

Hausdorff dimension of E(«) is equal to

Pr(a)
di E =2 7
imy Be) ¢~ tlogm

This result was announced for ¢ = 2 in [13]. It is obvious that
L, C [tmin; Omax)- In general, this inclusion is strict. In fact, we have
the following criterion for L, = [Qtmin, Cumax)-

Theorem 1.2. We have the equality
/ _
P¢<_OO) = Omin
if and only if there exist an x = (1;)52, € 3, such that
Vk Z 17 @('xku xk+17 U 7xk+571) = pin-

L , B
We have analogue criterion for P, (+00) = Qumax-
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Let us look at the definition of
1 n
An(p<l’> = E Z @(I‘lm Thgy 7xkq€_1)'
k=1

One of the key points in our study of the problem is the observation
that the coordinates x1,--- ,x,, -+ of x appearing in the definition of
Anp(x) share the following independence. This observation was first
exploited in [10] in order to compute the Box dimension of some subset
of E(aupin). Consider the following partition of N*:

i>1,qfi

Observe that if k = i¢/ with g { i, then @(xg, Tpq, - -+, Tpye—1) depends
only on x|, , the restriction of  on A;. So the summands in the defini-
tion of A, p(z) can be put into different groups, each of which depends
on one restriction x|, . For this reason, we decompose X, as follows:

Y, = H S

i>1,qfi

Let 4 be a probability measure on %,,. Notice that S* is nothing
but a copy of ¥,,. We consider u as a measure on S™i for every i with
q1i. Then we define the infinite product measure P, on Hizl, ol Shi of
the copies of . More precisely, for any word u of length n we define

Pulu]) = T w(fu))

i<n,qfi

where [u] denotes the cylinder of all sequences starting with w. Then
P, is a probability measure on X,, and we call it a telescopic product
measure. Kenyon, Peres and Solomyak [18, 19] used this kind of mea-
sures to compute the Hausdorff dimension of sets like {x = (2,)n>1 €
Yo : Vk > 1, 2,29, = 0} which was proposed in [10].

A class of measures P, will play the same role as Gibbs measures
played in the study of simple ergodic averages (¢ = 1). Concerning the
dimension of P, (see [8] for the dimension of a measure), we have the
following result which is one of the main ingredients of the proof of the
main result (Theorem 1.1) and which has its own interest. A measure
v on X, is said to be exact if there exists an o € R such that

log,,, v([2},])

lim ——————= =, v—a.e.
n—o00 n

This value « is the dimension of v.
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Theorem 1.3. For any given measure pu, the telescopic product mea-
sure P, is exact and its dimension is equal to

(q—1) i Hi (1)

dimy P, = log m ght1
where
Hy(p) =~ > pllar---ag]) log p(fay - - - ax)).
ay, - ,a€S

A similar formula for some special P, has appeared in [19]. Another
ingredient of the proof of Theorem 1.1 is a law of large numbers relative
to the probability P,. We consider (HiZL ol SAiP,) as a probability
space (2,P,). Let (Fy)r>1 be a sequence of functions defined on 3,,.
For each k, there exists a unique integer i(k) such that k = i(k)¢’ and
q1i. Then

T Fk(x‘Am))

defines a random variable on 2. Concerning the sequence of random
variables {Fk(az‘ A'(k))}’ we have the following law of large numbers.

Theorem 1.4. Let (Fy)i>1 be a sequence of functions defined on %,,.
Suppose that there exist C > 0 and 0 < n < ¢*/% such that for any
i > 1 with q11, any j1,jo € N, we have

J1ti2

cov, (o (2), Fypa(2)) < O™ ®)

Then for P,—a.e. v € X,
S
lim ~ Z (Fi(ain,,,) ~ EuFi(@)) = 0.

We observe that the set E(«a) is not invariant. So it is not a standard
set studied from the classical dynamical system point of view. Actually,
as we shall see, in general the dimension of the set E(«) can not be
described by invariant measures supported on it. This is confirmed by
the following result.

Given two real valued functions f; and f5 defined on ¥,,,. For a € R,

let F(a) be the set of all points x such that

1
lim —
n—oo N

> A(TF) fo(TH2) = a.
k=1

We describe the size of the invariant part of F(«) by

Finy(a) = sup {dim g : g ergodic, p(E(a)) =1 }.
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Theorem 1.5. Let fi and fy be two Holder continuous functions on
Y. If E(a) supports an ergodic measure, then

Fiv(a) = sup {dimu . i ergodic, / f1du/f2du -« } _

It is interesting to compare this result with the level sets of V-
statistics studied in [14]. We return to the above theorem. A re-
markable corollary is that when f; = fo, we must have a > 0 if F(«)
supports an ergodic measure, or even an invariant measure (using Ja-
cobs’ entropy decomposition). Therefore, it is possible that for some
a < 0, E(a) has strictly positive Hausdorff dimension but it doesn’t
carry any invariant measure.

The paper is organized as follows. In Section 2, we first construct
a class of measures, called telescopic product measures, part of which
will play the same role as Gibbs measures played in the classical the-
ory. This construction is inspired by Kenyon-Peres-Solomyak [18] (also
see [19]). Then we establish a law of large numbers relative to such a
telescopic product measure. Telescopic product measures constitute a
new object of study. In Section 3, we prove that any telescopic product
measure is exact and we obtain a formula for its dimension. In Section
4, we study a non-linear transfer operator and we prove the existence
and the uniqueness of its positive solution. We also prove the analyt-
icity and the convexity of the solution as a function of its parameter
s. Each solution defines a Markov measure associated to which is a
telescopic product measure. The last measure plays the role of a Gibbs
measure in our study of E(«). Section 5 is devoted to the properties
of the pressure function: a Ruelle type formula says that the limit in
the law of large numbers is the derivative of the pressure; the pressure
function is an analytic and strictly convex function (except the trivial
case); the extreme values of the derivative of the pressure are studied.
In Section 6, we establish the Gibbs property of the telescopic product
measures defined by the solution of the non—linear transfer operator.
After all these preparations, many of which have their own interests,
we prove the main theorem (Theorem 1.1) in Section 7. In Section
8, we discuss the invariant part of E(«). Some concrete examples are
presented in Section 9. In the final section, we make some remarks and
present some unsolved problems.

Acknowledgement: The authors would like to thank B. Host for his
interests in the work and especially for his remarks, some of which are
contained in Section 8.

2. TELESCOPIC PRODUCT MEASURES AND LLN

In this section, we will study telescopic product measures and estab-
lish a law of large numbers (LLN). These measures, which take into
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account the multiplicative structure of the multiple ergodic averages
Anp(x), will play the same role as Gibbs measures played in the study
of simple ergodic averages. In the next section, we will prove that P,
is exact and its dimension is equal to

(q—1)? i Hi (1)

dlmH ]P)M = 10gm qk-l—l
where
Hy(p)=— > pllar---ag])log p(fay - - az)).
at,,aR€S

We could call Hj, the k-th entropy of p. But we should point out that
f is not assumed to be invariant and that P, is not invariant either.

2.1. Telescopic product measures. Let us recall the definition of
the telescopic product measure P,. Consider the following partition of
N*:
i>1,qti
Then we decompose ¥, as follows:
Se= [ S
i>1,qfi

Let p be a probability measure on ,,. We consider y as a measure
on S% which is identified with X,,, for every i with ¢ { i. Then we
define the infinite product measure P, on []-; S%i of the copies of
1. More precisely, for any word u of length n we define

Pu([ul) = [T wllw,)).
i<n,qfi
where [u] denotes the cylinder of all sequences starting with w.
We consider (3,,,P,) as a probability space. Let X (z) = x) be the
k-th coordinate projection. For each ¢ with ¢ {4, consider the process

Y® = (X})rea,- Then, by the definition of P, the following fact is
obvious.

Lemma 2.1. The processes Y = (Xy)rea, for different i > 1 with q {
i are P,-independent and identically distributed with p as the common
probability law.

As we shall see, the behaviour of A,,p(z) as n — oo will be described
by measures P, with particular choices of p. It is natural that P,
strongly depends on the above partition of N*. The following is a
detail of the partition which will be useful. Fix n € N*. Let

We are going to examine the cardinality §A;(n), called the length of
A;(n) and the number N(n,q, k) of A;(n)’s of a given length k.
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Lemma 2.2. Let k,n € N*,
(1) 2Ai(n) =k if and only if 5 <i <

. Consequently we have

Ai(n) = [logq .

=138
| I

(2) We have the partition

[log, m]
{1 np= || ] A
k=1 e <i<trgfi

(3) N(n,q,k) is the number of i’s such that q {i and Jx <i < 55

We have B
’N<n7q7k) o (q_ 1)2
ght1

4

n

Proof. (1) It is simply because §A;(n) = k means that
Ai(n) = {i,iq,--- ,ig" '} with i¢" ™' < n < ig".

(2) We have the obvious partition

{1 np= | | M)

i<n,qfi
Then we collect A;(n) by their lengths. By (1), we have 1 < fA;(n) <
Uogq nJ and
Llogq J
(o= L] LA

k=1 i<n q’(z

fAi(n)=k
(3) By (1), N(n,q, k) is obviously the numbers of 7 such that & <i <
qk r and ¢ 1 ¢. It is the number of i’s such that <1< k T minus
thezssuchthat <z<k1andq|z ie.

weno-(F1 T80 G5 12

It follows that

n 2n n
v - (G -+ g )| <4

It is the desired estimate for q,c%l — q% + q,@lJrl = (3;}22. O

Now we consider ([[,5; SAi P, as a probability space (Q,P,). Let
(F))r>1 be a sequence of functions defined on Y. For each k, there
exists a unique integer i(k) such that k = i(k)¢’ and ¢ t i. Then x —
Fy(= A'(k)) defines a random variable on 2. Later, we will study the law
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of large numbers for the sequence of variables {Fj(z, A )}k>1 Notice
that if i(k) # i(k’), then the two variables Fk(:ph_(k)) and F (x|, W))

are independent. But if i(k) = i(k’), they are not independent in
general. In order to prove the law of large numbers, we will need the
following technical lemma which allows us to compute the expectation
of the product of Fk(xm(k) )’s. The proof of the lemma is based on the

independence of x|, s
7

Lemma 2.3. Let (Fy)r>1 be a sequence of functions defined on ¥,,.
Then for any integer N > 1, we have

N llog, N k-1
EP# (HF Lla, i) ) H H E, (H Fiqh<x)> .
k=1 <Z< 7t h=0

In particular, for any function G deﬁned on X, for anyn > 1,
EPMG<5L’|AZ,(”)) =E,.G().

Proof. Let

N

H ‘A(k)’ QNZ H Fkx|A

keA;(

Since the variables x| " for different i > 1 with ¢ J( 1 are independent
under P, (by Lemma 2. 1), we have

Ep,Qn = [] Er.Qn.. 9)
i<N,qfi

Then, by (2) of Lemma 2.2, we can rewrite the right hand side in (9)
to get
[logg N

Ep,Qn = H H Ep, Qni-

-1 N N
k ok <ISEm1

However, the marginal measures on S* of P, is equal to g and A;(N) =
{i,iq,--- ,ig" 1} if qﬂk <i< q%. So

k-1
Ep,Qn: =E, <H Eign (@) :
h=0

Now, for any function G defined on ¥, and any n € N* if we set
F, =G and Fy, =1 for k # n we have

EPMG<1’|Ai(n) ) =E,G(z).
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2.2. Law of large numbers. In order to prove the law of large num-
bers (LLN), we need the following result.

Recall that the covariance of two bounded functions f, g with respect
to p is defined by

covu(f.9) = Eu [(f — E,f)(g — Eug)]

Proposition 2.4. Let (F)g>1 be a sequence of functions defined on
Ym satisfying o

covy, (Fign (2) Figa () < Oy = (10)
for some constants C' > 0 and 0 < n < ¢*? and for all i > 1 with q 1
and all j1, jo € N. Let pg, p1 and ps be three maps from N* into N* such
that

o0 3

. pa(n) p2(n)2~*

VneN, 1< < aq; < Ho00. (11)
pi(n) Z po(n)?

for some a > 1 and some 0 < ¢ < 1/2 with ¢*/*>=¢ > n. Then for

P,—a.e v e,

n=1

p2(n)
lim (Fkx —EFk:c>:0.
N 00 pO(n) kpzl(n) ( ‘Al(k)) 14 ( )

Proof. Without loss of generality, we can assume that Ep, Fj, (| A'(k)) =

0 for all & € N*. Otherwise, we replace Fk(:qA,(k)) by Fk(:cm(k)) _
EpﬂFk(l"A'(k) ). We denote

1 p2(n)
= po(n) k Z( )Yk with ¥ = Fk(x"‘z’(k))'
=p1(n

We have only to show that
> Ep,Z} < +o0.
n=1

Notice that

2
Ep, 72 = > BVl

n 2
P01 o Sun o

Observe that by Lemma 2.1, Ep, Y, Y, # 0 only if i(u) = i(v), in other

words only if u and v are in the same set A;. So

> > Ep,Y,Y,. (12)

i>1,qfs, u,wEA;N[p1(n),p2(n)]
Ain[p1(n),p2(n)]#0

However by the hypothesis (10) on the sequence (Fy)g>1, for any u,v €
A; N [pi(n), p2(n)] we have

1
Ep, 22 =
8 pg(n)

p2(n)

s, Y,Y,| = [E,F.(z)F,(z)] < Cylota™
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Substituting the last estimate into (12), we get

C op P2(1)
Er, 2 < — S s AN (), pe(n)]) . (13)
i>1,qti,
AiN[p1(n),p2(n)]#0

The cardinality £ (A; N [p1(n), p2(n)]) is estimated as follows:
In fact, assume that
Ai 0 [pi(n),p2(n)] = {a, -, a}

with a; < --- < aj. Then by the definition of A;, we must have “= > ¢
J
for 1 < j <k —1so that

On the other hand,
% p2(n)
ap — pi(n)

So ¢" ' < a, ie. k <14 log, . Substituting (14) into (13), we get

C(1 +log, a)* Z

log, p2(n)
/RS (15)
p5(n)

Ep, 72 <

N i>1,qfi,
Ain[p1(n),p2(n)]#0

There are at most ps(n) — p1(n) integers ¢ such that i > 1,¢ 17 and
A; 0 [pi(n),p2(n)] # 0. If they are increasingly ordered, then the j-th
is bigger than j. We deduce that

pa(n) p2(n)—p1(n ) (n) p2(n)—p1(n (n) 3_e
J

M

i>1,qf, j=1 j=1
AiN[p1(n),p2(n)]#0

where the last inequality is due to the fact that log,n < 3/2 —e. Since
€ < 1/2, we have > 7%, §7B/279 < 0. Then

3/2—€
E]Pu Z2 < CL2
po(n)
We conclude by the hypothesis which says that the right hand side of
the above estimate is the general term of a convergent series. O

The following is the LLN which will be useful for our computation
of the dimension of the telescopic product measure IP,.

Theorem 2.5. Let (Fy)r>1 be a sequence of functions defined on ¥,
Suppose that there exist C > 0 and 0 < 1 < ¢*/? such that for any
{ Z 1 with QTL any jl)j? S N;

Ji1tia

cov, (Fypn (2), Fypa(2)) < O™ (16)
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Then for P,—a.e. v € ¥,
RS
lim ~ Z (Fi(ain,,,) ~ EuFi(@)) = 0.

) =

Proof. Without loss of generality, we can assume that Ep, Fj,(z| M

0 for all £ € N*. Our aim is to prove lim,,_, Y, = 0 PP,-a.e., where

1 Z" _
Yn = E Xk with Xk = Fk(x|Ai(k))'
k=1

First we claim that it suffices to show

lim V2 =0, P, —a.e. (17)

n—o0
In fact, for every n € N there exists a unique k& € N such that £* <
n < (k+1)% Then we have
[ Xizaa| 4 4 [ Xnl + -+ [Xprrp)
L2
So, since Y2 — 0 P,-a.e., we have only to show
(X o X | X 2]
lim
k—o00 k2

Yol < [Yie| + (

=0, P,—ae (18)
Let po,p1 and ps be the three maps from N* to N* defined as follows:
po(k) = p1(k) = k%, po(k) = (k +1)* for k € N*.

Then observe that

. (pa(k)i) _ S ((k+ 1)%)E
Z 20 SZ PR

Thus we have verified that the maps pg, p1 and p satisfy the hypothesis
of Lemma 2.4. Then (18) is assured by Proposition 2.4.
Now we are going to show

ZEPHYHQQ < +o00, (19)

n=1

which will imply (17). Notice that

1
2 _
Ez, Y = — > Ep XX,
1<u,v<n
By Lemma 2.1, we have Ep, X, X, # 0 only if i(u) = i(v). So

EpY?= > Y EpX.X,

i<n,qfi u,vEN;(n)
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By (2) of Lemma 2.2, we can rewrite the above sum as

[log, 7]
Ep,Y? = Z Z > Ep, XX, (20)
k <Z< " uweN;(n)
qﬁ
Recall that Ep, X, = E,Fj, for all £ € N* (Lemma 2.3). For u,v €
Ai(n), we write u = i¢?* and v = ig’? with 0 < j;, jo < #A;(n). By the
Cauchy-Schwarz inequality and the hypothesis (16), we obtain

[Ee, XX, | < VEFZVEF} < O
This estimate holds for all u,v € A;(n). So
S [Ee, XuXo| < C (8A(n))2 N0,
u,UGAZ’(n)

Substituting this estimate into (20) and using (1) of Lemma 2.2, we
get

logq n| o |log, 7]
|Ep, Y2 Z Z k%’ﬂzﬁ > Kn*N(n,q,k),
k<z< k=1

qﬁ

where N(n,q, k) appeared in Lemma 2.2. Then by (3) of Lemma 2.2,
the last term is equivalent to

log, n] log, n
Clg—1) k" NG —1/2—¢
— 2 w05l =0 (n™'"™)
k=1
for some € > 0. This implies (19). O

2.3. A special LLN. When, in the LLN (Theorem 2.5), the functions
(F};); are all the same function F, then we have the following special
LLN.

Theorem 2.6. Let i be any probability measure p on 3, and let F' €
F(SY). ForP, a.e. x € %, we have

Jim =D Flan - aige) = (0717 3 57 D BuF (@) s yae).
k=1 k=1

e
—

<.
Il
o

Proof. For any integer k we write k = i(k)q’ with ¢ 1 i(k). Then we
define a function Fj by

Fy(z) = Flaj,- -+ Tjpem)-
Therefore we can re-write

F(fL‘k, :kaq’ . ’ajqufl) = Fk(l‘lAi(ls) )
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By the law of large numbers, for P, a.e. x € X, we have

,}EEMZFk Ings —J;%;ZE Filz

if the limit in the right hand side exists. The limit does exists. In fact,
by (2) of Lemma 2.2, we have

logq n| A (n)—

2 Euli(@) = ) Z Z Bl (@
k=1

k <z< 1
qﬁ

By the definition of the sequence (F}), for any k = i¢’ with ¢ f i we
have

By Figi () = By F (25, -+ ),
which is independent of ?. Combining the last two equations, we get

[log, 7] k—1

ZEﬂFk<x> = Z N(”u q, k) ZEﬂF<xj7 e 7xj+5*1)7
k=1

k=1 §=0

where N (n,q, k) appeared in Lemma 2.2. Then, by (3) of Lemma 2.2,
we get

1 [logy ) N(n, q, k) k—1
lim =% E,F(e) = lim Y 20y B F(a, Te)
s k=1 n =0
[%S) 1 k—1
= (=Y 5 D EuF(z5, 2jpe).
k=1 q 7=0

3. DIMENSIONS OF TELESCOPIC PRODUCT MEASURES

Let v be a measure on ¥,,. The lower local dimension of v at a point
r € 3, is defined as

D(v,x) := liminf M.
n—o00 n

Similarly, we can define the upper local dimension D(v, x). If D(v, ) =
D(v, ), we write D(v,z) for the common value and we say that v
admits D(v,x) as the exact local dimension at z. See [8] for the di-
mensions of measures. Recall that the Hausdorff dimension of a Borel
measure v, denoted by dimy v, is the minimal dimension of Borel sets
of full measure and is equal to ess sup, D(v, z) ([8]).
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In this section, as a consequence of the LLN, we will prove that
every telescopic product measure PP, admits its exact local dimension
for P,-a.e. point in X,,, which is a constant.

3.1. Local dimension of telescopic product measures. For a mea-
sure 1 on X, and for k£ > 1, we define

Hi(p) == Y pllar---ax))log p(lay - - ax).

ai,,ag
We note that for a probability measure p we have 0 < Hy(p) < klogm.

Theorem 3.1. For P,-a.e. x € X,,, we have

D(]P)M,ZL‘) — (q — 1)2 i Hk(:“)

logm gk

Proof. By the definition of P, we have

[log, ]
logP,([27]) = Y log pu([z} |, (m)] Z > log ([ asm))-
i<n,qfi = k<2< k T
qﬁ
(21)
Recall that o7|x,(n) = TiTigTiq2 - - * Tjgeri—1. SO

(27 [am)]) = pl[mimigTige - - - wigeni—1]).
Let us write p([27|a,n)]) in the following way

A —1

i(n)]) x’ H lzgx[xxquxlq : ;qui]l%)

p([x}

Now we define a suitable sequence of functions (Fj)r>1 on %, in order
to express pu([2]|a,(n)]). If & =i such that ¢ { i, we define

Fy(z) = Fi(z) = —log p1([o]).
If k =1i¢’ with qf¢ and j > 1, we define
N([xm T 7xj])
p([wo, w1, - - - 75703‘—1])
Then, we have the following relationship between Fj, and pu.

k‘EAi (n)

Fy(z) = Figi(z) = —log

Substituting this expression into (21) we obtain

—log P, ( Z Fi(a),,,). (22)
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Now we check that the sequence (F})g>; verifies the hypothesis (16) of
the law of large numbers (Theorem 2.5). Notice that for any = € 3,
and any j > 1, we have
@FF illey, 21, 2,35
M([:Lbu Ly x_] 1]
This is because logg < log% when 0 <z <y < 1. So, for any 7 € N*
with ¢ 17 and 7 > 0, we have
2 2
Eu (quf(x)) < Z M(["L‘O’xla"' 7xj]) (10gﬂ([$079€1>"' ,:L‘j])) :

x0, ;€S

| Fos

1q7

qumme7MW

Then by Lemma 3.3 stated below, we obtain
2 .
E, (Figi (2))” = O(5%)
which implies through Cauchy-Schwarz inequality
E }Fqu quQ } - jl +,]2 )

This quadratic estimate is more than the exponential estimate required
by the hypothesis (16). By the law of large numbers, we have

1 1 <
D(P,, ) = ; lim—ZFj——hm ZEF P,—a.e.

0g 1M n—>00 N < logmn—>oon
]:

(23)
if the limit in the right side hand exists.
This limit does exist. We are going to compute it. By (2) of Lemma
2.2, we have

[log, ]

ZE Fy = Z > ZE i (24)

k<z< k 1 7=0
qﬁ

By the definition of the sequence (Fj)r>1, we have

> Fuslw) = = log pu([o, -+ 1))

which implies immediately
k—1
N E.Fy = ~Eulog (o w5-]) = Hi(p).

J=0

Then substituting this into (24) we get

. llog, n) llog, 7
k=1 k<z< k=1

qﬁ
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where N(n, g, k) is the number of i’s such that 7 <i < 7 and ¢ 1.
So, by (3) of Lemma 2.2, we obtain

[logy n

1 1 - : N’I’I,, 7k - H
tin =S B A=t S S ) - o1y T <o
k=1 k=1 k=1

O

Remark 3.2. Fven if the measure p itself is not exact dimensional the
telescopic measure P, is. This is because the P,-measure of a cylinder
of length N is governed by the measure p on short pieces A;(N) while
the non-exactness of p can be seen only on long cylinders. These short
pieces are independent.

3.2. An elementary inequality. In the last proof we have used the
following elementary estimation. For n > 1, let

i=1

be the set of probability vectors. We define L,, : P, — R by
L (p) = Zpi(logpi)2'
i=1

Lemma 3.3. There exists a constant D > 0 such that

max L, (p) < (logn)? + Dlogn.

PEPn
Proof. The function z +— x(logz)? is bounded on [0,1] and attains
its maximal values 4e=2 at x = e~2. Hence the inequality holds for
n = 2 with D = 8¢~2. Now we prove the inequality by induction on
n. Suppose that the inequality holds for n < N. Let p € Py,1 be a
maximal point of Ly,;. If p is on the boundary of Py, then there

exists at least one component p;, of p such that p;, = 0. So

Lnii(p) = Z pi(logpi)Q = LN(pI)

1<i<N+1,iig

where p' = (p1, -, Dig—1, Dio+1," * * s PN+1) 1S in Py. In this case, we
can conclude by the hypothesis of induction. Now we suppose that
p is not on the boundary of Pyy;. We use the method of Lagrange
multiplier. Differentiating Ly 1 (p) yields
aLNJrl o 2 .
Tm@) = (logpi)* +2logp;, (1<i<N+1).

So we have

(logpi)? +2logp; = A, (1<i<N+1) (25)
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for some real number \. Let a,b be the two solutions of the equation

(logx)* +2logx = .

The components of the maximal point p = (p1,---,pn+1) have two
choices: a or b. So
Ly 41(p) = ka(loga)® + (N + 1 — k)b(log b)*, (26)

where k (0 < k < N +1) is the number of a’s taken by the components
of p. Recall that ka+ (N + 1 — k)b = 1. Notice that

ka(log a)? = ka(log ka—log k)? = ka(log ka)?+ka(log k)?—2ka(log ka) log k.
(27)

Since max,ejo1] —x logr = % and max,ep1) z(logz)? = ;%, we get

4 2 4 2
ka(loga)? < — +ka(log k) +=loghk < —2+k:a(log(N+1))2+— log(N+1).
e e e e

A similar estimate holds for (N+1—Fk)b(log b)%. Put these two estimates
into (26), we get

8 4
Pnii(p) < 2 + (log(N +1))* + - log(N +1).

We conclude that the inequality holds with D = & + 2. O

4. NON-LINEAR TRANSFER EQUATION

Our study of A,¢(z) will depend upon a class of special telescopic
product measures P, where y1 is a (¢ —1)-Markov measure. Our (¢—1)-
Markov measures are nothing but Markov measures with S¢ as state
space. The transition probability of such a (¢ — 1)-Markov measure
will be determined by the solution of a non-linear transfer equation.
In this section, we will study this non-linear transfer equation, find its
positive solution and construct the (¢ — 1)-Markov measure and the
corresponding telescopic product measure.

4.1. Non-linear transfer equation. Let F(S*~! R") denote the cone
of functions defined on S*~! taking non-negative real values. It is iden-
tified with a subset in the Euclidean space R™ ", Let A: 5% — RT be
a given function. We define a non-linear operator A" : F(S*~ 1, R*) —
F(S“LRT) by

q
Ny(ar, ag, -+ ;a1) = (Z Alar, az, -+ a1, jy(as, - ,ae—l,j)> .
jes

(28)

We are interested in positive fixed points of the operator N. That
means we are interested in y € F(S* !, R*Y) such that Ny = y and
y(a) > 0 for all a € S*~1. In general, such fixed points of N' may not
exist. If N admits a positive fixed point, then for each (ay, -+ ,a_1) €
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S~1 there exists at least one j € S such that A(ay,---,ap_1,J) is
strictly positive. In fact, this is also a sufficient condition.

Theorem 4.1. Suppose that A is non-negative and that for every
(ay,--- ,ap_1) € S there exists at least one j € S such that A(ay, - - ,
ar_1,7) > 0. Then N has a unique positive fized point.

Proof. We define a partial order on F(S*~1,RT), denoted by <, as
follows:
y1 <y & yi(a) < yola), Vae SN

It is obvious that N is increasing with respect to this partial order, i.e.,

Y1 <o = N(y) < N(ya).

Uniqueness. We first prove the uniqueness of the positive fixed point
by contradiction. Suppose that there are two distinct positive fixed
points y; and y, for N'. Without loss of generality we can suppose that

Y1 ﬁ yo. Let
§ =inf{y > 1, y1 <y}
It is clear that £ is a well defined real number and y; < £y,. Since
Y1 £ Yo, we must have £ > 1. On the other hand, by the definition of
N, the operator A is homogeneous in the sense that
N(cy) = ciN(y), Vy € F(S“ 1 RY), Ve € RT.

It follows that

1 1

y1 = N(y1) S N(Eya) = EN(y2) = 1y

This is a contradiction to the minimality of £ for & < €.
Ezistence. Now we prove the existence. Let

0, = ((Ilrelg}A(a)) , 0y = (m Iaréz?l;A(a)) .

Consider the restriction of N on the compact set F(S*~1, [0y, 6,]) con-
sisting of functions on S*~! taking values in [0y, 6,]. By the definitions
of 0, and 6y, the compact set F(S*~1, [y, 0,]) is N-invariant, i.e.,

N (F(S,[61,65))) € F(S1, 61, 62)).
In fact, let y € F(S*71[0;,65]) and let y;, = min;y;. Then y;, > 6,
and A(a, jo) > 097" for all a € S, so that
Ny(a) > (A(a, jo)y;,) " = 61.

The verification of N'y(a) < 6, is even easier.
Now take any function g, from the compact set F(S*71, [0, 05]). By
the monotonicity of A/, we get an increasing sequence

Yo < N(yo) S N?(yo) < -+ .
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Since F(S*71, [0, 6,]) is compact, the limit g = lim,,_,oo N™ (1) exists.
It is a fixed point of N. O

From now on, we concentrate on the following special case:
Ala) = e (a € 89
where s € R is a parameter. The corresponding operator will be de-
noted by N,. By Theorem 4.1, there exists a unique positive fixed

point for N,. We denote this fixed point by 1. In the following, we
are going to study the analyticity and the convexity of the functions

5 tala).
4.2. Analyticity of s — ¢s(a).

Proposition 4.2. For every a € S, the function s — 4(a) is
analytic on R.

Proof. We consider the map G : R X Rj’”hl — R™" defined by
G(s, (2a)aes—1) = (Gu(s, (2a)aest=1))pese-1

where

— .1 _ E s@(br,+,be—1,7) :
G(blv"'ybl71)<87 (Za>a€S€—l) - z(bl,---,bgfl) € z(b27"'7bZ717])'
JjeS

It is clear that G is analytic. By Theorem 4.1, we have
G (s, (¢s(a))aesr-1) = 0.

Moreover the uniqueness in Theorem 4.1 implies that for any fixed
s € R, (1s(a))qese-1 is the unique positive vector satisfying the above
equation. For practice, in the following we will write ¢; = (¢s(a))q4ege-1
and z = (24)gegt-1-

By the implicit function theorem, if the Jacobian matrix

0G,
D) = (G260
b (a,b)eS?—1x§0-1
is invertible on a point sy € R, then there exist a neighbourhood (sy —
70,50 + 7o) of s, a neighbourhood V' of 1 in R™ ™" and a analytic
function f on (sg — 7o, So + 70) taking values in V' such that for any
(t,z) C (so — o, S0 + 19) X V', we have
G(t,z) =0 & f(t)=z

Then by the uniqueness of 9, for fixed s, we have ¢, = f(t). So the
functions s — v4(a) (a € S*1), which are coordinate functions of f,
are analytic in (sg — 79, So + 70)-

We now prove that the matrix D(s) is invertible for any s € R. To
this end, we consider the following matrix

Do) = (025,00 ,

(a,b)eSt—1x 501
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which is the one obtained by multiplying the b-th column of D(s) by
1s(b) for each b € S*"!. Then we have the following relation between
the determinants of D(s) and D(s):

det(D (st )det D(s)).

a€St-1

So we only need to prove that lN)(s) is invertible. We will prove this
by showing that D(s) is strictly diagonal dominating and by applying
the Gershgorin circle theorem (also called Levy-Desplanques Theorem)
(see e.g. [24]). Recall that a matrix is said to be strictly diagonal
dominating if for every row of the matrix, the modulus of the diagonal
entry in the row is strictly larger than the sum of the modulus of all
the other (non-diagonal) entries in that row.

Let a = (ay,--- ,ap—1) be fixed. The function G,(s,-) depends only

on z, and z,’s with b = (ag, -+ ,a_1,7). So

0G,

s 0

S5, ) 7
only if b = a or b = (ag, -+ ,as_1,j) for some j € S. It is possible
that a = (ag, -+ ,as_1,7) for some j € S and it is actually the case if
and only if @ = (j,7,---, 7). To effectively apply the implicit function
theorem, we only need to show that for any a = (ay,- - ,a,_1), we have

0G,
O et SO D DR ) < )| >0, (29)

JES,
b=(az,,ar_1,j)#a

In fact, we have

8Ga(8 0,) = q?a) — ese@d)  if q = (j,---,j) for some j € S,
0z, = W7 Y a) otherwise.

and for b = (ag, -+ ,a,-1,7) # a, we have

oG,
82’1)

(57%) — eselad)

Then, substituting the last two expressions into (29), we obtain that
the member at the left hand side of (29) is equal to

qlpq Zew a'] ws ag, - - 7(1@717‘7’) = (q - 1)'1/12(@) > O
jeSs

For the last equality we have used the fact that 1, is the solution of
Nas = ¢s. O]
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Our function v, is defined on S*~!. We extend it on S* for all
1 < k < /¢ —2 by induction on k as follows

¥s(a) = <Z ¢s<a,j>> | (Vaesh.

JjeS
It is clear that all these functions 1, are strictly positive for all s € R.

Corollary 4.3. For any a € J,c,<, , S*, the function s — 1bg(a) is
analytic on R. o

4.3. Convexity of s — 1)4(a). In this subsection, we prove that the
functions s — 1s(a) for a € U;p<p S* and the pressure function

P,

»(s) are convex functions on R.
The following lemma is nothing but the Cauchy-Schwarz inequality.
We will use it in this form several times in the proof of the convexity.

Lemma 4.4. Let (a;)7" and (b;)75" be two sequences of non-negative
real numbers. Then

(Sen) = (o) (£0)

Proof. We write a;b; = ,/a;b; - \/a; and then use the Cauchy-Schwarz
inequality:. O

1
Let 0] = (minaesz 63“’(“)) 7= In the proof of Theorem 4.1, we have
shown that

ws = lim jv::%ﬁ)v

n—oo

where 65 the function on S*~! which is constantly equal to ;. By the
definition of N, it is obvious that

LA
N2(85) = (07)7 N (1),
where 1 is the function constantly equal to 1. However, for any s € R,
1
we have lim,,_,(07)«" = 1, so that

s = lim N'(1).

n—oo

The above convergence is actually uniform for s in any compact set of
R. Let

ws,n = JV‘:(l)
In order to prove convexity of the functions

s (), logd (b, ), (a8 be s

jes
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we have only to show those of
s = Ysnla), logz Ysn(, 7).
JjeS
Actually we will make a proof by induction on n.

Recall that a function H of class C? is convex if H” > 0. A function
H of class C? is log-convex if log H is convex or equivalently H"”H >

(H').
First we have the following initiation of the induction.

Lemma 4.5. For any a € S* %, the function s — L,1(a) is log-conver.

Proof. The log-convexity of s — L 1(a) is equivalent to
(LsL(@)? < (£:1(a)"(LL(a)).
Recall the definition of L£41(a):
Ll(a) = Z ¢T3,
jes
Notice that
(esap(a,b))/ _ esap(a,b)()O(a’ b), (ew(a,b))” _ esap(a,b)()OQ(a’ b).

Then log-convexity of s — L¢1(a) is equivalent to

2
(Z 0T o(Tq, j)> < (Z ¢#¢(Ted) (T, j)z> (Z esso(Ta,j)> _

j€S jes jes
This is nothing but the Cauchy-Schwarz inequality (see Lemma 4.4).
O

The induction will be based on the following recursive relation

VYsmi1(a) = Ngbs n(a), equivalently (¢ ,11(a))? = Lsthsn(a).

We are going to show that if s — L), ,,(a) is log-convex, then so is
s Lsthsni1(a) and even s — Ny, (a) = s 11(a) is convex and

Z ws,nJrl <b7 .7)
JjeS

is log-convex.

Lemma 4.6. Let (uy)ser be a family of functions in F(S*1). We
suppose that for a € S*=1, s +— uy(a) is twice differentiable with respect
to s € R. Let

vs(a) = Nyus(a).
Suppose that for any a € S*t, s+ Lou,(a) is log-convex. Then
(1) For all a € S*7', s — vy(a) is convex.
(2) For allb € S*2%, s+ > ies Vs(b,J) is log-conver.
(3) For alla € S*!, s+ Lv,(a) is log-conver.
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Proof. By the hypothesis, for each a € S*~1, the function s — L u,(a)
is log-convex. That is to say, if we let Hy(a) = Lsus(a), we have

H(a)H,(a) = (H\(a))’, (30)

/

where, as well as in the following,  and ” will refer to the derivatives

with respect to s.
(1) Since v(a) = (Hy(a))"?, we have

(0s(a))’ = $<Hs<a>>%1H;<a>.
In other words,
(0:(a))’ = va(a) Rula) (31)
with . H’(a)
Bl = )

(Hy(a))s " H!(a)

=

(Hy(a)s*[Hl(a)]? + §<Hs<a>>32[Hs<a>H§<a> — (H!(a))?).

By the hypothesis (30), (vs(a))” > 0. Thus we have proved (1). The
last equality implies

(0:(@)" > —

qQ(Hs(a))r [Hi(a)]".

In other words,
(vs(a))” 2 va(a)[Rs(a)]". (32)
The relations (31) and (32) will be useful later.
(2) By (32), we have

(Z Us b j ) (ZUS b ] ) Z (sz<b7]>Rs<b7]>2> (sz(buj)> .
jeSs JES JjES JES

Then, by the Cauchy-Schwarz inequality in the form of Lemma 4.4, we
have

(Z(%(M))”) <sz<b,j>> > (sz(b,jms(b,j))

JES JjES JES
- (Z@S(b,m')
jeS

where the last equality is due to (31). Thus we have proved (2).
(3) Recall that

Los(a Z e?TeDy (Ta, 7).

jeSs
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Notice that
%es“’(“’b)vs(Ta, 7)
= %99 [(a, j)u,(Ta,b) + (v,(Ta, )
%es“’(a’b)vs(Ta, 7)
= @I [p*(a, j)vs(Ta, j) + 2¢(a, ) (vs(Ta, j)) + (v(Ta, §))"] .
By using (31), we can write
d

ds
By using (31) and (32), we get

P*(a, j)vs(Ta, j)+2p(a, j)(vs(Ta, ) +(v(Ta, 7)) = [o(a, ) + Ry(Ta, )],

/

— ey (Ta, j) = e (Ta, j) [p(a, j) + Rs(Ta, j)] .

so that
d? » 9
ey (Ta,j) = v, (Ta, j) [p(a, ) + Ro(Ta, )]
There
(Lsvs(a))"Lovs(a <ZC (Ta,j)D ) (ZC a,j )
Jjes JjeS
where

Cs<a7.j) = esw(aJ)US(Taaj)a Ds(avj) = QO(CL,]) + RS(Ta7j>'
Then, by the Cauchy inequality (see Lemma 4.4), we finally get

(Lsvs(a))"Lsvs(a (ZC a,j)D )) = [(Lsvs(a))P.

JjeS

That is the log-convexity of s +— Lgvs(a). O

Theorem 4.7. For any a € U, S, the function s — s(a) is
convex. The pressure function P,(s) is also conveu.

Proof. We prove convexity of s — 14(a) for a € S*~! by showing those
of s — 1, ,(a) by induction on n. The induction is based on Lemma 4.5
and Lemma 4.6 (only the points (1) and (3) are used).

Now we prove convexity of s — ,(a) for a € S“% (2 < k < ()
by induction on k and by using what we have just proved above (as
the initiation of induction). We can do that because of the following
recursive relation: for a € S*7% (2 < k < /), we have

ws(a)q = Zws<a7j>'
jes
The right hand side is the operator L, defined by the ¢ which is
identically zero. So the log-convexity of 14(a, j) implies that of 14(a)
just as the log-convexity of v, implies that of ¢, ,11(a).
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Recall that the pressure function is proportional to

s+ log1h,(0) = log > 1),(j).
jes
The convexity of the pressure is just the log-convexity of Zje sUs(J),
which is implied by Lemma 4.6 (3) and the log-convexity of 14(j). O

4.4. Construction of the measures j;; and P,,. Below we construct
a class of (£ — 1)-Markov measure us whose transition probability and
initial law are determined by the fixed point 1), of the operator N.
The corresponding telescopic product measure P, will play the same
role as Gibbs measure played in the study of simple ergodic averages.

Fix s € R. Let 9, be the function mentioned above. Recall that
was first defined on S*~! as follows

(s(@)” =Y eI (Ta,b), (a€ 5.
besS

Then it was extended on S* by induction on 1 < k < ¢ — 2 as follows

Vi(a) = <Z vu(a, b)) | esh)

bes

These functions defined on words of length varying from 1 to ¢ — 1
allow us to define a (¢ — 1)-step Markov measure on %,,, which will be
denoted by g, with the initial law

mo(lay, -, ap1]) = H s(ar, -+, a )

—1
33
o 0 )

and the transition probability
e e — pswlar,ap) bs(ag, -+ s ar) 34
Qs([ala 701[,1],[012, 7af]) € ?/}g(a,l,"' ,a,g_l). ( )

Here we have identified 3, with (S*~1)N. Actually, 7, is a probability

vector because
Z s<a1’...’aj) 1
Levilan a5
and @ is a transition probability because N, = 1.
As usual, P, will denote the telescopic product measure associated
to ps. See §2.1 for its definition and its general properties.

5. PROPERTIES OF THE PRESSURE FUNCTION

We have seen in the previous section that the pressure function is
real analytic and convex on R. In this section we continue to discuss
some of its further properties. These properties mainly concern its
strict convexity when oy, < amax and a Ruelle type formula relating
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the expected limit of the multiple ergodic average with respect to the
measure [P, and the derivative of P,.

5.1. Ruelle type formula. We state here the following identity which
can be regarded as an analogue of Ruelle’s derivative formula concern-
ing the classical Gibbs measure and pressure function, its proof will be
given in Section 7.4 (Proposition 7.8).

Theorem 5.1. We have

o0

ko1
1
(q—1)*> =) > Eup(aj e wiper) = P(s).
k=1 =0

As an applications of Theorem 5.1, we give the following formula
concerning the value P (0).

Proposition 5.2.

Zaesf cp(a) .

P;,(O) - me
Proof. By Theorem 5.1, we have
o) 1 k—1
PL0)=(q—1)*> ] Euop(2), -+ Tjge—1)- (35)
k=1 =0

First of all, we need to determine pg. It is straightforward to verify

that the constant function ¢y = mae7 is a solution of the following
equations when s = 0.

(s(a)? = ey (Ta,b), (ac ).
beS

Actually, the function 1), is the only positive solution by uniqueness of
the positive solution (Theorem 4.1). The measure po defined by this
solution as in (33) and (34) is the Lebesgue measure. So, for any j > 0
we have

Eﬂogo(a:j, o ’x”g’l) - Z NO([%HA])SO(%’ s 7$Uj+571)

L0y Tj+l—1

= > m (e, gyae)

L0y T j4+l—1

= > mp(we, e we)

ZO, 5 Te—1

Zaesf (p(a’) .

mt

Now we get the desired result by substituting the above expression
in (35) and by an elementary calculation. O
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5.2. Translation via linearity.
Theorem 5.3. For any B € R, we have
Py(s) = Bs = Pys(s),
where P,_g(s) is the pressure function associated to the potential ¢ —f3.
Proof. Let N,_g s be the operator as defined in (28) with
Ala) = ¥ D= (g€ §Y).

By Theorem 4.1, the operator N,_s s admits a unique positive fixed
function g, € F(S*!). We have seen that g, is given by

gs = nlggo'/\/:;b—ﬁﬁ(l)
By the definitions of A and /\/:p_ﬁ,s, it is obvious that
_sB
No-ps =€~ N;.
By induction we get that
N = PN,
Thus

gy = lim N7 (1) = e PEmamly, = ematry,.

n—oo

Since for u € (J;cpcp_y S", gs(u) is defined by

gs(u) = ( ‘ gs(”a])) q )

we deduce that for u € S* with 1 < k < ¢ — 2 we have

gs(u) = € @I 4, ().

3

I
=)

Thus )
Pso—ﬁ(s) = (q - 1)9672 log Z gS(j) = —s0+ P¢(s).
§=0
]
Remark 5.4. Note that when 5 = qupipn (Tesp. B = Qunaz), the function

S — ./V;%g’s

is increasing (resp. decreasing). Then in this case, the function s — g
is also increasing (resp. decreasing) and so is the pressure function
s P,_a(s).

As an application of Theorem 5.3 and Remark 5.4 we have the fol-
lowing consequence.

Proposition 5.5. If s — P/(s) is constant on R, then ¢ is constant
on S*.
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Proof. Suppose that P is constant on R. Then

Daest Pla)
P(s) = P,(0) = GST =P.
By Theorem 5.3, we have
Fy(s) =@ + Poz(s).
The last two equations imply that
P, 4(s)=0.

This is equivalent to that
m—1
> _9) =0, (36)
=0

where g, is the positive fixed point of N,_5s. By Theorem 4.7, the
function s +— g is convex, so g¢.(j) is increasing for all 7 € S. This,
with (36) imply that g.(j) is constant for all j € S. So for every j the
function gs(j) is affine. But these functions are strictly positive on R,
they are therefore necessarily constant on R. So

g.(j)=0, Vjes.

For u € U, o<4_9, 9s(u) is defined by the following inductive relation.

gs(u)qzz_:gs(uj), we |J Sh

1<k<f—2

Differentiating these equations, we get

m—1
q9¢  (w)gh(u) =) gi(uj), ve [J S~
=0

1<k<t—2

For any i € S, since ¢.(i) = 0, we get

m—1
> giij) = 0.
=0

With the same argument used for proving that g,(7) is constant for all
j € S, we can also prove that g,(ij) is constant for all (i,5) € S?. By
induction, we can show that g,(u) are constant for all u € (J;,<,_; S*.

By the definition of g, for u € S*~!, we have

m—1

glu) = Y eIy (Tu, j). (37)

=0

We now suppose that ¢ is not constant on Sf, i.e., Omin < Qmax. Then
there exists a € S* such that

p(a) >p.
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Let us write a = (u, j) with u € S*~! and j € S. By (37), we have
gi(u) > ¥ P)g (Tu, j), Vs € R.

As g5(u) and gs(Tu, j) are strictly positive constants, this is impossible
when s tend to +o0o. Then we conclude that ¢ is constant on S*. [

5.3. Strict convexity of the pressure function.

Theorem 5.6. Suppose that aumin < Qumax. Then
(i) P(s) is strictly increasing on R.
(i) amin < P(—00) < P)(400) < af

max*

Proof. (i) P(s) is strictly increasing on R. We know that P is in-
creasing on R as P, is convex on R. Suppose that P; is not strictly
increasing on R. Then there exists an interval [a,b] with a < b such
that P is constant on [a,b]. On the other hand, we know that P, is
analytic and so is P,. Therefore P must be constant on the whole
line R. It is impossible by Proposition 5.5 as ¢ is supposed to be no
constant on S°.

(i) omin < P;(—oo) < P;(Jroo) < Qmax. The strict inequality
P (—00) < PJ(+00) is implied by (i). Let us prove the first inequality.
The third inequality can be similarly proved. By Theorem 5.3, we have

PLP<S> = OminS _'_ P@*amin (8)

By Remark 5.4, the function s — P,_, . (s) is increasing. Thus we
have
/ o /
PSO(S) = Omin + P@—amin(s) Z Qmin
which holds for all s € R. Letting s — —o0, we get
Qmin S P;(—OO)
O

To finish this section, we announce the following results concerning
the extremal values of P;v at infinite. Its proof will be given in Section
7.5.

Theorem 5.7. We have the equality
/
P (—00) = min
if and only if there exists an x = (x;)32, € ¥, such that
@(xku xk+17 to 7‘rk+571> = Opin, Vk Z 1
We have an analogue criterion for P)(4+00) = max.

Remark 5.8. We have a proof of three pages by combinatorially an-
alyzing P,. But we would like to give another proof in Section 7.5
(see Proposition 7.9), which is shorter, more intuitive and easier to
understand.
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6. GIBBS PROPERTY OF P,

In the following we are going to establish a relation between the mass
P, ([z}]) and the multiple ergodic sum Z}]:1 @(xj - jpe-1). This can
be regarded as the Gibbs property of the measure P,

6.1. Dependence of the Local behavior of P,, on ¢(x; - -x;.-1).

There is an explicit relation between the mass P, ([z}]) and the mul-

L7
tiple ergodic sum %, ! @(;- - xj,0-1). Before stating this relation,

we introduce some notatlon
Recall that for any integer £ € N* we denote by i(k) the unique

integer such that
k=ik)¢d, qti(k).
We associate to k a finite set of integers A\, defined by
o o {00} it <o
{i(k)g?—(= 1> (k)@Y if § >0 1.
We define A\, to be the empty set if « is not an integer. For any
sequence r = ()%, € %,,, we denote by x|, the restriction of = on

A

For xz € ¥,,, we define

T) = Z ¢S(x|)\j)'

The following basic formula is a consequence of the definitions of
and P,
Proposition 6.1. We have
7]
log Py, ([#7]) = 5 > (- wjpe1)—(n—[n/q])qlog ,(0)—qBx (x)+Ba(x).

j=1
Proof. By the definition of P, , we have
log Py, ([27]) = ) log pa([27|a,m))- (38)

qti,i<n
However, by the definition of uy, if §A;(n) < ¢ — 1, we have
Ai(n)

1/15 Liyeoy qu L)\ )
log pus([x n) log ———
ps([27 | asm)] Z % T Z %(

=0 Ligi= 1 keniin) ‘Ak/ )
(39)
If 2Ai(n) > £, log us([sc?lA, ]) is equal to
622 lOg ws<l’i’ e qu _'_ Ai(n)—1 Zq] o, ZL‘iqj)GSLp(xiqj7Z+1"" ’xiqj)

wg(azi, s SL’qu 1 Pt wg(xij_m, cee ,:L’iqul)
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()1 il ()1
log —7—" i) +s O(Tigi—er1,++  Tigs ),

in other words,

HEANSIENY 10g ) > ele,).  (0)

ke, (n) |X§) ke, (n),k<n
Substituting (39) and (40) into (38), we get
log P, ([27]) = 5, + 55" (41)

where

=2 Zlog

gti,i<n k€A (n) LI %
Si= . 2 el
qti,i<n keA;(n),k<n

For any fixed ¢ with ¢ 1 ¢, we write

Z log Ik’“ Z log 1( xh —q Z log 1)s( xh

ke ( M ke ( keAi(n)

Recall that if we denote jo = Uogq 2| the largest integer such that
1¢7° < n, then

Ai(n) = {i,iq,iq*, - -- ,ig"}.
If & =4, we have zj), = 0. If k = i¢g’ with 1 < j < jy, we have
k/q = i¢?~! which belongs to A;(n). In the following we formally write

ANi(n/q) = {iigig®, -+ g~}
Then we can Write
x|, )
> log e () ¥ il malosti O T o)
keA;(n) % kEAi(%) keAi(n),kg>n

Notice that there is only one term in the last sum, which corresponds
to k = ig’. Now we take sum over i to get

l—q Zws l‘hk n—[n/q 10g’¢)s@ +Zw5 xhk

k<" k>f

because §{i <mn,q{i} =n— |n/q| and

Do wnlan,) =Y wila,),

i<n.qfi keA;(2) k<n

Z Z wS('rm) = Zwscvhk)'

i<n,qti kEA;(n),kg>n k>§
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Recall that B, (v) =37, @Z)S(xhj). We can rewrite

(L=q) Y wsla )+ Y vslay) = —a) wl,,) + Y vl

k<2 k> k<2 k<n
= —qBx(x) + By(x).
Thus
Sy, = —a(n — |n/q))logs(0) — qBx (z) + By(x).
On the other hand, we have

qZI

S;:: Z Z Sp(xhljzz x|/\,C = Z oz qt- 1)

gti,i<n  keA;(n),k<n k<n

Substituting these expressions of S], and S) into (41), we get the desired
result. U

7. PROOF OF THEOREM 1.1: COMPUTATION OF dimpy E(«)

We will use the measure P, to estimate the dimensions of levels sets
E(c). Actually, for a given «, there is some s such that P, is a nice
Frostman type measure sitting on E(«). First of all, let us calculate
the local dimensions of P,

7.1. Upper bounds of local dimensions of P, on level sets. We
define

Et(a) = {:L’ € Y, 1 limsup — ng Thy Thg, -+ 5 Tpgt—1) < a} :

and

E () := {x €EXm hglorgfnzso Thy Thgy s Tgt—1) Za}.
=1
It is clear that
E(a) = Ef(a) N E ().
In this subsection we will obtain upper bounds for local dimensions

of P, on the sets E*(«) and E~ (). The following elementary result
will be useful for the estimation of local dimensions of P,

Lemma 7.1. Let (a,)n>1 be a bounded sequence of non-negative real
numbers. Then

hmlnf( A|n/q| — an) <0.

n— o0
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Proof. Let by = ag-1 —ay = ay —agy for [ € N*. Then the boundedness

implies
ST § _
lim 2, %
l—o0 [ l—o0
This in turn implies liminf; .., b; < 0 so that
.. .
hlrgmf (aLn/qJ ) < hlrgglf b <0.

Proposition 7.2. For every x € E*(a), we have

P(s) —as
Vs <0, D(P < —
s> U, —( ;U's7'r)— qf—llogm
For every x € E~ (), we have
P(s) —as
Vs >0, D(P < —
S = ) —( ;U's7'r)— qf—llogm

Consequently, for every x € E(a), we have
P(s) —as
¢ tlogm’

Vs €R, D(P,.,z)<

s>

Proof. The proof is based on Proposition 6.1, which implies that for
any x € >, and any n > 1 we have

L[ 7J
1 P -
logPulei) _ s Z ) + " pog s 0

n

YR
3

Since the function v, is bounded, so is the sequence (B, (x)/n),. Then,
by Lemma 7.1, we have

lim inf —— — <0.

n—o0 — n
q

Therefore
[~

q

D(P,.,z) < liminf —— Z (- @j0e-1) + (g — 1) log,, ¥s(0).

n—oo  nlogm -
]:

Now suppose that x € E*(a) and s < 0. Since

P |-

1 «
i inf e 1) < N1 — e L) < ——
llnllﬁllorolf . E () - Ljger) < limsup 0 E () jqe-1) < ¢
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we have
L7 . L 71)
hrrlggolf—% ]Zl gp(xj .. .;L'jqz—l) = —Slirllggolfg jzl gp(xj .. -:L‘jqifl)
— s
< g
so that
s P(s) —as
D(P,.,7) < + (g~ 1)log, (0) = 2

¢t llogm g~ logm’

where the last equation is due to
P(s) = (g—1)¢"*log > 1(j) = (¢ — 1)g" *qlog (D).
jest
By an analogue argument, we can prove the same result for x €

E~(a) and s > 0. O

7.2. Range of L,. Recall that L, is the set of a such that E(«a) # 0.
Proposition 7.3. We have L, C [P,(—00), P (+00)].

Proof. We prove it by contradiction. Suppose that F(«a) # @) for some
a < P)(—00). Let x = (2;)72;, € E(a). Then by Proposition 7.2, we
have
hm lnf - logm PHS(['T?]> S P‘P(S) —Qas
n—00 n g~ 1logm

, Vs € R. (42)

On the other hand, by the mean value theorem, we have

P,(s) —as = Py(s) = P,(0) —as+ P,(0) = P(ns)s —as+ P,(0) (43)

for some real number 7, between 0 and s. As P, is convex, P is
increasing on R. If we assume s < 0, then we have

P/ (ns)s—as+P,(0) < P,(—00)s—as+P,(0) = (P,(—oc) — a) s+P,(0).

As P)(—00) —a > 0, we deduce from (43) that for s small enough
(close to —o0), we have P,(s) —as < 0. Then by (42), for s small
enough we obtain

hm lnf - 1Ogm PMS ([xl ])

n—oo n

<0

which implies P, ([z}]) > 1 for an infinite number of n’s. This is a
contradiction to the fact that P, is a probability measure on ¥,,. Thus
we have prove that for a such that E(«) # (), we have a > P’(—00).
Similarly we can also prove o < P’'(+00). O

As we shall show, we will have the equality L, = [P} (—00), P, (+00)].



36 Multifractal analysis of some multiple ergodic averages

7.3. Upper bounds of Hausdorff dimensions of level sets. A
upper bound of the Hausdorff dimensions of levels set is a direct conse-
quence of the Billingsley lemma and of Proposition 7.2. The Billingsley
lemma is stated as follows.

Lemma 7.4 (see Prop.4.9 in [7]). Let E be a Borel set in ¥, and let
v be a finite Borel measure on ¥,,.
(i) We have dimy (E) > d if v(E) > 0 and D(v,x) > d for v-a.e x.
(ii) We have dimy(FE) < d if D(v,x) < d for all z € E.
Recall that
P (a) = inf(P,(s) — as).

seR
Proposition 7.5. For any o € (P (—00), P,(0)), we have
1
~ -
dimyg B (o) < ;ggm[ as+ Py(s)]
For any o € (P)(0), P,(+00)), we have
. 1
dimyg B~ (o) < ;ggm[ as+ Py(s)]
In particular, we have
dimyy (o) < el
¢~ tlogm’

7.4. Ruelle type formula. This subsection is mainly devoted to prov-
ing the following identity which was announced in Theorem 5.1.

[%S) k—1
1
(q—1)*> sy D Euplag, - wipe1) = P(s).
k=1 =0

This formula will be useful for estimating the lower bounds of dimy E(«).
We need to do some preparations for proving this result. First of all,
we deduce some identities concerning the functions .
Recall that 1(a) are defined for a € |J, <, ; S*. They verify the

following equations. For a € S*~!, we have
Ia) = Z e*?( @) (Ta, b)
besS
and for a € S* (1 <k < ¢ —2) we have

= Zws(aa b)

bes

Differentiating the two sides of each of the above two equations with
respect to s, we get for all @ € S*!

i Zes“’“b a,b)s(Ta,b) —l—Zes“’“b (Ta,b)

beS bes
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and for all a € U, <, S*

qT (@) (a) = > i(a,b).

beS

Dividing these equations by 1?(a) (for different a respectively), we get

Lemma 7.6. For any a € S*1, we have

¢/( ) Z es@(a’b)(p(aa b)¢s (Ta7 b) + Z esw(a’b)@bg (Ta’a b)

44
“hla) T2 v P I
and for any a € U <p<p_» Sk
¥i(a) _ (e .
Tonla) ~ 2 ola )
We denote
A _ N @YY (Tab) ‘-
w(a) = wa) v(a) = 2 ) ,(Va € ).

Then we have the following identities.

Lemma 7.7. For any n € N, we have

E, oyt = B, w(@y™?) —E,u(2i?), (¥ >0).(46)

E, w(z™?) = E,o(!®), (vn>1). (47)
—2 . 1 / s

B, w(zi?) = q(q—l)P“’( ). (48)

Proof. The Markov property of us can be stated as follows (see(34))
qu n+l— 1]) ,Us([ n+0— 2])@5( n+0— 1)

where
n—+4— 1

e (a1

)i (at?)

Qs(xzq%fl) —
By the Markov property, we have
By = Y pell=gt ettt

Lo, 3 Tp4L—1
= Y w3 DD Qulat et
X0,y Tp4L—2 Tn4e—1

However, by the definition of Qs and using (44), it is straightforward
to check that

> Q) = qulay ) — ().
Tn4L—1

So (46) is a combination of the above two equations.
To obtain (47), we still use the Markov property of ps, to get
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E o) = Y pellag P w(an )

L0,y Tn4-£—2

n+[ 2

_ Dy () g )
= Z MS([ 0 ]) Z 1/15( n+€ 3> ws<xz+g,2>

L0,y Tn4L—3 Tn+0—2

=Y et ) = Bt ),

L0 yTn4L—3

Now let us treat (48). First of all, by the definition of w and p, we
get

=3 P,

Le—2

hence

E.wg?) = Y plleg *Dwlag™)

ZO, 3 Te—2
Z0,,Te—3 Tg—2

/23
wESS; So

w2 o—a V(g °)
Hs ( 0 ) q Z ,us([ ])ws(xé_g)

Repeating the same argument, we obtain by induction on j that

o o Us ()
E =2\ _ =2—j s J )/
usw(ffo ) =¢q m;gﬁjﬂ ([xO])@Ds(xé)

By (45), the last sum is equal to ¢

E

T, Te—3

So finally when j = 0 we get

K 2 ﬁ 2 8 b /— ZZbESw/(b) 1 /
Eus beZS MS b — 1 Zbes ws(b) Q(q - 1)P¢(5)

where we used the fact that

ua([8) = <22

Zbes 7/13 (b) .
0

Now, we can prove the Ruelle type formula which was announced in
Theorem 5.1. We restate it as the following proposition.
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Proposition 7.8. For any s € R, we have

00 k—
Z Z (g, wjpe1) = Pp(s).
k= =0

Proof. By (46) in Lemma 7.7, for any k € N*, we have

- k—1
S Bl wien) = 3 (aBw(@] ) — By (@] )
=0 =0
k-1
= qE, Jw(ay ™) + QZEusw e %)
j=1
k—1
IR
7=0
Let
k—1
Sk = ZEusv(ng_z).
=0
Then by (47) in Lemma 7.7, we have
k—1
ZEusw(xgjLZ*?) = Sk-1.
j=1

Using the above equality and (48) in Lemma 7.7, we can write

- Py(s)
Y Euplag, - aipe) = - Sk-
=0

The facts Sy = 0 and S = o(k) imply

— 1
> =7 (qSk-1 = Sk) = 0.

1 q*
Then
o k—1 >
) 1 Pl(s)
(q— 1) =} Ep ot 2ip0-1) = (¢ — 1)° Z gkl qso_ 1
k=1 Jj=0 h=

which is equal to P/ (s), because Y °, 1/¢"™ =1/(¢ —1). O
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7.5. When P;(—oo) = Qpin and when P;(Jroo) = Qax- We now
give the proof of the statement announced in Theorem 5.7 concerning
the extremal values of Pé, at infinity.

Theorem 7.9. We have the equality
P(—00) = amin
if and only if there exist an x = (x;)3°, € Xy, such that

@(xku xk+17 U 7xk+571> = Opin Vk Z 0

L , B
We have an analogue criterion for P)(+00) = max.

Proof. We give the proof of the criterion for P;(—oo) = Qmin, the one
for P (+00) = ampax is similar.

(1). Sufficient condition. Suppose that there exists a (z;)72, € X,
such that

QO(ZJ', T 7zj+€fl) = Qmin, VJ = 0.

We are going to prove that P (—00) = aumin. By Theorem 5.6 (ii), we
have P;(—oo) > Quin, thus we only need to show that P;(—oo) < Qpin-
Actually we only need to find a (7;)32, € ¥, such that

1
lim —
n—oo N

n
E SO('Ija 7"L‘jq[*1) = Qmin,
j=1

then by Proposition 7.3, amin € [P,(—00), P,(+00)], so P,(—0c0) <
tmin. We can do this by choosing the sequence ()72, = []i5 4u(%igr)720
with
(zig)i20 = (21)520

(2). Necessary condition. Suppose that there is no (7;)2, € X,

such that
§0($j7 e ’xj-i-f—l) = Omin, Vj > 0.
We are going to show that there exists an € > 0 such that
P;(s) > min + €, Vs € R.

And this will imply that P)(—00) > amin + €.
From the hypothesis, we deduce that there exist no words =
with n > m¢ such that

n+l—1
0

90(1‘]7 e 7xj+€—1) = Qnmin;, V0 S ] S n. (49)
Indeed, as :L’?Hfl € S’ for all 0 < j < n there are at most m’ choices
for :c?“fl. So for any word xS”’l with n > m’, there exist at least

two j1,72 € {0, ,n} such that

Jite=1 _  jat+l-—1

i =z

Then if the word :EgM_l satisfies (49), the infinite sequence

(yj)]o'io = ('r.ﬁ? e 7'rj2*1)oo

T
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would verify that

Sp(yja T ayj+€—1) = Omin; \V/j Z 0.

This is a contradicts the hypothesis. We conclude then that for any
word x{f -1 o gmf+l-1 there exists at lest one 0 < j < m’ such that

/
(g, Tjre-1) = Ohpin > Omin

where o/ . is the second smallest value of ¢ over S ie., o . =

mmaeS‘{SO( )+ pla) > amin}
We deduce from the above discussions that for any (r;)%2, € ¥, and
any k > 0 we have

k+m?®
Z (p(l'ja T 7xj+€—1) > m’ Qimin 1 amm - (mz + 1)amin +9,
ik
where we denote § = ., — Qmin. This implies that for any (z;)32, €

Ym and any n > 1, we have

n—1

Z SO('I]" T 7xj+€—1) 2> NQlyin + \‘ n J 0. (50)

‘
par mt+1

Now, we will use the above inequality and Proposition 7.8 to show the
existence of an € > 0 such that

/
Pw(s) > Omin + €, Vs € R.
By Proposition 7.8, we have

00 k—
Pg,o( q_ ]- Z Z "L‘ja"' 7xj+€—1)' (51)
k= =0

: k-1
We can rewrite the term » ;- E, (2, , 2j40-1) as

Eus Z (p(xja o 7xj+€—1)'
=0

By (50), we have for any (z;)52, € ¥,

k—1 k
jzo QO(l‘j’ e 7:L‘j+f—1) Z k‘ozmin + \‘WJ 5

As pg is a probability measure, we have

N
—_

k
Eus ‘P(ffja T >$j+£—1) > kaumin + {mJ J.

<.
Il
o

Substituting this in (51), we get
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Pis) = (q- 1)2iqk—1+1 (kamm+ {mgi 1J 5)

k=1
N ()
As
o () s () -

k=1 k>mf+1
we have proved the existence of an € > 0 such that

/
PL(5) > min + €, Vs €R.

7.6. Lower bounds of dimy E(«a). First, as an easy application of
Proposition 7.8, we get the following formula for dimg P, .

Proposition 7.10. For any s € R, we have

. 1
dimy P, = F[—SP;(S) + P,(s)].

Proof. By Proposition 6.1, we have

_w = _% qA (p(:L’] "quffl) + - TLLTL/QJ log 12(1)
+B§n($) _ Bu() (52)

Applying the law of large numbers to the function ,, we get the
P,,-a.e. existence of the following limit lim,, B”fo). So

Bn(xz
lim qn< ) — Bu(x) =0, P
n—o00 E n

e — a.c.

On the other hand, by Proposition 7.8 and Theorem 2.6, we have

|

1 ,
Tim = (e mjger) = 5 Py(s).

j=1
So we obtain that for P, -a.e. x € 3,

o logPu(iet) _ 1

n—o0o n B qﬁ—l

[P (s) + Po(s)],
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where we have used the fact that
P(s) = (g—1)¢" *log > _ () = (¢ — 1)¢" *qlog (D).
jest

t

By Proposition 7.8, Proposition 7.10 and Billingsley’s lemma (Lemma
7.4) we get the following lower bound for dimy E(F(s)).

Proposition 7.11. For any s € R, we have

. / 1 /
dimy E(P(s)) > m[—an(s) + P,(s)].

By the above proposition and Proposition 7.5 we obtain the fol-
lowing theorem about the exact Hausdorff dimension of dimy(«) for
a € (P (—00), P/ (4+00)).

Theorem 7.12. (i) If « = P/(s,) for some s, € R, then

1 Pi(a)
dimpy E(a) = ———— [~ P’ (54)50 + P,(s5,)] = —&2 .
imy E(a) qg_llogm[ ' (5a)5a + Py(8a)] logm

(ii) For o € (P)(—00), P;(0)], we have
dimy E* (o) = dimy E(a).
For a € [P)(0), P(+00)), we have

dimy E™ (o) = dimy E(a).

7.7. Dimension of level sets corresponding to the extreme points
in L,. So far, we have calculated dimy E(a) for ain (P)(—00), P (+00)).
Now we turn to the case when a = P/ (—oc) or P/ (+0c0). The aim of
this subsection is to prove the following result.

Theorem 7.13. If a = P(—00) or P,(+00), then E(a) # 0 and

B (@)

dimyg F(a) = ———.
imy E(a) ¢~ tlogm

We will give the proof of Theorem 7.13 for a = P(—00). The proof
for a = P)(—00) is similar,
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7.7.1. Accumulation points of s when s tends to —oo. We view the
vector s defined by (33) and the matrix Q)5 defined by (34) as func-
tions of s taking values in finite dimensional Euclidean spaces. As all
components of 74 and ), are non-negative and bounded by 1, the set
{(ms,Qs), s € R} is pre-compact in a Euclidean space. So there exists
a sequence (S, )nen of real numbers with lim,, ,., s, = —oo such that
the limits

lim 7,,, lim Q,

n—oo n—oo
exist. Using these limits as initial law and transition probability, we
construct a (¢ — 1)-step Markov measure which we denote by p1_oo. It
is clear that the Markov measure g, corresponding to 7w, and @),
converges to pi_, with respect to the weak-star topology.

Proposition 7.14. We have
Py (E(P(—00))) = 1.
In particular, E(P,(—oc0)) # (.

Proof. First, we introduce a functional on the space of probability mea-
sures which is defined by

00 k—1
1
M(v)=(q—1 2Zk—HZEu¢(5€ja"' S Tjge-1)-
k=1 q 7=0
The function v — M (v) is continuous, just because v — E, p(z;, - -+, 2j40-1)

is continuous for all j.
What we have to show is that for P, _-a.e. x € X,, we have

lim — Z(p Tpy o+ Tpge1) = P(—00).

By Theorem 2.6, for IP’ufoo-a.e. T € X, the limit in the left hand side
of the above equation equals to M (p_o). As M is continuous and p,
converges to ., when n — oo, we deduce that

Tim M(y1,,) = M)
By Proposition 7.8, we know that
M(ps,) = P;(Sn)'
So
M(p—oo) = lim P/ (s,).
n—oo

By Theorem 4.7, the map s — P_(s) is increasing, thus we deduce that
the above limit exists and

M(p—oe) = Py(=o%).
This implies the desired result.
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We have the following formula for dimy P,,___.

Proposition 7.15. We have

dimyg P, = lim [=5P(5) + ()] _ P;(Pé,(—oo))_
H—oo S——00 qﬁ—l logm qg_l logm

Proof. By Proposition 3.1, we know for any probability measure v we
have

(q—1) i Hy(v)

dimy P, = :
Ha log m — gt

As the series in the right hand side converges uniformly on v, the map
v — dimy P, is continuous. Since p,, converges to p_., when n — oo,
we deduce that

lim dimy P, = dimyP, .
n— o0

By Proposition 7.10, we have
[—sP(s) + Py(s)]
¢ tlogm

dlmH ]P)Ms =

The derivative of the map s — dimy P, is
—ng (s)

gs i P = q~Llogm’

ds
As P,(s) is convex on R, P/(s) is non-negative, so for s <0 the map
s — dimy P,

is increasing. Thus

dimy Py = lim dimy Py, = lim_ ¢ logm

Proposition 7.16.
P (P (=00))
dimyg E(P(— =2 £ 7
iy E(P(~0c)) =~
Proof. By the last two propositions and Billingsley’s lemma, we get
PaPL(=00)

di E(P (- >
imy E(P(—00) = £

We now show the reverse inequality. By the definition of ET(«), we
have

E(P(=0))) C f E*(a) = [ E¥(P)(s).
a€ (P} (—00),P,(0)] <0
So
dimpy E(P(—00))) < dimy E*(P,(s)) = dimy E(P,(s)) = dimg P,,, Vs <O0.
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Now as s — dimy P, is increasing we deduce that

. o B (Py(—00))
dimy E(P)(—00))) < Jim dimy Py, = wl—mw.

8. THE INVARIANT PART OF E(«)

From classical dynamical system point of view, the set E(«) is not
invariant and its dimension can not be described by invariant mea-
sures supported on it, as we shall see. Let us first examine the largest
dimension of ergodic measures supported on the set F(«).

Here we can consider a more general setting. Let fi, fo, -+, fr be
real functions defined on X,,. Let

My,,...p () = lim % S AT ) fo(T2) - ful(T%2)  (53)
k=1

if the limit exists. In this section, for a real number «, we define
B(a) = {z € B : My,... 1(2) = a}.

In order to describe the invariant part of F(«), we introducing the
so-called invariant spectrum:

Fiy () = sup {dim p : p ergodic, u(E(a)) =1 }.
In general, Fi,,(«) is smaller than dim FE(«). It is even possible that

no ergodic measure is supported on E(a).

Theorem 8.1. Let { = 2. Let f, and fy be two Holder continuous
functions on ¥,,. If E(«) supports an ergodic measure, then

Finv(a) = sup {dim,u D ergodic,/fldu/deu =« } )
Proof. Let p be an ergodic measure such that u(FE(«)) = 1. Then

o1
a = lim —
n—oo M

Y EuLA(T ) fo(THa)]

= E, Lf1 <$>:]\4f2 (z)]

where the first and third equalities are due to Lebesgue convergence
theorem and the second one is due to the invariance of p. Since p is
ergodic, My, (z) = E, f> for p-a.e. x. So, « = E, f1E, f>. It follows that

Fiv(a) <sup{dimp : p ergodic, E, fiE,fo =a }.
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To obtain the inverse inequality, it suffices to observe from standard
higher—dimensional multifractal analysis for Hélder continuous func-
tions that the above supremum is attained by a Gibbs measure v which
is mixing and that the mixing property implies My, r,(z) = E, fiE, fo
v-a.e.. U

Remark 8.2. In the above theorem, the assumption that u is ergodic
can be relaxed to p is invariant. In fact, if v is an invariant mea-
sure such that v(E(«)) = 1. Then, by the ergodic decomposition the-
orem and the corresponding decomposition of entropy (a theorem due
to Jacobs), there is an ergodic measure j such that p(E(a)) = 1 and
h, < hy,. When € > 3, the result in above theorem remains true if we
replace “ergodic” by “multiple mixing”, i.e.

Frix(a) = sup {dim ¢ : p multiple mixing, E,f;---E,fo =« },
where
Fiix(a) = sup {dim g : p multiple mixing, u(E(«a)) =1 }.

Here is a remarkable corollary of the above theorem. Assume that
fi=fo=f. If p(E(a) =1 for some ergodic measure y, then we must

have ,
o= d > 0.
(f o)

There are examples of f taking negative value such that for some o < 0
we have dim F(«) > 0. However, the theorem together with the re-
mark shows that there is no invariant measure with positive dimension
supported by F(«). See Example 2 below.

In the proof of the theorem, the fact that My, is almost constant
plays an important role. It is not the case for My, f,. So we can not
generalize the theorem to ¢ = 3.

For fi, fo € L?(u) where p is an ergodic measure, Bourgain proved
that My, r,(x) exists for p-almost all . The limit is in general not
constant, but can be written by the Kronecker factor (Z, m,S), which
is considered as a rotation on a compact abelian group Z. Let 7 be the
factor map. Let

fi =E(fi|2).

Then p-almost surely

My, 1,(x) = /Zfl (m(x) + z)fl (m(x) + 2z)dm(z).

Then it is easy to deduce that My, s, (x) is p-almost surely constant if
and only if

Wy € Z with 7 £ 1, i(1)2(7?) = 0.

This condition is extremely strong if x is not weakly mixing. In other
words, when ¢ = 3, it would be exceptional that E(«) carries an ergodic
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measure which is not weakly mixing. When p is mixing, we have

My, 5,(x) = [ frdp [ fodp for p-almost all .

For three or more functions, the existence of the almost everywhere
limit My, 4,... 7, is not yet proved. But the L?-convergence is proved
by Host and Kra [17]. The limit can be written as a similar integral,
but the integral is taken over a nilmanifold of order 2 [5].

Let us also remark that the supremum in the theorem is also equal
to the dimension of the a-level set of

1 |
fm s 2 HTDAT),
1<j,k<n

See [11]. Also see [14], where general V-statistics are studied.

9. EXAMPLES

The motivation of the subject initiated in [10] is the following exam-
ple. The Riesz product method used in [10] doesn’t work for this case.
However Theorem 1.1 does.

Example 1. Let ¢ = 2, m = 2, { = 2 and ¢ the potential given by
e(x,y) = z1yr with x = (2;)21,y = (1:1)721 € Xz So

o 0 0
(i Dlgyeone = [ 01 ] '
The system of equations (5) in this case becomes

¥s(0)* = s(0) + (1),
Us(1)* = s(0) + e"s(1).
Fix s € R. By solving an fourth order algebraic equation, we get the
unique positive solution of the above system:
0(0) = gals)+ 2/3aT)26 v
1/13(1) = ws<0>2 - %(0%

where

Jun

3

a(s) = <100 — 36e° 4 12V/69 — 54e5 — 3e25 — 12e3s>
Recall that the pressure function is equal to

P«J(S) = 10%(1/13(0) + wsu))

The minimal and maximal values of ¢ are 0 and 1, which are respec-
tively attained by the sequences (r;)32, = (0)> and (y;)32, = (1)* in
the sense of

o, r501) =0, @(y;,y541) =1, Vj=>0.
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FIGURE 1. The graphs of the spectrum o — dimy F(«)
and a — Fj,,(a) (Example 1).

Then by Theorem 1.2, we have
/ _ / _
P, (-) =0, P,(+o0)=1.
Therefore, according to Theorem 1.1, for any « € [0, 1] we have

. —aS, + P,(sq
dimy F(a) = 210g;( ),

where s, is the unique real such that P (s.) = a.
We now consider the invariant spectrum of E(«).
f(z)f(y) with f(z) = x1, by Theorem 8.1, we have

h
Fine(0) = sup {10§2 e Min(S), [ = \/E} |
It is well known (see [9]) that the right hand side, which is attained by

a Bernoulli measure, is equal to

H(Va) = —Valogy Va — (1 — vVa)log,(1 — va).

As o(z,y) =

So
Finy(a) = H(Va).
See Figure 1 for the graphs of the spectra a — dimy F(«) and
a — Liny(). We remark that, except at the extremal points (o = 1/4
or 1), we have a strict inequality Fi,,(a) < dimpy E(a). This shows
that the invariant part of F(a) is much smaller than F(«) itself. This
is different of the classical ergodic theory (¢ = 1) where in general we
have Fi,(a) = dimy E(a) for all @ and actually E(«) is invariant.
The following example is a special case of a situation studied in [10].
So, the result is not new. Applying Theorem 1.1 only provides a second
way to get it. But when we compare its invariant spectrum with its
multifractal spectrum we will discover a new phenomenon—there is ”no”

invariant part in £(«) for some a.
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Example 2. Let g =2, m = 2, { = 2 and ¢ be the potential given by
o(z,y) = (221 — 1)(229 — 1). So

. 1 -1
[QP(Z?])](i,j)E{O,l}Q = { 1 1 } :
The system of equations (5) in this case reduces to
¢s(0)2 - 68¢s(0)+6_8¢8(1)7
Us(1)? = e y(0) + ety (1).

Because of the symmetry of ¢, it is easy to find the unique positive
solution of the system:

Us(0) = (1) = e*+e°.
Thus we get the pressure function
P,(s) = log(1s(0) + 1¥5(1)) = log2 + log(e® +€e~7).
It is evident that

e’ —e?
P’ = )
‘P<S) es + e~
and
/ _ / _
P (-<)=~-1, P)(+00)=1.
So, by Theorem 1.1, we have L, = [—1, 1], and for any a € [—1, 1] we
have P(s0)
—QSq + S
dimyg F(a) = = LA
where s, is such that
65a _ 6*304 B
eso 4 e7sa

We now consider the invariant spectrum of E(a). We have p(z,y) =
f(z)f(y) with f(z) = 2x; — 1, then by Theorem 8.1, we have

Fiuw(a) = sup {1:;2 D€ Miny(29), </(2x1 — 1)du)2 = a} )

We see that we must assume o > 0. As [(2z1 — 1)dp =2 [ a1dp — 1,
the condition ([ (2z; — 1)d,u)2 = a means [zidp = $(1 £ \/a). The
above supremum is attained by a Bernoulli measure determined by the
probability vector ((1 4+ y/a)/2, (1 —/a)/2). In other word,

Fute) - 1 (L)

2

where H(z) = —zlogy z — (1 — ) logy(1 — z).

See Figure 2 for the graphs of the spectra o — dimy E(«) and
a — Fi (). We see that, except at the extremal point @ = 0, we have
Fiw(a) < dimy E(a). Moreover, for —1 < a < 0, we have F,,(«) = 0.
That is to say, there is no invariant measure with positive dimension
sitting on E(«) for —1 < o < 0. But dimy E(«) > 0.



Ai-Hua FAN, Jérg SCHMELING and Meng WU 51

1

0.9

0.8

0.7

06F

05
04r A
0.3
0.2 Solid line : dlmHE(u)

Dotted fine : L _ (@) \

01 A

0 L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FIGURE 2. The graph of the spectrum o« — dimy F(«)
(Example 2).

The following example presents a case where the L, is strictly con-
tained in the interval [ommin, Qmax]-

Example 3. Let g =2, m =2, { = 2 and p be the potential given by
o(z,y) =y — x1. In other words,

. 0 -1
[90(27])](¢,j)e{0,1}2 = { 1 0 ] .
The system of equations (5) in this case reduces to
1/13(0)2 = ¥s(0) + e*s(1),
7/13<1)2 = e "Ys(0) + ¥s(1).
It is easy to find the unique positive solution of the system:
Vs (0) =1+e2, ah(l)=14e 2.
The pressure function is then given by

P,(s) =log(1s(0) + ¢s(1)) = log(2 + e2 + e’%).

So ) )
1 s/2 _ ,—s/2
A ) [ ——
‘4 22_'_68/2 —|—€_S/2
and .
Pl(-oc)=—3. Pl(toc) =3

Remark that in this case we have
Opnin < P;(—oo) < P;(+oo) < Opax.

By Theorem 1.1, we have L, = [—1/2,1/2], and for any a € [—1/2,1/2]
we have
—asq + Py(sq)

dll’IlH E(Oé) = 210g2 s
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FIGURE 3. The graph of the spectrum a — dimy F(«)
(Example 3).

where s, is the solution of
/2 _ psa/2
2 1 e%al2 1 osa/2
We now consider the invariant spectrum of E(a)). We have p(z,y) =
f(y)— f(z) with f(x) = z;. By Lebesgue convergence theorem, for any

a € R such that there exists an invariant measure p with pu(E(«a)) =1
we have

= 2a.

n

> Eu(rar — ax) = lim ! > (By(war) — Ep(zi)) = 0.

n—oo N,
k=1

o1
a= lim —
n—oo N,

(The last equality is due to the invariance of ). This means that the
only « such that there is an invariant measure with positive dimension
sitting on F(«) is @ = 0. The invariant spectrum then degenerates to
one point. We have Fi,,(0) = 1.

See Figure 3 for the graph of the spectrum o — dimy F(«).

We can easily solve the system (5) for a class of symmetric functions
described in the following example. The example 2 is a special case.

Example 4. Let { =2, q > 2 andm > 2. Let o = [p(i, )i jyeq0. m_1y2
be a potential considered as a matrix. Suppose that each row of the ma-
trix is a permutation of the first row.

Recall the system of equations (5):
m—1
(i) = 3 eI G), i {0 m 1),
=0

It is straightforward to verify that the constant vector (a,--- ,a), with
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is the unique positive solution of the above system (see Theorem 4.1).
The pressure function is then given by

m—1
P,(s) =log Z e*?1) 4 (g — 1) logm.
=0

We have
m—1 g 1 .
Pl(s) = 2o €M e(1, )
4 S Lese(ly)
Then
m—1 S(¢(1vj)_amin) 1 1
e ,
hm P:O(S) = hm ZJ_Omil - SO( J> = Qpin = mlnw(lvj)
S§——00 S——00 Z]:O 65(‘;0(17])7amin) j

Similarly, we have

lim P/ (s) = amax = max (1, j).
S—+00 7
By the hypothesis of symmetry on ¢, it is easy to see that there exist

sequences (7;)22, and (y;)%2, € 2, such that

(p(xjv xj+1) = Onin, (p(ij yj-l—l) = O'max;, \V/j Z 0.

Therefore, by Theorem 1.1, L, = [Qmin, umax), and for any & € [oumin, Qmax]

we have
—asq + Py(sq)

dimy F(a) = 2Togm

where s, is the solution of

Sy el g(1, )
E;n:iol esaso(lvj)

The invariant spectrum: For & € [apin, (max], the invariant spectrum
is attained by a Markov measure. That is to say

F}nv(oz)zsup{— > mpiglog,piic Y w(i,j)mpi,jzoz}

0<i,j<m—1 0<i,j<m—1

where P = (p;;) is a stochastic matrix and m = (7, -, my,—1) is an
invariant probability vector of P, i.e. 7P = 7.

In the next example we show that in general the invariant spectrum
can be strictly larger than the mixing spectrum for some level set E ().

Example 5. Let m > 2. Consider two functions f and h on ¥,
defined by

f(i):{1 0<i<m-—1 h(i):{—Q 0<i<m-—1

2 i=m-—1 1 t=m-—1
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Consider the level set

k=1
(That means ¢(x,y,z) = f(z)f(y)h(z)). We claim that Fyix(0) <
Fiuw(0) for m > 49.

Let §; denotes the Dirac measure at j € {0,1,--- ,m — 1}. Let

We note that v restricted on %, 1 gives rise to the measure of maximal
dimension on ¥, ;. We consider a probability measure on 3, defined

by

1 1
M= 5/11 + 5/12,
where
2 [5]
pr([mamy - 2n]) = J] Smor(@arsr) - [] v(aar),
k=1
and

%51 15
pa([rrzy - - 2p]) = H v(Takt1) - Om—1(T2).-

k=0 k=1

w3

Note that 771 o pu; = pp and T o g = p1y. So p is shift invariant.
The measure p sits on the set A = Ay () Ay where

Aj={z e,z =m-—1, 19 #m—1,k €N},

Ay={x €%, : wop=m—1, 29611 #m —1, k € N}.

Actually p1(A;) = 1 and pz(As) = 1 and the sets A; and A, are
disjoint.

We claim that g is ergodic but not mixing. To see that p is not
mixing, we only need to observe that T-'A; = A, and T 1A, = A;.
From this and that A; and A, are disjoint we deduce that

12 (T72kA1 N Ag) - O, \V/k? € N.

This implies that p is not mixing. The ergodicity of p with respect to T’
is due to the fact that p; and ps are ergodic with respect to 7% = T o T
and that they are supported by disjoint sets.

For every x € A; we have

i 23 stonton) < (54 3 ) -

k—even k—odd

(—2+2)

N)IP—‘

=0
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and for every x € Ay we have

i 3 o stoanton < L (3 5 ) < Jua-a-0

k=1 k—even  k—odd
Hence, u(E(a) = 1. We note that

o o 1o (0 (4) <o

Let us compute the dimension of p by computing the local entropy
at typical points. If z € A then

p(lzr - wan]) = (m—1)™"
Since p(A) = 1 this implies that dimyp = Llog(m — 1). So that
Fiv(0) > 1log(m—1). On the other hand, by Theorem 8.1 and Remark
8.2, we have

Fiix(0) = sup {hu . — multiple mixing, / hdp = O}
Xm
since f is strictly positive. From standard multifractal analysis we
know that the supremum is attained by a Bernoulli measure and

m—1
1 2
Fraix(0) Zf;}%{‘zpilogm PPt Pz = 5 Py = g}

1 3
:glog(m 1)+ 310g3+310g§

If m > 48 we conclude Fi,,(0) > Fic(0).

10. REMARKS AND PROBLEMS

Multiplicatively invariant sets. The first basic example (Example 1
above) which motivated our study leads to the set

X2 = {(l‘k‘)k21 € 22 . \V//{: Z 1’,Z'k.l‘2k, e O}

which was introduced in [10]. It is known to Fiirstenberg [15] that
any shift-invariant closed set has its Hausdorff dimension equal to its
Minkowski (box-counting) dimension. Unfortunately the closed set
X5 is not shift-invariant. Its Minkowski dimension was computed by
Fan, Liao and Ma [10] and its Hausdorff dimension was computed by
Kenyon, Peres and Solomyak [18]. The results show that the Hausdorff
dimension is smaller than the Minkowski dimension. Recall that

dimy; Xo = 0.82429..., dimy X, = 0.81137...

As observed by Kenyon, Peres and Solomyak, the set X, is invariant
under the action of the semigroup N in the sense that T, X, C X, for
all » € N where 7, is defined by

r = (2g)k>1 — Trx = (Tok)k>1-
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As observed by Fan, Liao and Ma, we have the decomposition

N=|]iA
i:odd
where A = {1,2,2%, 23 ...} is the (multiplicative) sub-semigroup gen-
erated by 2. This is one of the key point in the present study. A
similar decomposition holds for semigroups generated by a finite num-
ber of prime numbers. Using this decomposition, Peres, Schmeling,
Solomyak and Seuret [23] computed the Hausdorff dimension and the
Minkowski dimension of sets like

X273 = {(xk)k21 € 22 - VE > l,l‘kl‘gkl‘gk = O}

This is an important step.
A generalization. Combining the ideas in [23] and those in the
present paper, we can study the following limit

1
lim —
n—oo M

n
Z <P($Uk, Lok, 373k)-
k=1

See [25]. Notice that the computation in this case are more involved.
Also notice that, by chance, the Riesz product method used in [10] is
well adapted to the study of the special limit

n

1

where ¢ > 2 is any integer.

Vector valued potential. We indicate here how to extend our results
to vector valued potentials. First, let o, be 2 functions defined on S*
taking real values. Instead of considering the transfer operator L, as
defined in (4), we consider the following one.

Lap(a) =Y @Dy (Ta, j), a € S, s eR.
jes

Still by Theorem 4.1, there exists a unique solution to the equation

(Lotb)7 = 1.

Then, we can similarly define the pressure function as indicated in (6)
and (7). We denote this pressure function by P,.(s). The arguments
with which we proved the analyticity and convexity of s — P,(s) can
be also used to prove the same results for s — P, ,(s).

Let o = (¢1, -+, @q) be a function defined on S* taking values in R

For s = (s1,- -+ ,54) € RY we consider the following transfer operator.

L)(a) = Z e99(Ta, j), a € S,

JjeS
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where (-, -) denotes the scalar product in R%. We denote the associated
pressure function by P(¢)(s). Then, by the above discussion, for any

vectors u,v € R? the function

R>s — P(p)(us+v)

is analytical and convex. We deduce from this that the function

s > P(p)(s)

is infinitely differentiable and convex on R?. We can prove that P(¢)(s)
is indeed analytical by the same argument used to prove the analyticity
of P,(s).

Similarly, we define the level sets E(a) (o € R?) of ¢. A vector
version of Theorem 1.1 is stated by just replacing the derivative of the
pressure function by gradient.

We finish the paper with two problems.

Subshifts of finite type. Our study is strictly restricted to the full
shift dynamics. It is a challenging problem to study the dynamics of
subshift of finite type.

More general are dynamics with Markov property. More efforts are
needed to deal with [-shift which are not Markovian. New ideas are
needed to deal with these dynamics.

Nonlinear cookie cutter. The full shift is essentially the doubling
dynamics Tz = 2 mod 1 on the interval [0,1). Cookie cutters are
the first interval maps coming into the mind after the doubling map.
If the cookie cutter maps are not linear, it is a difficult problem.

Based on the computation made in [22], Liao and Rams [21] con-
sidered a special piecewise linear map of two branches defined on two
intervals Iy and [; and studied the following limit

1 n
lim = "1, (T*2)1,, (T*2).

n—oo M
k=1

The techniques presented in the present paper can be used to treat the
problem for general piecewise linear cookie cutter dynamics [12, 25].
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