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Introduction

A theorem of Ramsey, see [START_REF] Ramsey | On a Problem of Formal Logic[END_REF], implies the existence of a smallest natural integer R(n), now called the n-th Ramsey number, such that every (simple unoriented) graph G with at least R(n) vertices contains either a complete graph with n vertices or n pairwise non-adjacent vertices (defining a complete graph in the complementary graph of G).

The aim of this paper is to give a new simple proof of the following upper bound for Ramsey numbers: Theorem 1.1. We have R(n) ≤ 2 2n-3

for n ≥ 2.

The currently best asymptotic upper bound, R(n + 1) ≤ 2n n n -C log n/ log log n , (for a suitable constant C) is due to Conlon, see [START_REF] Conlon | A new upper bound for diagonal Ramsey numbers[END_REF]. The standard proof of Ramsey's theorem, due to Erdös and Szekeres (see [START_REF] Erdös | A combinatorial problem in geometry[END_REF] or Chapter 35 of [START_REF] Aigner | Proofs from The Book[END_REF]), uses a two parameter Ramsey number R(a, b) defined as the smallest integer such that every graph with R(a, b) vertices contains either a complete graph with a vertices or a subset of b non-adjacent vertices. It is slightly more involved than our proof and gives the upper bound R(n + 1) ≤ 2n n (based on the trivial values R(a,

1) = R(1, a) = 1 and on the inequality R(a, b) ≤ R(a -1, b) + R(a, b -1) for a, b > 1).
Simple graphs are equivalent to complete graphs with edges of two colours (encoding edges, respectively nonedges of simple graphs). There is a generalization of Ramsey's theorem to an arbitrary finite number m of colours as follows: There exists a smallest natural number R m (n) such that every complete graph on R m (n) vertices with edges of m colours contains n vertices belonging to a complete edge-monochromatic subgraph. The following result gives an upper bound for R m (n):

Theorem 1.2. We have R m (n) ≤ 1 + m(n-2) j=0 m j = 1 + m mn-2m+1 -1 m -1 for m, n ≥ 2.
For m = 2, the upper bound 1

+ m mn-2m+1 -1 m-1 of Theorem 1.2 coincides with the upper bound 2 2n-3 = 1 + 2 2n-4+1 -1 2-1 = 2 2n-3 for R 2 (n) = R(n) given by Theorem 1.1.
This paper contains a simple proof of Theorem 1.1 (Section 2) and Theorem 1.2 (Section 3) which is a variation on the proofs usually found and is perhaps slightly simpler. In Section 4 we discuss a few generalizations of the numbers R ′ (n) and R ′ m (n) playing a crucial role in the proofs.

2 Proof of Theorem 1.1

Given a finite graph G, we define ρ ′ (G) to be the largest natural number such that G contains two (not necessarily disjoint) subsets A and B of vertices satisfying the following two conditions:

1. All vertices of A are adjacent to each other and no vertices of B are adjacent.

♯(

A) + ♯(B) = ρ ′ (G).
In this section, the letter A always denotes a set of pairwise adjacent vertices and B denotes a set of pairwise non-adjacent vertices. Two such subsets A, B of vertices in a graph

G realize ρ ′ (G) if ρ ′ (G) = ♯(A) + ♯(B).
We define R ′ (n) as the smallest natural integer such that ρ ′ (G) ≥ n for every graph G with R ′ (n) vertices.

Lemma 2.1. We have R(n) ≤ R ′ (2n -1).
Proof A graph G with R ′ (2n -1) vertices contains subsets A and B of vertices realizing ρ ′ (G) ≥ 2n -1. One of the subsets A, B thus contains at least n vertices. If ♯(A) ≥ n, the graph G contains a complete subgraph of n vertices, if ♯(B) ≥ n, the graph G contains n pairwise non-adjacent vertices.

2 Lemma 2.2. We have R ′ (n + 1) ≤ 2R ′ (n).
Proof We choose a vertex v in a graph G with 2R ′ (n) vertices. We denote by G v the subgraph of G\{v} defined by all neighbours of v. Up to replacing G by its complementary graph (and exchanging the roles of the sets A and B), we can suppose that G v has at least ⌈(2R ′ (n) -1)/2⌉ = R ′ (n) vertices. Hence we have ρ ′ (G) ≥ n and we can find subsets A, B of vertices in G v which realize ρ ′ (G). The subset A ∪ {v} contains thus ♯(A) + 1 pairwise adjacent vertices of G and we have ρ

′ (G) ≥ ♯(A ∪ {v}) + ♯(B) = ρ ′ (G v ) + 1 ≥ n + 1. 2 Proposition 2.3. We have R ′ (n) ≤ 2 n-2 for n ≥ 2.
Proof If n = 2 we take A = B = {v} where v is the unique vertex of the trivial graph G = {v} on one vertex v.

Induction on n using Lemma 2.2 ends the proof. 2 Proof of Theorem 1.1 The proof follows from the inequalities

R(n) ≤ R ′ (2n -1) ≤ 2 2n-1-2 = 2 2n-3
given by Lemma 2.2 and Proposition 2. 

Value of R(3)

The inequality R ′ (4) ≤ 2 4-2 = 4 given by the case n = 2 of Proposition 2.3 is not sharp: Indeed, we have R ′ (4) = 3 as can be seen by inspecting all four possible graphs on three vertices. (The set A has respectively 1, 2, 2, 3 elements for a 3-vertex graph with 0, 1, 2, 3 edges.) Lemma 2.2 shows now R ′ (5) ≤ 6 and we get R(3) ≤ R ′ (5) ≤ 6 by Lemma 2.1. Since a cycle with 5 vertices contains no triangle and no triplet of pairwise non-adjacent vertices, both inequalities are sharp and we have R(3) = R ′ (5) = 6. 

(G) = ♯(A 1 ) + • • • + ♯(A m ). We say that m such subsets A 1 , . . . , A m realize ρ ′ (G).
We have of course ρ ′ (G) ≥ n if G contains at least R ′ (n) vertices. Examples:

1. We have R ′ m (m) = 1 by setting A 1 = A 2 = • • • = A m = {v}
where v is the unique vertex of the trivial graph with one vertex (the empty sets of edges in A 1 , . . . , A m have different colours by convention).

The value R ′ m (m) = 1 also follows from R m (1) = 1 applied to the the trivial inequality R ′ m (n + m -1) ≤ R m (n) obtained by completing a complete edge-monochromatic subgraph on n vertices with m -1 singletons representing complete edge-monochromatic subgraphs of the m -1 remaining colours.

R ′

m (m + 1) = 2 since an edge-coloured complete graph on 2 vertices is always monochromatic.

R ′

m (m + 2) = 3 since every edge-coloured triangle is either edgemonochromatic or contains two edges of different colours.

Lemma 3.1. We have R m (n) ≤ R ′ (m(n -1) + 1).
Proof A set of m integers summing up to m(n -1) + 1 contains an element at least equal to n. For every realization A 1 , . . . , A m of ρ ′ (G) ≥ m(n -1) + 1 of a graph G with R ′ (m(n -1) + 1) vertices there thus exists an index i such that A i defines an edge-monochromatic complete graph on at least n vertices.

2 Lemma 3.2. We have R ′ m (n + 1) ≤ 2 + m(R ′ m (n) -1).
Proof Fixing a vertex v in a complete graph G with 2 + m(R ′ m (n) -1) vertices and edges of m colours, we get a partition

V \ {v} = V 1 ∪ • • • ∪ V m of all vertices different from v by considering the set V i of vertices joined by an edge of colour i to v. Since V \ {v} has 1 + m(R ′ m (n) -1) elements, there exists a set V i containing at least R ′ m (n) vertices. The subgraph G i with vertices V i thus contains a realization A 1 , . . . , A m of ρ ′ m (G i ) ≥ n. Since v is
joined by edges of colour i to all elements of A i , the set of vertices A i ∪ {v} defines a complete edge-monochromatic subgraph of colour i in G. This

proves ρ ′ (G) ≥ ♯(A 1 ) + • • • + ♯(A i ∪ {v}) + • • • + ♯(A m ) = ρ ′ G i ) + 1 ≥ n + 1.2 Proposition 3.3. We have R ′ m (m + k) ≤ 1 + k-1 j=0 m j = 1 + m k -1 m -1
for every natural integer k (using the convention -1 j=0 m j = 0 if k = 0).

Proof The formula holds for k = 0 with 

A 1 = A 2 = • • • = A m =
R ′ (m + k + 1) ≤ 2 + m(R ′ m (m + k) -1) ≤ 2 + m     1 + k-1 j=0 m j   -1   = 1 + k j=0 m j
which ends the proof.

2 Proof of Theorem 1.2 We have R m (n) ≤ R ′ (m(n -1) + 1) ≤ 1 + m m(n-1)+1-m -1 m -1 = 1 + m mn-2m+1 -1 m -1
where the first inequality is Lemma 3.1 and the second inequality is Proposition 3.3.

2 4 Generalizations of the number R ′ m (n)
The number R ′ m (n) has two obvious generalizations. The first one is given by considering R ′ m,j (n) with j ∈ {1, . . . , m} defined as the smallest integer such that every complete graph with R ′ m,j (n) vertices and edges of m colours contains j edge-monochromatic complete subgraphs of different edge-colours and of size α 1 , . . . , α j such that α 1 + • • • + α j = n. Therefore we consider only the j colours corresponding to the j largest edge-monochromatic complete subgraphs. For j = 1, we recover the usual Ramsey numbers R m (n), for j = m we get the numbers R ′ m (n) introduced previously.

The second generalization depends on an unbounded function s : G -→ N (one can also work with m different unbounded functions s c : G -→ N indexed by colours or replace the target-set of natural integers by the set of non-negative real numbers) on the set G of all finite simple graphs.

For n ≥ 1 we define R ′ m,s (n) as the smallest integer such that every complete graph on R ′ m,s (n) vertices contains m (not necessarily complete) edge-monochromatic subgraphs G 1 , . . . , G m of colour 1, . . . , m satisfying s(G 1 )+s

(G 2 )+• • •+s(G m ) ≥ n (respectively s 1 (G 1 )+• • •+s m (G m ) ≥ n).
The numbers R ′ m (n) correspond to the choice s(G) = n if G is the complete graph on n vertices and s(G) = 0 otherwise.

Other perhaps interesting choices are s(G) = n if G is an n-cycle and s(G) = 0 otherwise, or s(G) = n if G is a simple path (two endpoints of degree 1 and all other vertices of degree 2) with n vertices.

It is of course possible to combine both generalizations by defining R ′ m,j,s (n) in the obvious way considering only the j colours giving the largest contributions to the sum s(G 1 ) +

• • • + s(G m ).

Analogues of R ′ for van der Waerden numbers

Van der Waerden's Theorem gives the existence of a function W : {2, 3, 4, . . . }× {2, 3, 4, . . . } -→ N associating to two integers m, n ≥ 2 the smallest natural integer W (m, n) such that every colouring of the W (m, n) consecutive natural integers 1, 2, . . . , W (m, n) with m colours contains a monochromatic arithmetic progression with n elements.

We define W ′ (m, n) in the obvious way as the smallest natural integer such that every colouring of 1, 2, . . . , W ′ (m, n) with m colours contains m (perhaps empty) monochromatic progressions of different colours and of lengths α 1 , . . . , α m summing up to n

= α 1 + • • • + α m .
We have W (m, n) ≤ W ′ (m, m(n -1) + 1) since a set of m integers strictly smaller than n sums up at most to m(n -1). It is easy to check that W ′ (2, 1) = 1, W ′ (2, 2) = 2 and W ′ (2, 3) = 3.

For W ′ (2, 4) we get W ′ (2, 4) = 6 as can be seen as follows: W ′ (2, 4) > 5 by inspection of the black-white colouring bbwbb of 1, 2, 3, 4, 5. Consider a black-white colouring of 1, . . . , 6 not containing a black progression of size α and a white progression of size β such that α + β ≥ 4. Such a colouring cannot use only one colour (otherwise we can take α = 6 or β = 6). It cannot use both colours twice (otherwise we can take α = 2 and β = 2). It uses thus one colour, say white, only once and we have necessarily α ≥ 3 and β = 1 since either 1, 3, 5 (for an even white element) or 2, 4, 6 (for an odd white element) are all black.

It is of course also possible to consider the numbers W ′ j (m, n) defined by considering only the j largest arithmetical progressions. For j = 1 we get the classical van der Waerden number W (m, n). Acknowledgements. I thank S. Eliahou and G. McShane for comments.

3 . 2 Remark 2 . 4 .

 3224 The proof of Proposition 2.3 can easily be rewritten algorithmically: Given a graph G with at least 2 n-2 ≥ 2 vertices, set A = B = ∅. While G has at least 4 vertices, choose a vertex v. Set A = A ∪ {v} and replace G by the subgraph induced by all neighbours of v if v has more neighbours than non-adjacent vertices in G. Otherwise set B = B ∪ {v} and replace G by the subgraph induced by all non-neighbours ( = v) of v. If G has 2 or 3 vertices, choose two vertices v, w and replace A by A ∪ {v, w} if v and w are adjacent. Otherwise replace B by B ∪ {v, w}.

Remark 2 . 5 .

 25 The value R ′ (4) = 3 can of course be used for improving the upper bound R(n) ≤ 2 2n-3 in Theorem 1.1 to 3 • 2 2n-5 for n ≥ 3. More generally, any interesting upper bound on R ′ (n) for n > 4 easily yields an improvement of Theorem 1.1.3 Proof of Theorem 1.2We define R ′ m (n) to be the smallest integer such that every complete graph with R ′ m (n) vertices and edges of m colours contains m (not necessarily disjoint) subsets of vertices A 1 , . . . , A m with ♯(A 1 ) + ♯(A 2 ) + • • • + ♯(A m ) = n and with A 1 , . . . , A m defining m complete edge-monochromatic graphs of different edge-colours.Given a complete graph G with m-coloured edges, we denote by ρ ′ (G) the largest integer such that G contains m (not necessarily disjoint) subsets A 1 , . . . , A m of vertices defining complete edge-monochromatic subgraphs of different colours and ρ ′

  {v} the unique vertex of the trivial graph {v} reduced to one vertex.Using Lemma 3.2 and induction on k we have