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Abstract: We prove easy upper bounds for Ramsey numbers. 1.

1 Introduction

A theorem of Ramsey, see [4], implies the existence of a smallest natural
integer R(n), now called the n−th Ramsey number, such that every (simple
unoriented) graph G with at least R(n) vertices contains either a complete
graph with n vertices or n pairwise non-adjacent vertices (defining a com-
plete graph in the complementary graph of G).

The aim of this paper is to give a new simple proof of the following upper
bound for Ramsey numbers:

Theorem 1.1. We have
R(n) ≤ 22n−3

for n ≥ 2.

The currently best asymptotic upper bound,

R(n+ 1) ≤

(

2n

n

)

n−C logn/ log logn ,

(for a suitable constant C) is due to Conlon, see [2].
The standard proof of Ramsey’s theorem, due to Erdös and Szekeres

(see [3] or Chapter 35 of [1]), uses a two parameter Ramsey number R(a, b)
defined as the smallest integer such that every graph with R(a, b) vertices
contains either a complete graph with a vertices or a subset of b non-adjacent
vertices. It is slightly more involved than our proof and gives the upper
bound R(n + 1) ≤

(2n
n

)

(based on the trivial values R(a, 1) = R(1, a) = 1
and on the inequality R(a, b) ≤ R(a− 1, b) +R(a, b− 1) for a, b > 1).

Simple graphs are equivalent to complete graphs with edges of two
colours (encoding edges, respectively nonedges of simple graphs). There
is a generalization of Ramsey’s theorem to an arbitrary finite number m
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of colours as follows: There exists a smallest natural number Rm(n) such
that every complete graph on Rm(n) vertices with edges of m colours con-
tains n vertices belonging to a complete edge-monochromatic subgraph. The
following result gives an upper bound for Rm(n):

Theorem 1.2. We have

Rm(n) ≤ 1 +

m(n−2)
∑

j=0

mj = 1 +
mmn−2m+1 − 1

m− 1

for m,n ≥ 2.

For m = 2, the upper bound 1 + mmn−2m+1
−1

m−1 of Theorem 1.2 coincides

with the upper bound 22n−3 = 1 + 22n−4+1
−1

2−1 = 22n−3 for R2(n) = R(n)
given by Theorem 1.1.

This paper contains a simple proof of Theorem 1.1 (Section 2) and The-
orem 1.2 (Section 3) which is a variation on the proofs usually found and
is perhaps slightly simpler. In Section 4 we discuss a few generalizations of
the numbers R′(n) and R′

m(n) playing a crucial role in the proofs.

2 Proof of Theorem 1.1

Given a finite graph G, we define ρ′(G) to be the largest natural number such
that G contains two (not necessarily disjoint) subsets A and B of vertices
satisfying the following two conditions:

1. All vertices of A are adjacent to each other and no vertices of B are
adjacent.

2. ♯(A) + ♯(B) = ρ′(G).

In this section, the letter A always denotes a set of pairwise adjacent
vertices and B denotes a set of pairwise non-adjacent vertices. Two such
subsets A,B of vertices in a graph G realize ρ′(G) if ρ′(G) = ♯(A) + ♯(B).

We define R′(n) as the smallest natural integer such that ρ′(G) ≥ n for
every graph G with R′(n) vertices.

Lemma 2.1. We have R(n) ≤ R′(2n − 1).

Proof A graph G with R′(2n − 1) vertices contains subsets A and B of
vertices realizing ρ′(G) ≥ 2n − 1. One of the subsets A,B thus contains at
least n vertices. If ♯(A) ≥ n, the graph G contains a complete subgraph of n
vertices, if ♯(B) ≥ n, the graph G contains n pairwise non-adjacent vertices.
2

Lemma 2.2. We have R′(n+ 1) ≤ 2R′(n).
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Proof We choose a vertex v in a graph G with 2R′(n) vertices. We denote
by Gv the subgraph of G\{v} defined by all neighbours of v. Up to replacing
G by its complementary graph (and exchanging the roles of the sets A and
B), we can suppose that Gv has at least ⌈(2R′(n)− 1)/2⌉ = R′(n) vertices.
Hence we have ρ′(G) ≥ n and we can find subsetsA,B of vertices inGv which
realize ρ′(G). The subset A ∪ {v} contains thus ♯(A) + 1 pairwise adjacent
vertices of G and we have ρ′(G) ≥ ♯(A ∪ {v}) + ♯(B) = ρ′(Gv) + 1 ≥ n+ 1.
2

Proposition 2.3. We have R′(n) ≤ 2n−2 for n ≥ 2.

Proof If n = 2 we take A = B = {v} where v is the unique vertex of the
trivial graph G = {v} on one vertex v.

Induction on n using Lemma 2.2 ends the proof. 2

Proof of Theorem 1.1 The proof follows from the inequalities

R(n) ≤ R′(2n − 1) ≤ 22n−1−2 = 22n−3

given by Lemma 2.2 and Proposition 2.3. 2

Remark 2.4. The proof of Proposition 2.3 can easily be rewritten algorith-
mically: Given a graph G with at least 2n−2 ≥ 2 vertices, set A = B = ∅.
While G has at least 4 vertices, choose a vertex v. Set A = A ∪ {v} and
replace G by the subgraph induced by all neighbours of v if v has more neigh-
bours than non-adjacent vertices in G. Otherwise set B = B ∪ {v} and
replace G by the subgraph induced by all non-neighbours (6= v) of v.

If G has 2 or 3 vertices, choose two vertices v,w and replace A by A ∪
{v,w} if v and w are adjacent. Otherwise replace B by B ∪ {v,w}.

2.1 Value of R(3)

The inequality R′(4) ≤ 24−2 = 4 given by the case n = 2 of Proposition 2.3
is not sharp: Indeed, we have R′(4) = 3 as can be seen by inspecting all
four possible graphs on three vertices. (The set A has respectively 1, 2, 2, 3
elements for a 3−vertex graph with 0, 1, 2, 3 edges.) Lemma 2.2 shows now
R′(5) ≤ 6 and we get R(3) ≤ R′(5) ≤ 6 by Lemma 2.1. Since a cycle with 5
vertices contains no triangle and no triplet of pairwise non-adjacent vertices,
both inequalities are sharp and we have R(3) = R′(5) = 6.

Remark 2.5. The value R′(4) = 3 can of course be used for improving the
upper bound R(n) ≤ 22n−3 in Theorem 1.1 to 3 · 22n−5 for n ≥ 3. More
generally, any interesting upper bound on R′(n) for n > 4 easily yields an
improvement of Theorem 1.1.
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3 Proof of Theorem 1.2

We define R′

m(n) to be the smallest integer such that every complete graph
with R′

m(n) vertices and edges of m colours contains m (not necessarily
disjoint) subsets of vertices A1, . . . , Am with ♯(A1)+ ♯(A2)+ · · ·+ ♯(Am) = n
and with A1, . . . , Am defining m complete edge-monochromatic graphs of
different edge-colours.

Given a complete graph G with m−coloured edges, we denote by ρ′(G)
the largest integer such that G contains m (not necessarily disjoint) subsets
A1, . . . , Am of vertices defining complete edge-monochromatic subgraphs of
different colours and ρ′(G) = ♯(A1) + · · · + ♯(Am). We say that m such
subsets A1, . . . , Am realize ρ′(G).

We have of course ρ′(G) ≥ n if G contains at least R′(n) vertices.
Examples:

1. We have R′

m(m) = 1 by setting A1 = A2 = · · · = Am = {v} where v is
the unique vertex of the trivial graph with one vertex (the empty sets
of edges in A1, . . . , Am have different colours by convention).

The value R′

m(m) = 1 also follows from Rm(1) = 1 applied to the the
trivial inequality R′

m(n +m − 1) ≤ Rm(n) obtained by completing a
complete edge-monochromatic subgraph on n vertices with m− 1 sin-
gletons representing complete edge-monochromatic subgraphs of the
m− 1 remaining colours.

2. R′

m(m+1) = 2 since an edge-coloured complete graph on 2 vertices is
always monochromatic.

3. R′

m(m + 2) = 3 since every edge-coloured triangle is either edge-
monochromatic or contains two edges of different colours.

Lemma 3.1. We have Rm(n) ≤ R′(m(n− 1) + 1).

Proof A set of m integers summing up to m(n− 1)+ 1 contains an element
at least equal to n. For every realization A1, . . . , Am of ρ′(G) ≥ m(n−1)+1
of a graph G with R′(m(n − 1) + 1) vertices there thus exists an index i
such that Ai defines an edge-monochromatic complete graph on at least n
vertices. 2

Lemma 3.2. We have R′

m(n+ 1) ≤ 2 +m(R′

m(n)− 1).

Proof Fixing a vertex v in a complete graph G with 2 + m(R′

m(n) − 1)
vertices and edges of m colours, we get a partition V \ {v} = V1 ∪ · · · ∪ Vm

of all vertices different from v by considering the set Vi of vertices joined by
an edge of colour i to v. Since V \{v} has 1+m(R′

m(n)−1) elements, there
exists a set Vi containing at least R′

m(n) vertices. The subgraph Gi with
vertices Vi thus contains a realization A1, . . . , Am of ρ′m(Gi) ≥ n. Since v is
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joined by edges of colour i to all elements of Ai , the set of vertices Ai ∪{v}
defines a complete edge-monochromatic subgraph of colour i in G. This
proves ρ′(G) ≥ ♯(A1)+ · · ·+ ♯(Ai ∪{v})+ · · ·+ ♯(Am) = ρ′Gi)+1 ≥ n+1.2

Proposition 3.3. We have

R′

m(m+ k) ≤ 1 +

k−1
∑

j=0

mj = 1 +
mk − 1

m− 1

for every natural integer k (using the convention
∑

−1
j=0m

j = 0 if k = 0).

Proof The formula holds for k = 0 with A1 = A2 = · · · = Am = {v} the
unique vertex of the trivial graph {v} reduced to one vertex.

Using Lemma 3.2 and induction on k we have

R′(m+ k + 1) ≤ 2 +m(R′

m(m+ k)− 1)

≤ 2 +m







1 +

k−1
∑

j=0

mj



− 1





= 1 +

k
∑

j=0

mj

which ends the proof. 2

Proof of Theorem 1.2 We have

Rm(n) ≤ R′(m(n − 1) + 1) ≤ 1 +
mm(n−1)+1−m − 1

m− 1
= 1 +

mmn−2m+1 − 1

m− 1

where the first inequality is Lemma 3.1 and the second inequality is Propo-
sition 3.3. 2

4 Generalizations of the number R
′
m(n)

The number R′

m(n) has two obvious generalizations.
The first one is given by considering R′

m,j(n) with j ∈ {1, . . . ,m} defined
as the smallest integer such that every complete graph with R′

m,j(n) vertices
and edges of m colours contains j edge-monochromatic complete subgraphs
of different edge-colours and of size α1, . . . , αj such that α1 + · · ·+ αj = n.
Therefore we consider only the j colours corresponding to the j largest
edge-monochromatic complete subgraphs. For j = 1, we recover the usual
Ramsey numbers Rm(n), for j = m we get the numbers R′

m(n) introduced
previously.

The second generalization depends on an unbounded function s : G −→
N (one can also work with m different unbounded functions sc : G −→ N

5



indexed by colours or replace the target-set of natural integers by the set of
non-negative real numbers) on the set G of all finite simple graphs.

For n ≥ 1 we define R′

m,s(n) as the smallest integer such that ev-
ery complete graph on R′

m,s(n) vertices contains m (not necessarily com-
plete) edge-monochromatic subgraphsG1, . . . , Gm of colour 1, . . . ,m satisfy-
ing s(G1)+s(G2)+· · ·+s(Gm) ≥ n (respectively s1(G1)+· · ·+sm(Gm) ≥ n).

The numbers R′

m(n) correspond to the choice s(G) = n if G is the
complete graph on n vertices and s(G) = 0 otherwise.

Other perhaps interesting choices are s(G) = n if G is an n-cycle and
s(G) = 0 otherwise, or s(G) = n if G is a simple path (two endpoints of
degree 1 and all other vertices of degree 2) with n vertices.

It is of course possible to combine both generalizations by definingR′

m,j,s(n)
in the obvious way considering only the j colours giving the largest contri-
butions to the sum s(G1) + · · ·+ s(Gm).

4.1 Analogues of R′ for van der Waerden numbers

Van derWaerden’s Theorem gives the existence of a functionW : {2, 3, 4, . . . }×
{2, 3, 4, . . . } −→ N associating to two integers m,n ≥ 2 the smallest natu-
ral integer W (m,n) such that every colouring of the W (m,n) consecutive
natural integers 1, 2, . . . ,W (m,n) with m colours contains a monochromatic
arithmetic progression with n elements.

We define W ′(m,n) in the obvious way as the smallest natural inte-
ger such that every colouring of 1, 2, . . . ,W ′(m,n) with m colours contains
m (perhaps empty) monochromatic progressions of different colours and of
lengths α1, . . . , αm summing up to n = α1 + · · · + αm.

We have W (m,n) ≤ W ′(m,m(n − 1) + 1) since a set of m integers
strictly smaller than n sums up at most to m(n−1). It is easy to check that
W ′(2, 1) = 1,W ′(2, 2) = 2 and W ′(2, 3) = 3.

For W ′(2, 4) we get W ′(2, 4) = 6 as can be seen as follows: W ′(2, 4) > 5
by inspection of the black-white colouring bbwbb of 1, 2, 3, 4, 5. Consider a
black-white colouring of 1, . . . , 6 not containing a black progression of size
α and a white progression of size β such that α + β ≥ 4. Such a colouring
cannot use only one colour (otherwise we can take α = 6 or β = 6). It
cannot use both colours twice (otherwise we can take α = 2 and β = 2). It
uses thus one colour, say white, only once and we have necessarily α ≥ 3
and β = 1 since either 1, 3, 5 (for an even white element) or 2, 4, 6 (for an
odd white element) are all black.

It is of course also possible to consider the numbers W ′

j(m,n) defined by
considering only the j largest arithmetical progressions. For j = 1 we get
the classical van der Waerden number W (m,n).
Acknowledgements. I thank S. Eliahou and G. McShane for comments.
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