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A HYPERBOLIC MODEL OF CHEMOTAXIS ON A NETWORK:

A NUMERICAL STUDY

G. BRETTI1, R. NATALINI1, AND M. RIBOT2

Abstract. In this paper we deal with a semilinear hyperbolic chemotaxis
model in one space dimension evolving on a network, with suitable transmission
conditions at nodes. This framework is motivated by tissue-engineering
scaffolds used for improving wound healing. We introduce a numerical scheme,
which guarantees global mass densities conservation. Moreover our scheme
is able to yield a correct approximation of the effects of the source term at
equilibrium. Several numerical tests are presented to show the behavior of
solutions and to discuss the stability and the accuracy of our approximation.

1. Introduction

The movement of bacteria, cells or other microorganisms under the effect of
a chemical stimulus, represented by a chemoattractant, has been widely studied
in mathematics in the last two decades, see [21, 23, 26], and numerous models
involving partial differential equations have been proposed. The basic unknowns
in these chemotactic models are the density of individuals and the concentrations
of some chemical attractants. One of the most considered models is the Patlak-
Keller-Segel system [19], where the evolution of the density of cells is described
by a parabolic equation, and the concentration of a chemoattractant is generally
given by a parabolic or elliptic equation, depending on the different regimes to be
described and on authors’ choices. The behavior of this system is quite well known
now: in the one-dimensional case, the solution is always global in time, while in two
and more dimensions the solutions exist globally in time or blow up according to
the size of the initial data. However, a drawback of this model is that the diffusion
leads to a fast dissipation or an explosive behavior, and prevents us to observe
intermediate organized structures, like aggregation patterns.

By contrast, models based on hyperbolic/kinetic equations for the evolution of
the density of individuals, are characterized by a finite speed of propagation and
have registered a growing consideration in the last few years [7, 26, 6, 15, 5]. In
such models, the population is divided in compartments depending on the velocity
of propagation of individuals, giving raise to kinetic type equations, either with
continuous or discrete velocities.
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Here we consider an hyperbolic-parabolic system which arises as a simple model
for chemotaxis:

(1.1)





ut + vx = 0,
vt + λ2ux = φx u− v,
φt −Dφxx = au− bφ.

Such kind of models were originally considered in [27], and later reconsidered in [11].
They are based on an adaptation to the chemotactic case of the so-called hyperbolic
heat or Cattaneo or telegraph equation, adding a source term accounting for the
chemotactic motion in the equation for the flux. The function u is the density of
cells in the considered medium, v is their averaged flux and φ denotes the density
of chemoattractant. The individuals move at a constant speed λ, changing their
direction along the axis during the time. The positive constant D is the diffusion
coefficient of the chemoattractant; the positive coefficients a and b, are respectively
its production and degradation rates.

These equations are expected to behave asymptotically as the corresponding
parabolic equations, but displaying a different and richer transitory regime, and this
is what is known to happen at least without the chemotactic term. Analytically,
these models have been studied in [17, 16] and more recently in [14], where the
analytical features were almost completely worked out, at least around constant
equilibrium states, where it is proved that, at least for the Cauchy problem, the
solutions of the hyperbolic and parabolic models are close for large times.

The novelty of this paper is to consider this one dimensional model on a network.
More precisely, we consider system in the form (1.1) on each arc of the network,
and so we have to consider one set of solutions (u, v, φ) for each arc. Functions on
different arcs are coupled using suitable transmission conditions on each node of
the network. Conservation laws or wave equations on networks have already been
studied, for example in [8] for traffic flows or in [4, 29] for flexible strings distributed
along a planar graph. However, here we consider different types of transmission
conditions, which impose the continuity of the fluxes rather than the continuity
of the densities. Therefore, in this article, a particular care will be given to the
proper setting and the numerical approximation of the transmission conditions at
nodes, both for the hyperbolic and the parabolic parts of (1.1). In particular, some
conditions have to be imposed on the approximation of the boundary conditions,
in order to ensure the conservation of the total mass of the system. Let us also
mention that a first analytical study of system (1.1) on a network, coupled through
transmission conditions of this type, is carried out in [12].

The study of this system is motivated by the tissue-engineering research
concerning the movement of fibroblasts on artificial scaffolds [20, 22, 28], during
the process of dermal wound healing. The natural process of healing of a damaged
tissue occurs through a first phase in which fibroblasts, the stem cells to be in charge
of to the reparation of dermal tissue, create a new extracellular matrix, essentially
made by collagen, and, driven by chemotaxis, migrate to fill the wound. In recent
years, tissue-engineering research has developed some new techniques, which aim
at accelerating the wound healing. Actually, cellular migration on an injured
body zone is stimulated and improved by using artificial scaffolds constituted by
a network of crossed polymeric threads inserted within the wound, which mimic
the extracellular matrix. The fibroblasts’s reparation action is accelerated, since
they already have a support and also they are constrained to move along the
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network, with less degrees of freedom, and it is believed that this approach could be
effective in minimizing scarring [28]. Therefore, our simple model of chemotaxis on
a network, which can be obtained by reducing the kinetic model of cell movement
on a 3D extracellular matrix proposed in [3] to the case of a network, see [12], is
a good candidate for reproducing this configuration: the arcs of the network stand
for the fibers of the scaffold and the transport equations give the evolution of the
density of fibroblasts on each fiber. However, in this paper, we only address the
numerical aspects of this problem. More direct applications of this framework to the
real biomedical problem will be explored in future research. As reported in [20], the
present understanding of the critical biochemical and biophysical parameters that
affect cell motility in three-dimensional environments is quite limited. Nevertheless,
it has been observed that junction interactions affect local directional persistence
as well as cell speed at and away from the junctions, so providing a new mechanism
to control cell motility by using the extracellular microstructure. Therefore,
mathematical modeling and simulations could play a crucial role in providing a
better understanding of these phenomena, and an optimization tool for designing
improved scaffolds.

The main focus of this paper is on the construction of an effective numerical
scheme for computing the solutions to this problem, which is not an easy task, even
for the case of a single arc. In that case, non constant highly concentrated stationary
solutions are expected and schemes which are able to capture these large gradients
in an accurate way are needed. The main problem is to balance correctly the
source term with the differential part, in order to avoid an incorrect approximation
of the density flux at equilibrium, as first observed in [14]. Asymptotic High Order
schemes (AHO) were introduced in [25], inspired by [1], to deal with this kind
of inaccuracies. These schemes are based on standard finite differences methods,
modified by a suitable treatment of the source terms, and they take into account for
the behavior of the solutions near non constant stationary states. An alternative
approach, inspired by the well-balanced methods, has been proposed in [9, 10], with
similar results. However the methods in [25] seem easier to be generalized to the
present framework.

Regarding the problem considered in this paper, the main difficulty is in the
discretization of the transmission conditions at node, also enforcing global mass
conservation at the discrete level. Therefore, in Section 2 we explain some
analytical properties of problem (1.1), with a particular emphasis on boundary and
transmission conditions. Section 3 is devoted to the numerical approximation of the
problem based on a AHO scheme with a suitable discretization of the transmission
and boundary conditions ensuring the mass conservation. In the present paper,
we have chosen to consider only the second order version of the scheme, which
is enough for our purposes, but it is easy to adapt also the third order schemes
proposed in [25]. Remark that here, unlike the single interval case, we are forced,
for any given time step, to fix the space step on each arc using relation (3.14)
introduced in Section 3, to obtain consistency on the boundary. Numerical tests
(not shown) confirm the necessity of this supplementary constraint.

Finally, in Section 4, we report some numerical experiments, to show the behavior
and the stability of our scheme. A special attention is given to the stability of the
scheme near nodes and the correct behavior of the approximation for large times
and near asymptotic states. It has to be mentioned that during this research we
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observed, in contrast with what happens for the diffusive models, the appearance
of blow-up phenomena even for data of relative moderated size. Even if, up to now,
there are no rigorous results, which can help to decide if these singular events are
really occurring, or they are just a numerical artifact, our close investigation in
Subsection 4.3 gives a strong indication towards the first alternative.

2. Analytical background

Let us define a network or a connected graph G = (N ,A), as composed of two
finite sets, a set of P nodes (or vertices) N and a set of N arcs (or edges) A,
such that an arc connects a pair of nodes. Since arcs are bidirectional the graph
is non-oriented, but we need to fix an artificial orientation in order to fix a sign to
the velocities. The network is therefore composed of ”oriented” arcs and there are
two different types of intervals at a node p ∈ N : incoming ones – the set of these
intervals is denoted by Ip – and outgoing ones – whose set is denoted by Op. For
example, on the network depicted in Figure 1, 1, 2 ∈ I and 3, 4 ∈ O. We will also
denote in the following by Iout and Oout the set of the arcs incoming or outgoing
from the outer boundaries. The N arcs of the network are parametrized as intervals
ai = [0, Li], i = 1, . . . , N , and for an incoming arc, Li is the abscissa of the node,
whereas it is 0 for an outgoing arc.
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Figure 1. First example of network.

2.1. Evolution equations for the problem. We consider system (1.1) on each
arc and rewrite it in diagonal variables for its hyperbolic part by setting

(2.1) u± =
1

2

(
u±

v

λ

)
.

Here u+ and u− are the Riemann invariants of the system and u+ (resp. u−) denotes
the density of cells following the orientation of the arc (resp. the density of cells
going in the opposite direction). This transformation is inverted by u = u+ + u−
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and v = λ(u+ − u−), and yields:

(2.2)





u+
t + λu+

x =
1

2λ

(
(φx − λ)u+ + (φx + λ)u−

)
,

u−
t − λu−

x = −
1

2λ

(
(φx − λ)u+ + (φx + λ)u−

)
,

φt −Dφxx = a(u+ + u−)− bφ.

We can also denote by T± = 1
2λ (φx∓λ) the turning rates (namely the probabilities

of cells to change direction) and a(u+ + u−) − bφ represents the production and
degradation of the chemoattractant. We assume that all the cells are moving along
an arc with the same velocity λ (in modulus), which may depend however on the
characteristics of the arc. For the moment, we omitted the indexes related to the
arc number since no confusion was possible. From now on, however, we need to
distinguish the quantities on different arcs and we denote by u±

i , ui , vi and φi the
values of the corresponding variables on the i-th arc. On the outer boundaries, we
could consider general boundary conditions:

(2.3)

{
u+
i (0, t) = αi(t)u

−
i (0, t) + βi(t), if i ∈ Iout,

u−
i (Li, t) = αi(t)u

+
i (Li, t) + βi(t), if i ∈ Oout.

For αi(t) = 1 and βi(t) = 0, we just recover the standard no-flux boundary condition

(2.4) u+
i (., t) = u−

i (., t) (which is equivalent to v(., t) = 0).

On the outer boundaries, we also consider no-flux (Neumann) boundary
conditions for φ, which read

(2.5) ∂xφi(., t) = 0.

The no-flux boundary conditions mean that, on the boundary, the fluxes of cells
and chemoattractants are null. This condition could be generalized, for example in
the case when we assume that there is a production of fibroblasts on the boundary.

2.2. Transmission conditions at a node. Now, let us describe how to define the
conditions at a node; this is an important point, since the behavior of the solution
will be very different according to the conditions we choose. Moreover, let us recall
that the coupling between the densities on the arcs are obtained through these
conditions. At node p ∈ N , we have to give values to the components such that
the corresponding characteristics are going out of the node. Therefore, we consider
the following transmission conditions at node:

(2.6)






u−
i (Li, t) =

∑

j∈Ip

ξi,ju
+
j (Lj , t) +

∑

j∈Op

ξi,ju
−
j (0, t), if i ∈ Ip,

u+
i (0, t) =

∑

j∈Ip

ξi,ju
+
j (Lj , t) +

∑

j∈Op

ξi,ju
−
j (0, t), if i ∈ Op,

where the constant ξi,j ∈ [0, 1] are the transmission coefficients: they represent the
probability that a cell at a node decides to move from the i−th to the j−th arc of
the network, also including the turnabout on the same arc. Let us notice that the
condition differs when the arc is an incoming or an outgoing arc. Indeed, for an
incoming (resp. outgoing) arc, the value of the function u+

i (resp. u−
i ) at the node

is obtained through the system and we need only to define u−
i (resp. u+

i ) at the
boundary.
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These transmission conditions do not guarantee the continuity of the densities
at node; however, we are interested in having the continuity of the fluxes at the
node, meaning that we cannot loose nor gain any cells during the passage through
a node. This is obtained using a condition mixing the transmission coefficients ξi,j
and the velocities of the arcs connected at node p. Fixing a node and denoting the
velocities of the arcs by λi, i ∈ Ip ∪ Op, in order to have the flux conservation at
node p, which is given by:

(2.7)
∑

i∈Ip

λi(u
+
i (Li, t)− u−

i (Li, t)) =
∑

i∈Op

λi(u
+
i (0, t)− u−

i (0, t)),

it is enough to impose the following conditions:

(2.8)
∑

i∈Ip∪Op

λiξi,j = λj , j ∈ Ip ∪Op.

Notice that, condition (2.7), can be rewritten in the u− v variables as

(2.9)
∑

i∈Ip

vi(Li, t) =
∑

i∈Op

vi(0, t).

This condition ensures that the global mass µ(t) of the system is conserved along
the time, namely:

(2.10) µ(t) =
N∑

i=1

∫ Li

0

ui(x, t)dx = µ0 :=
N∑

i=1

∫ Li

0

ui(x, 0)dx, for all t > 0.

2.3. Dissipative transmission coefficients for the hyperbolic problem. It
is sometimes useful to restrict our attention to the case of positive transmission
coefficients of dissipative type, in the sense that they ensure energy decay of the
solutions to the linear version of system (1.1), namely:

(2.11)

{
ut + vx = 0,
vt + λ2ux = −v,

on a general network, with no-flux conditions (2.4) on the external nodes, and
transmission conditions (2.6) at the internal nodes, always assuming the flux
conservation condition (2.8) at nodes.

To obtain the decay in time of the energy, which is defined by

E(t) =

(
N∑

i=1

∫ Li

0

(
u2
i (x, t) +

v2i (x, t)

λ2
i

)
dx

)1/2

,

it is sufficient to impose some equalities on the coefficients, as proved in [12].

Proposition 1 ([12]). The energy associated with the solutions to system
(2.11), with no-flux conditions (2.4) on the external nodes, and transmission
conditions (2.6) at the internal nodes, assuming condition (2.8), is decreasing if
the transmission coefficients ξi,j belong to [0, 1], and at every node p ∈ N , we have:

(2.12)
∑

j∈Ip∪Op

ξi,j = 1 for all i ∈ Ip ∪Op.
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Actually, in [12], it is proved that under the assumptions of Proposition 1, it
is possible to define a monotone generator of semigroup, and then a contraction
semigroup, in the Sobolev space H1, for the linear transmission problem (2.11) on
a network. Let us remark also that in the simplest case of a network composed by
two arcs (one incoming and one outgoing, see next Figure 2), these conditions are
also necessary in order to have the dissipation property. In such a case we have
that dissipativity is given iff:

(2.13) max

{
0,

λ1 − λ2

λ1

}
≤ ξ1,1 ≤ 1, λ2(1− ξ2,2) = λ1(1 − ξ1,1).

Using the previous relations and conditions on the coefficients ξi,j given by (2.8),
we obtain the values for the two missing coefficients:

(2.14) ξ1,2 = 1− ξ1,1, ξ2,1 =
λ1

λ2

(1 − ξ1,1),

so, we have only one degree of freedom.

2.4. Transmission conditions for φ. Now let us consider the transmission
conditions for φ in system (1.1). We complement conditions (2.3), (2.5), and
(2.6) with a transmission condition for φ. As previously, we do not impose the
continuity of the density of chemoattractant φ, but only the continuity of the flux
at node p ∈ N . Therefore, we use the Kedem-Katchalsky permeability condition
[18], which has been first proposed in the case of flux through a membrane. For
some positive coefficients κi,j , we impose at node

(2.15) Di∂nφi =
∑

j∈Ip∪Op

κi,j(φj − φi), i ∈ Ip ∪Op.

The condition

(2.16) κi,j = κj,i, i, j = 1, . . . , N

yields the conservation of the fluxes at node p, that is to say
∑

i∈Ip∪Op

Di∂nφi = 0.

Let us also notice that we can assume that κi,i = 0, i = 1, . . . , N , which does
not change condition (2.15). Finally, notice that the positivity of the transmission
coefficients κi,j , guarantees the energy dissipation for the equation for φ in (1.1),
when the term in u is absent.

2.5. Stationary solutions. First we consider stationary solutions, which are
known to drive the asymptotic behavior of the system. Let us consider the case
of stationary solutions of system (1.1), complemented with boundary conditions
(2.4), (2.5), (2.6), and (2.15). In the general case, we find on each arc the following
solution :

(2.17)






vi = constant,

ui = exp(φi/λ
2
i )

(
Ci −

vi
λ2
i

∫ x

0

exp(−φi(y)/λ
2
i )dy

)
,

−Diφi,xx = aiui − biφi,
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which leads to solve, on each arc, the scalar non-local equation:

(2.18) −Diφi,xx = ai exp(φi/λ
2
i )

(
Ci −

vi
λ2
i

∫ x

0

exp(−φi(y)/λ
2
i )dy

)
− biφi,

which has to be coupled at each node by the boundary conditions (2.4), (2.5), (2.6),
and (2.15).

We can prove easily that in the case of dissipative coefficients ξi,j satisfying (2.8),
(2.12) and the condition ξi,j > 0, if all the fluxes vi are null, then the density u is
continuous at a node, namely at a node p, the functions ui, i ∈ Ip∪Op have all the
same values. However, this is not the general case.

��

���

�
��

��

Figure 2. One incoming and one outgoing arc connected at a node.

For the simplest network composed of one incoming I = {1} and one outgoing
O = {2} arc, represented in Fig. 2, we find on each interval that v1 = v2 = 0 from
condition (2.4), and so we obtain the following local system for φ1 and φ2 :

(2.19)

{
−D1φ1,xx = a1C1 exp(φ1/λ

2
1)− b1φ1,

−D2φ2,xx = a2C2 exp(φ2/λ
2
2)− b2φ2,

with boundary conditions (2.5) and (2.15) for φ1 and φ2, which reads

∂xφ1(L1) = ∂xφ2(0) = κ1,2(φ2(0)− φ1(L1)),

and

∂xφ1(0) = ∂xφ2(L2) = 0.

We have also to take into account the following condition given by transmission
condition (2.6) :

λ2ξ2,1C1 exp(φ1(L1)/λ
2
1) = λ1ξ1,2C2 exp(φ2(0)/λ

2
2).

Solving the corresponding system for φ1 and φ2 is a difficult task, even
numerically, since an infinite number of solutions exist both for φ1 and φ2, as
in the case of a single interval [14], and it should be necessary to make them verify
the above conditions at node. In order to simplify our study, we limit ourselves to
state a result in the case of constant (in space) stationary solutions to system (1.1).

Proposition 2. Let us consider a general network G = (N ,A) and system (1.1)
set on each arc of the network, complemented with boundary and transmission
conditions (2.4), (2.5), (2.6), and (2.15).

(i) For general values of transmission coefficients ξi,j satisfying (2.8), there is
no non trivial constant stationary solution.

(ii) For the special case of transmission coefficients ξi,j satisfying the dissipation
relations (2.8) and (2.12) and of the ratios ai/bi being equal to the same constant
on each arc, there exists a one-parameter stationary solution, which is constant by
arc.
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Proof. Take a constant (in space) stationary solution to system (1.1). This means
that on each arc of the network, we have three constant values (ui, vi, φi), which
satisfy vi = 0, since vi = uiφix = 0, aiui = biφi, and boundary conditions (2.6),
(2.15), which become in that case

(2.20) ui =
∑

j∈Ip∪Op

ξi,juj ,

and

(2.21) 0 =
∑

j 6=i

κi,j(φj − φi).

We remark that conditions (2.4) and (2.5) are automatically satisfied.
(i) Denoting by N the number of arcs of the network, we have to fix therefore N

unknowns to determine the stationary solution. Conditions (2.20) – (2.21) impose
4 equations by arc, unless the arc is connected to an outer node. In that case, there
are only 2 conditions. To sum up, if we denote by Nout the number of outer nodes,
we need to satisfy 4N − 2Nout conditions. Taking into account relations (2.8), we
obtain that equations (2.6) are linked and the system can be reduced to a system
of 4N − 2Nout −Nin conditions, where Nin is the number of inner nodes, which is,
generally speaking, greater than the number of unknowns. Therefore, unless some
particular sets of coefficients κi,j and ξi,j , the only solution for previous system is
the null one on each arc.

(ii) Now, let us consider transmission coefficients ξi,j satisfying relations (2.8)
and (2.12). We also assume that there exists a constant α such that, for all i, we
have ai = αbi. In that case, we can find a stationary solution defined on each arc by
(U, 0, αU). Such kind of solution satisfies clearly the transmission condition (2.21),
but satisfies also condition (2.20) with relations (2.12). �

In the case (i) of the previous proposition, since the total initial mass is
strictly positive and is preserved in time, we cannot expect the system to converge
asymptotically to a stationary state which is constant on each arc and so non-
constant asymptotic solutions are expected. In the case (ii), the constant state can
be reached, and U is determined by the total mass of the initial data.

3. Numerical schemes

Here we introduce our numerical schemes. We first give some details about
schemes for system (1.1) on a single interval and the discretization of boundary
conditions presented in [25]. Therefore, our main goal will be to generalize these
schemes to the case of a network. In the two first subsections, we will concentrate on
the discretization of the hyperbolic part, whereas the discretization of the parabolic
part will be treated in subsection 3.3.

3.1. Short review of the results from [25] about AHO schemes for system
(3.1) on a single interval. Let us consider a fixed single interval [0, L]. We define
a numerical grid using the following notations: h is the space grid size, k is the
time grid size and (xj , tn) = (jh, nk) for j = 0, . . . ,M + 1, n ∈ N are the grid
points. In this subsection, we denote by wn,j the discretization of function w on
the grid at time tn and at point xj for j = 0, . . . ,M +1 and n ≥ 0. We also use the
notation fn,j for f(xj , tn), where f is an explicitly known function depending on
(x, t). Here we describe the discretization of system (1.1) with no–flux boundary
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conditions v(0, t) = v(L, t) = 0, denoting by f = φx u and omitting the parabolic
equation for φ. Since we also work with Neumann boundary conditions for the
φ function, the function f will satisfy the following conditions on the boundary :
f(0, t) = f(L, t) = 0. We therefore consider the following system

(3.1)

{
ut + vx = 0,
vt + λ2ux = f − v

and rewrite it in a diagonal form, using the usual change of variables (2.1),

(3.2)





u−
t − λu−

x =
1

2
(u+ − u−)−

1

2λ
f,

u+
t + λu+

x =
1

2
(u− − u+) +

1

2λ
f.

Set ω =

(
u−

u+

)
, so that we can rewrite the system in vector form

(3.3) ωt + Λωx = Bω + F,

with Λ =

(
−λ 0
0 λ

)
, B =

1

2

(
−1 1
1 −1

)
and F =

1

2λ

(
−f
f

)
. As shown in

[25], to have a reliable scheme, with a correct resolution of fluxes at equilibrium,
we have to deal with Asymptotically High Order schemes in the following form :
(3.4)
ωn+1,i − ωn,i

k
+

Λ

2h

(
ωn,i+1 − ωn,i−1

)
−

λ

2h
(ωn,i+1−2ωn,i+ωn,i−1) =

∑

ℓ=−1,0,1

Bℓ ωn,i+ℓ+
∑

ℓ=−1,0,1

Dℓ Fn,i+ℓ.

With the following choice of the matrices

(3.5)

B0 =
1

4

(
−1 1
1 −1

)
, B1 =

1

4

(
−1 1
0 0

)
, B−1 =

1

4

(
0 0
1 −1

)
,

D0 =
1

2

(
1 0
0 1

)
, D−1 =

1

2

(
0 0
0 1

)
, D1 =

1

2

(
1 0
0 0

)
,

we have a second–order AHO scheme on every stationary solutions, which is enough
to balance the flux of the system at equilibrium. This means that the scheme is
second order when evaluated on stationary solutions. Monotonicity conditions are

satisfied if h ≤ 4λ and k ≤
4h

h+ 4λ
, see [25] for more details. Let us mention that

it should be easy to consider third–order AHO schemes, but for simplicity (these
schemes require a fourth–order AHO scheme for the parabolic equation with a five-
points discretization for φx), we prefer to limit our presentation to the second–order
case.

Boundary conditions for scheme (3.4) have to be treated carefully, to enforce
mass-conservation. In [25], the following boundary conditions were used :

(3.6)

vn+1,0 = vn+1,M+1 = 0,

un+1,0 =

(
1− λ

k

h

)
un,0 + λ

k

h
un,1 − k

(
1

h
−

1

2λ

)
vn,1 −

k

2λ
fn,1,

un+1,M+1 =

(
1− λ

k

h

)
un,M+1 + λ

k

h
un,M + k

(
1

h
−

1

2λ

)
vn,M +

k

2λ
fn,M .

These boundary conditions have been obtained by calculating the difference of
the discrete mass at two successive computational times and defining un+1,0 and
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un+1,M+1 as a function of the discrete quantities computed at time tn in order to
cancel exactly this difference. Consequently, the discrete mass will be preserved

in time as the continuous mass

∫ L

0

u(x, t)dx is conserved for system (3.1) with

boundary conditions v(0, t) = v(L, t) = 0, at the continuous level. This technique
will be generalized in this paper to the case of a network.

3.2. The AHO scheme for system (3.1) in the case of a network. Let us
consider a network as previously defined in Section 2. Each arc ai ∈ A, 1 ≤ i ≤ N ,
is parametrized as an interval ai = [0, Li] and is discretized with a space step hi and

discretization points xj
i for j = 0, . . . ,Mi + 1. We still denote by k the time step,

which is the same for all the arcs of the network. In this subsection, we denote
by wn,j

i the discretization on the grid at time tn and at point xj
i of a function

wi, i = 1, . . . , N on the i-th arc for j = 0, . . . ,Mi + 1 and n ≥ 0.
Now, we consider the AHO scheme (3.4) on each interval, and we rewrite it in the

u−v variables thanks to the change of variables (2.1), in order to define the discrete
boundary and transmission conditions. We keep the possibility to use different AHO
schemes on different intervals and therefore the coefficients of the scheme will be

indexed by the number of the arc. Let R =

(
1 1
−λ λ

)
be the matrix associated

to the change of variables (2.1), namely such that

(
u
v

)
= R

(
u−

u+

)
. We rewrite

(3.4) in the variables u and v as :
(3.7)

un+1,j
i = un,j

i −
k

2hi

(
vn,j+1
i − vn,j−1

i

)
+

λik

2hi
(un,j+1

i − 2un,j
i + un,j−1

i ) +
k

2

(
∑

ℓ=−1,0,1

βℓ
u,u,iu

n,j+ℓ
i

+
1

λi

∑

ℓ=−1,0,1

βℓ
u,v,iv

n,j+ℓ
i +

1

λi

∑

ℓ=−1,0,1

γℓ
u,if

n,j+ℓ
i

)
,

vn+1,j
i = vn,ji −

λ2
i k

2hi

(
un,j+1
i − un,j−1

i

)
+

λik

2hi
(vn,j+1

i − 2vn,ji + vn,j−1
i ) +

k

2

(
λi

∑

ℓ=−1,0,1

βℓ
v,u,iu

n,j+ℓ
i

+
∑

ℓ=−1,0,1

βℓ
v,v,iv

n,j+ℓ
i +

∑

ℓ=−1,0,1

γℓ
v,if

n,j+ℓ
i

)
,

with coefficients βℓ
u,u, β

ℓ
u,v, β

ℓ
v,u, β

ℓ
v,v and γℓ

u, γ
ℓ
v defined by

(3.8) RBℓR−1 =
1

2

(
βℓ
u,u βℓ

u,v/λ
λβℓ

v,u βℓ
v,v

)
, RDℓR−1 =

1

2

(
∗ γℓ

u/λ
∗ γℓ

v

)
.

Now, we define the numerical boundary conditions associated to this scheme.
As before for equation (3.6), we need four boundary or transmission conditions to
implement this scheme on each interval. Considering an arc and its initial and end
nodes, there are two possibilities: either they are external nodes, namely nodes from
the outer boundaries linked to only one arc, or they are internal nodes connecting
several arcs together. The boundary and transmission conditions will therefore
depend on this feature. Below, we will impose two boundary conditions (3.9)–(3.12)
at outer nodes, and two transmission conditions (3.10)–(3.13) at inner nodes.
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The first type of boundary conditions will come from condition (2.4) at outer
nodes :

(3.9)

{
vn+1,0
i = 0, if i ∈ Iout,

vn+1,Mi+1
i = 0, if i ∈ Oout,

where Iout (resp. Oout) means that the arc is incoming from (resp. outgoing to) the
outer boundary. The second one will come from a discretization of the transmission
condition (2.6) at node p, that is to say

(3.10)






un,Mi+1
−,i =

∑

j∈Ip

ξi,ju
n,Mj+1

+,j +
∑

j∈Op

ξi,ju
n,0
−,j, if i ∈ Ip,

un,0
+,i =

∑

j∈Ip

ξi,ju
n,Mj+1

+,j +
∑

j∈Op

ξi,ju
n,0
−,j, if i ∈ Op.

However, these relations link all the unknowns together and they cannot be used
alone. An effective way to compute all these quantities will be presented after
equation (3.13) below. We still have two missing conditions per arc, which can
be recovered by imposing the exact mass conservation between two successive

computational steps. The discrete total mass is given by I
n

tot
=

N∑

i=1

I
n
i , where

the mass corresponding to the arc i is defined as:

(3.11) I
n
i = hi


un,0

i

2
+

Mi∑

j=1

un,j
i +

un,Mi+1
i

2


 .

Computing I
n+1
tot

− I
n

tot
, we find:

I
n+1
tot

− I
n

tot
=

N∑

i=1

hik

2

(
1

k
(un+1,0

i − un,0
i ) +

1

hi
(vn,1i + vn,0i ) +

λi

hi
(un,0

i − un,1
i ) + β−1

u,u,iu
n,0
i − β1

u,u,iu
n,1
i

−
1

λi
β1
u,v,iv

n,1
i +

1

λi
β−1
u,v,iv

n,0
i −

1

λi

(
γ1
u,if

n,1
i − γ−1

u,if
n,0
i

))

+
hik

2

(
1

k
(un+1,Mi+1

i − un,Mi+1
i )−

1

hi
(vn,Mi

i + vn,Mi+1
i ) +

λi

hi
(un,Mi+1

i − un,Mi

i ) + β1
u,u,iu

n,Mi+1
i − β−1

u,u,iu
n,M
i

−
1

λi
β−1
u,v,iv

n,Mi

i +
1

λi
β1
u,v,iv

n,Mi+1
i +

1

λi

(
γ1
u,if

n,Mi+1
i − γ−1

u,if
n,Mi

i

))
.

We are going to impose boundary conditions such that the right-hand side in the
previous difference is exactly canceled. On the outer boundaries we obtain the
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following type of boundary conditions, following equation (3.6) :
(3.12)




un+1,0
i =

(
1− λi

k

hi
− kβ−1

u,u,i

)
un,0
i + k

(
λi

hi
+ β1

u,u,i

)
un,1
i − k

(
1

hi
−

β1
u,v,i

λi

)
vn,1i

+
k

λi

(
γ1
u,if

n,1
i − γ−1

u,if
n,0
i

)
, if i ∈ Iout,

un+1,Mi+1
i =

(
1− λi

k

hi
− kβ−1

u,u,i

)
un,Mi+1
i + k

(
λi

hi
+ β1

u,u,i

)
un,Mi

i + k

(
1

hi
−

β−1
u,v,i

λi

)
vn,Mi

i

−
k

λi

(
γ1
u,if

n,Mi+1
i − γ−1

u,if
n,Mi

i

)
, if i ∈ Oout,

where Iout and Oout have the same meaning as previously. These expressions
correspond to boundary conditions (3.6) in the case of a more general AHO scheme

[25]. Then, using the conditions (3.12) to simplify the computation of In+1
tot

−I
n

tot

and summing with respect to the nodes instead of the arcs, we can rewrite the
remaining difference of mass in u± variables as:

I
n+1
tot

− I
n

tot
=
∑

p∈N

∑

i∈Op

hik

2

(
1

k
un+1,0
+,i +

1

k
un+1,0
−,i + un,0

+,i

(
−
1

k
+ 2

λi

hi
+ β−1

u,u,i + β−1
u,v,i

)
+ un,0

−,i

(
−
1

k
+ β−1

u,u,i

− β−1
u,v,i

)
− un,1

+,i

(
β1
u,u,i + β1

u,v,i

)
+ un,1

−,i

(
−2

λi

hi
− β1

u,u,i + β1
u,v,i

)
−

1

λi
(γ1

u,if
n,1
i − γ−1

u,if
n,0
i )

)

+
∑

p∈N

∑

i∈Ip

hik

2

(
1

k
un+1,Mi+1
+,i +

1

k
un+1,Mi+1
−,i + un,Mi+1

+,i

(
−
1

k
+ β1

u,u,i + β1
u,v,i

)
+ un,Mi+1

−,i

(
−
1

k
+ 2

λi

hi
+ β1

u,u,i

− β1
u,v,i

)
− un,Mi

+,i (2
λi

hi
+ β−1

u,u,i + β−1
u,v,i) + un,Mi

−,i

(
−β−1

u,u,i + β−1
u,v,i

)
+

1

λi
(γ1

u,if
n,Mi+1
i − γ−1

u,if
n,Mi

i )

)
.

Therefore, using the transmission conditions (3.10) for un+1,Mi+1
−,i if i ∈ Ip and

for un+1,0
+,i if i ∈ Op, we can split the equation interval by interval and obtain the

following numerical boundary conditions:
(3.13)

un+1,Mi+1
+,i = hi



hi +
∑

j∈Ip∪Op

hjξj,i




−1

×
(
un,Mi+1
+,i (1− kβ1

u,u,i − kβ1
u,v,i) + un,Mi+1

−,i

(
1− 2k

λi

hi
− kβ1

u,u,i

+ kβ1
u,v,i

)
+ kun,Mi

+,i

(
2
λi

hi
+ β−1

u,u,i + β−1
u,v,i

)
+ kun,Mi

−,i (β−1
u,u,i − β−1

u,v,i)−
k

λi

(
γ1
u,if

n,Mi+1
i − γ−1

u,if
n,Mi

i

))
, if i ∈

un+1,0
−,i = hi


hi +

∑

j∈Ip∪Op

hjξj,i




−1

×
(
un,0
+,i(1− 2k

λi

hi
− kβ−1

u,u,i − kβ−1
u,v,i) + un,0

−,i

(
1− kβ−1

u,u,i + kβ−1
u,v,i

)

+ kun,1
+,i(β

1
u,u,i + β1

u,v,i) + kun,1
−,i

(
2
λi

hi
+ β1

u,u,i − β1
u,v,i

)
+

k

λi
(γ1

u,if
n,1
i − γ−1

u,if
n,0
i )

)
, if i ∈ Op.

Once these quantities are computed, we can use equations (3.10) at time tn+1, to

obtain un+1,Mi+1
−,i if i ∈ Ip and un+1,0

+,i if i ∈ Op.
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In conclusion, we have imposed four boundary conditions (3.9), (3.10), (3.12),
and (3.13) on each interval. Conditions (3.9) and (3.12) deal with the outer
boundary and are written in the u−v variables, whereas conditions (3.10) and (3.13)
deal with the node and are written in the u± variables. Under these conditions,
the total numerical mass is conserved at each step.

Now, we have to discuss the consistency of all these conditions. First, conditions
(3.9), (3.10) are imposed exactly. Besides, it has been proved in [25] that conditions
(3.12), set on the outer boundary, are generally of order one and of order two on
stationary solutions. Finally, we need to consider the consistency of the conditions
(3.13) at node. We present here only the case i ∈ Op. Expanding in Taylor series
up to order one, we get:

un+1,0
−,i −

(
1 +

∑

j∈Ip∪Op

hj

hi
ξj,i
)−1

×
(
un,0
+,i(1− 2k

λi

hi
− kβ−1

u,u,i − kβ−1
u,v,i) + un,0

−,i

(
1− kβ−1

u,u,i + kβ−1
u,v,i

)

+ kun,1
+,i(β

1
u,u,i + β1

u,v,i) + kun,1
−,i

(
2
λi

hi
+ β1

u,u,i − β1
u,v,i

)
+

k

λi
(γ1

u,if
n,1
i − γ−1

u,if
n,0
i )

)

= un,0
−,i

(
1−

(
1 +

∑

j∈Ip∪Op

hj

hi
ξj,i
)−1(

1 + 2k
λi

hi

))
− un,0

+,i

(
1 +

∑

j∈Ip∪Op

hj

hi
ξj,i
)−1
(
1− 2k

λi

hi

)

+O(k +
∑

i∈Ip∪Op

hi).

Now, to have consistency, namely to cancel the last two terms on the R.H.S., we
need to impose the following condition linking the space and the time step on each
arc :

(3.14) hi = 2kλi,

which implies, thanks to (2.8):



1 +
∑

j∈Ip∪Op

hj

hi
ξj,i




−1

=
1

2
.
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Under this condition and using equations (3.2), expanding in Taylor series up to
order three we find:

un+1,0
−,i −

(
1 +

∑

j∈Ip∪Op

hj

hi
ξj,i
)−1

×
(
un,0
+,i(1− 2k

λi

hi
− kβ−1

u,u,i − kβ−1
u,v,i) + un,0

−,i

(
1− kβ−1

u,u,i + kβ−1
u,v,i

)

+ kun,1
+,i(β

1
u,u,i + β1

u,v,i) + kun,1
−,i

(
2
λi

hi
+ β1

u,u,i − β1
u,v,i

)
+

k

λi
(γ1

u,if
n,1
i − γ−1

u,if
n,0
i )

)

=
k

2
un,0
−,i(β

1
u,v,i + β−1

u,u,i − β1
u,u,i − β−1

u,v,i) + k∂tu
n,0
−,i +

k2

2
∂ttu

n,0
−,i − kλi

(
1 + k(β1

u,u,i − β1
u,v,i)

)
∂xu

n,0
−,i

− k2λ2
i ∂xxu

n,0
−,i +

k

2
un,0
+,i(β

−1
u,u,i + β−1

u,v,i − β1
u,u,i − β1

u,v,i)− k2λi

(
β1
u,u,i + β1

u,v,i

)
∂xu

n,0
+,i

−
k

2λi
(γ1

u,i − γ−1
u,i )f

n,0
i − k2γ1

u,i∂xf
n,0
i +O(k3)

=
k

2

(
un,0
−,i(−1 + β1

u,v,i + β−1
u,u,i − β1

u,u,i − β−1
u,v,i) + un,0

+,i(1 + β−1
u,u,i + β−1

u,v,i − β1
u,u,i − β1

u,v,i)

−
1

λi
(1 + γ1

u,i − γ−1
u,i )f

n,0
i

)
+ k2

(1
2
∂ttu

n,0
−,i − λi∂txu

n,0
−,i − λi(

1

2
+ β1

u,u,i − β1
u,v,i)∂xu

n,0
−,i

− λi(−
1

2
+ β1

u,u,i + β1
u,v,i)∂xu

n,0
+,i − (γ1

u,i +
1

2
)∂xf

n,0
i

)
+O(k3).

Thanks to this development we can state our general result of consistency.

Proposition 3. Given a general scheme in the form (3.4), the conditions (3.13)
at node are consistent only if on each arc the condition (3.14) is verified. To have
the second order accuracy at node the following conditions on the coefficients of the
scheme have to be verified:

(3.15) β1
u,u,i = β−1

u,u,i, β
1
u,v,i − β−1

u,v,i = 1, γ−1
u,i − γ1

u,i = 1.

Moreover, to have a third order accuracy for stationary solutions, we need :

(3.16) β1
u,u,i = β−1

u,u,i = 0, β1
u,v,i = −β−1

u,v,i =
1

2
, γ1

u,i = −γ−1
u,i = −

1

2
.

Notice that, all these conditions are satisfied for the Roe scheme defined by (3.5).

3.3. Discretization of the parabolic equation for φ in system (2.2). Now, let

us explain how to compute the approximations fn+1,j
i of the function f on the arc

i at discretization point xj
i and time tn+1 needed for computing (3.7), (3.12), and

(3.13). Referring to system (2.2), we have f = φxu, where φ satisfies the parabolic
equation φt −Dφxx = au − bφ on each arc. Boundary conditions for φ are given
by equations (2.5) on the outer boundary and (2.15) at a node.

We solve the parabolic equation, using a finite differences scheme in space and
a Crank-Nicolson method in time, namely an explicit-implicit method in time.

Therefore, we will have the following equation for φn,j
i , 1 ≤ j ≤ Mi,

(3.17)

φn+1,j
i = φn,j

i −
Dik

2h2
i

(
−φn,j+1

i + 2φn,j
i − φn,j−1

i

)
−

Dik

2h2
i

(
−φn+1,j+1

i + 2φn+1,j
i − φn+1,j−1

i

)

+
aik

2
(un+1,j

i + un,j
i )−

bik

2
(φn+1,j

i + φn,j
i ).

Now, let us find the two boundary conditions needed on each interval. As in
subsection 3.2, the boundary conditions will be given in the case of an outer node
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and in the case of an inner node. On the outer boundary, condition (2.5) for φ is
discretized using a second order approximation, which is

(3.18)






φn,0
i =

4

3
φn,1
i −

1

3
φn,2
i , if i ∈ Iout,

φn,Mi+1
i =

4

3
φn,Mi

i −
1

3
φn,Mi−1
i , if i ∈ Oout.

Let us now describe our numerical approximation for the transmission condition
(2.15) which, as the transmission condition for the hyperbolic part (2.6), couples
the φ functions of arcs having a node in common.

Condition (2.15) is discretized using the same second-order discretization formula
as before, namely we have at node p,

φn,Mi+1
i =

4

3
φn,Mi

i −
1

3
φn,Mi−1
i +

2

3

hi

Di

∑

j∈Ip

κi,j(φ
n,Mj+1

j − φn,Mi+1
i ) +

2

3

hi

Di

∑

j∈Op

κi,j(φ
n,0
j − φn,Mi+1

i ), if i ∈ I

φn,0
i =

4

3
φn,1
i −

1

3
φn,2
i +

2

3

hi

Di

∑

j∈Ip

κi,j(φ
n,Mj+1

j − φn,0
i ) +

2

3

hi

Di

∑

j∈Op

κi,j(φ
n,0
j − φn,0

i ), if i ∈ Op.

These relations can be rewritten as :
(3.19)
1 +

2

3

hi

Di

∑

j∈Ip∪Op

κi,j




︸ ︷︷ ︸
=ηp

i

φn,Mi+1
i =

4

3
φn,Mi

i −
1

3
φn,Mi−1
i +

2

3

hi

Di

∑

j∈Ip

κi,jφ
n,Mj+1

j +
2

3

hi

Di

∑

j∈Op

κi,jφ
n,0
j , if i ∈


1 +

2

3

hi

Di

∑

j∈Ip∪Op

κi,j




︸ ︷︷ ︸
=ηp

i

φn,0
i =

4

3
φn,1
i −

1

3
φn,2
i +

2

3

hi

Di

∑

j∈Ip

κi,jφ
n,Mj+1

j +
2

3

hi

Di

∑

j∈Op

κi,jφ
n,0
j , if i ∈ Op.

Let us remark that the previous discretizations are compatible with relations (3.18)
considering that for outer boundaries the coefficients κi,j are null. Therefore, in
this case, the value of ηouti is just equal to 1. Since equations (3.19) are coupling the
unknowns of all arcs altogether, we have to solve a large system which contains all
the equations of type (3.17) and also the discretizations of transmission conditions
(3.19).

Once the values of φn+1,j
i are known, we can compute a second-order

discretization of the derivatives of φ which gives the values of the f function, namely
:

φn+1,j
x,i =





1

2 hi

(
φn+1,j+1
i − φn+1,j−1

i

)
, 1 ≤ j ≤ Mi,

1

2 hi

(
−φn+1,2

i + 4φn+1,1
i − 3φn+1,0

i

)
, j = 0,

1

2 hi

(
φn+1,Mi−1
i − 4φn+1,Mi

i + 3φn+1,Mi+1
i

)
, j = Mi + 1.

The discretization of f needed at equations (3.7),(3.12), and (3.13) is therefore

given by fn+1,j
i = φn+1,j

x,i un+1,j
i .
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4. Numerical tests

Here we present some numerical experiments for system (1.1) on networks, with
the use of the methods introduced in Section 3, namely the second–order AHO
scheme for the hyperbolic part, complemented with the Crank-Nicolson scheme
for the parabolic part. We start with a simple test for the AHO scheme on the
hyperbolic part of Section 3 in the case of a simplified system, where φx is equal to
a constant α on each arc, for which we know the exact stationary states.

4.1. Case φx constant. For this example, we omit the equation for φ so that the
system becomes

(4.1)






u+
t + λu+

x =
1

2λ

(
(α− λ)u+ + (α+ λ)u−

)
,

u−
t − λu−

x = −
1

2λ

(
(α− λ)u+ + (α+ λ)u−

)
.

This system is suitable to test the accuracy of the numerical approximation, since it
is easy to compute its asymptotic stationary solutions. We also rewrite the previous
system (4.1) using the usual change of variables (2.1) which gives

(4.2)

{
ut + vx = 0,
vt + λ2ux = αu− v,

with α a constant. To satisfy the subcharacteristic condition in [24], we also assume
that

(4.3) λ > |α|.

Let us explain how to find the stationary states in the case of the two-arcs network
of Figure 2. The method can be easily generalized to more complex networks. In
that case, the stationary solutions satisfy the following equations on the intervals
I1 and I2 : {

vi,x = 0,
λ2
iui,x = αi ui − vi,

that is to say

(4.4)

{
vi = constant,
ui = Ci exp(αix/λ

2
i ) + vi/αi.

Since both intervals are connected to the outer boundary, due to boundary condition
(2.4), we have v1 = v2 = 0. Therefore we obtain non constant solutions on each

arc, given by u±
i =

ui

2
=

Ci

2
exp(αix/λ

2
i ) and the constants Ci are computed

thanks to condition (2.6). Remark that, in that case, we do not expect to have
asymptotic states given by constant stationary solutions, since the only possible
constant solution is the null one, which will be unsuitable, due to the constraint of
the conservation of mass. Set

(4.5) C̃1 =
C1

λ1

exp(α1L1/λ
2
1), C̃2 =

C2

λ2

.

These constants solve the following system :

(4.6) MC̃ =

(
λ1(ξ1,1 − 1) λ2ξ1,2

λ1ξ2,1 λ2(ξ2,2 − 1)

)(
C̃1

C̃2

)
= 0.



18 G. BRETTI, R. NATALINI AND M. RIBOT

According to (2.8), Ker M 6= {0}, and so we have at most one equation and two
unknowns. Therefore, there exists at least one family of non trivial stationary
solutions to system (4.2) and exactly one family when dim Ker M = 1. Remark
that in the general case of a single node with an arbitrary number of incoming
and outcoming arcs, assuming that all coefficients ξi,j are strictly positive – or
more generally, that the matrix formed by these coefficients is irreducible, which is
somewhat meaningful in the biological context –, we can prove that we have exactly
dim Ker M = 1, thanks to the classical Perron-Frobenius theorem.

In the case we are looking for an asymptotic state as a stationary state of the
system, we can also take into account the conservation for mass. In that case, the
stationary state we compute should have the same mass as the initial datum. More
precisely, according to equation

µ0 =
2∑

i=1

∫ Li

0

Ci exp

(
αx

λi
2

)
dx =

2∑

i=1

Ci
λ2
i

α

(
exp

(
αLi

λi
2

)
− 1

)
,

we have that the free parameter is fixed by the mass conservation.
In particular we set L1 = 4, L2 = 1, αi = α = 0.5, λ1 = 2, λ2 = 1 and take the

dissipative transmission coefficients ξ1,1 = 0.8, ξ2,1 = 0.4, ξ1,2 = 0.2, ξ2,2 = 0.6. If

µ0 = 250, the system is solved by C̃1 ∼ 28.13 and C̃2 ∼ 56.25, so that the stationary
solutions are u1 = C1 exp(x/8) and u2 = C2 exp(x/2), with C1 ∼ 34.12 and
C2 ∼ 56.25. The numerical simulations provide the asymptotic densities plotted
in Fig. 3 and we notice a nice agreement with the stationary solutions computed
analytically. Remark that densities are continuous at the node as explained in
Section 2.5 for dissipative coefficients and vanishing fluxes.

In Fig. 4 we present the log-log plot of the error in the L1-norm computed
using the formula (4.9) of Section 4, between the approximated and the asymptotic
solutions to system (4.2). The results in Fig. 4 show that the AHO approximation
scheme provides the stationary solutions of the simplified hyperbolic model (4.2)
with an accuracy of first order, and the error for the flux function v tends clearly
to zero, faster than for the function u.

More examples and results showing the asymptotic behavior of solutions to the
simple problem (4.2) on larger networks can be found in [2], while some analytical
results are given in [12].

4.2. Asymptotic solutions to the full system (2.2). Next, we deal with the
full system (2.2), which now include the chemotaxis equation. First, we consider
again a network with only two arcs. We take the following data: the total mass
µ0 = 160 distributed as a small perturbation of the value 20 on two arcs of
length L1 = 6 and L2 = 2, see Fig. 5, ai = bi = 1, ui(x, 0) = φi(x, 0) and
vi(x, 0) = 0, i = 1, 2 and λ1 = 5, λ2 = 4. In the next figures we represent the
asymptotic stable solutions to system (2.2) on the two-arcs network, produced by
our scheme. All the solutions are plotted at a time where the stationary state
is already reached. In particular, in Fig. 6 we plot a constant solution obtained
using the dissipative transmission coefficients of Section 2.3. In that case we can
observe what was explained in Section 2.5, namely that in the case of two arcs and
one node, there exist particular dissipative transmission coefficients, such that the
asymptotic stationary solutions are constants on all the arcs. In Fig. 7 we plot the
more common case of non-constant solutions, obtained using different parameters
and non dissipative coefficients. In both cases the limit flux function v is equal to
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Figure 3. Comparison between the densities of the exact and the
numerical stationary solutions on arcs 1 and 2 obtained for λ1 = 2,
λ2 = 1, αi = α = 0.5, initial mass µ0 = 250 distributed on the
network as a symmetric perturbation of the value 50, L1 = 4,
L2 = 1, dissipative coefficients ξ1,1 = 0.8, ξ2,1 = 0.4, ξ1,2 =
0.2, ξ2,2 = 0.6 and time T = 28.
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Figure 4. Log-log plot of the error in L1 norm between the
approximated and the the asymptotic solutions, as a function of the
space step, for the solutions to system (4.2). The error is displayed
in blue for u, and in green for v. Initial data are distributed on
the network as a symmetric perturbation of the value 50. We
used different space steps satisfying condition (3.14), with λ1 = 2,
λ2 = 1, L1 = 4, L2 = 1, µ0 = 250, T = 100.

zero everywhere, since for the stationary solution the flux is constant, the flux on
the external nodes is zero, and all the arcs are connected to external nodes.

Let us now consider a larger network composed of twelve nodes and four arcs,
see Fig. 8. We choose some non dissipative transmission coefficients, given in Table
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Figure 5. Initial data corresponding to the total mass µ0 = 160.
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Figure 6. Asymptotic solution for λ1 = 5, λ2 = 4, dissipative
coefficients ξ1,1 = 0.8, ξ2,1 = 0.25, ξ1,2 = 0.2, ξ2,2 = 0.75, T = 7.7.

1, in order to satisfy condition (2.8). Let us consider as initial condition on the
incoming arc 5, the function plotted in Fig. 9, where we put a small symmetric
perturbation of the constant state u = 110.

In this case it is hard to compute analytically the stationary solutions. We
only know that non-constant solutions are generally expected, according to the
discussion in Section 2.5. In Fig. 10 we plot the asymptotic densities on the
network node by node, starting from North-East and proceeding in a clockwise
direction. Notice that most of the arcs are repeated in the different figures. In Fig.
11 the asymptotic fluxes are represented, and again our scheme is able to stabilize
them correctly. We notice that the fluxes of arcs connected to outer boundaries
vanish, whereas the fluxes of inner arcs, even if they are constant, are different from
zero.



HYPERBOLIC CHEMOTAXIS ON A NETWORK 21

 14
 16
 18
 20
 22
 24

d
e

n
s
it
y
 (

u
)

 14
 16
 18
 20
 22
 24

0 1 2 3 4 5 6 7 8

x

c
o

n
c
e

n
tr

a
ti
o

n
 (

p
h

i)

Figure 7. Asymptotic solution at time T = 30 for λ1 = 5, λ2 = 4,
in case of non-dissipative coefficients ξ1,1 = 0.8, ξ2,1 = 0.25, ξ1,2 =
0.24, ξ2,2 = 0.7.
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Figure 8. A network composed of twelve arcs (six incoming and
six outgoing) connected by four internal nodes.

4.3. Instabilities: the appearance of numerical blow-up. Let us consider
some cases that present a strong asymptotical instability. Indeed, for some values
of the parameters of the problem, namely of the arc’s length L and the cell velocity
λ, in connection with the total mass distributed on the arcs of the network, we can
observe increasing oscillations, which eventually may cause the blow-up of solutions.
It is important to notice that the blow-up can be already observed for this model
even for a single arc, see Example 1 below, when the total mass µ0 is large with
respect to the characteristic parameters L and λ. However, here the presence
of more arcs, and so, a greater total length and total mass, makes this kind of
phenomenon much more frequent.

Example 1. Here we assume that we have only one interval with L = 1 and
λ = 10 and we take, as initial condition for the density and the chemoattractant, a
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Figure 9. Initial condition for u and φ on arc 5 of the network
presented in Fig. 8.
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Figure 10. Stationary solutions for the network composed of 12
arcs and 4 nodes of Fig. 8: the densities are computed at time
T = 30, the values of the parameters are given by: λi = λ =
10, Li = 1, ai = bi = Di = 1. The transmission coefficients can be
found in Table 1. The total initial mass µ0 = 1320 is distributed as
a perturbation of the constant state 110 on arc 5 as in Fig. 9 and as
the constant density 110 on the other arcs, with hi = h = 0.01, k =
0.0005.
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ξ12,12 = 0.1, ξ11,12 = 0.3, ξ3,12 = 0.3, ξ4,12 = 0.3,
Node S-W ξ12,11 = 0.2, ξ11,11 = 0.2, ξ3,11 = 0.3, ξ4,11 = 0.3,

ξ12,3 = 0.2, ξ11,3 = 0.2, ξ3,3 = 0.4, ξ4,3 = 0.2,
ξ12,4 = 0.5, ξ11,4 = 0.1, ξ3,4 = 0.2, ξ4,4 = 0.2,
ξ3,3 = 0.1, ξ10,3 = 0.3, ξ9,3 = 0.3, ξ2,3 = 0.3,

Node S-E ξ3,10 = 0.2, ξ10,10 = 0.2, ξ9,10 = 0.3, ξ2,10 = 0.3,
ξ3,9 = 0.2, ξ10,9 = 0.2, ξ9,9 = 0.4, ξ2,9 = 0.2,
ξ3,2 = 0.5, ξ10,2 = 0.1, ξ9,2 = 0.2, ξ2,2 = 0.2,
ξ1,1 = 0.1, ξ2,1 = 0.3, ξ8,1 = 0.3, ξ7,1 = 0.3,

Node N-E ξ1,2 = 0.2, ξ2,2 = 0.2, ξ8,2 = 0.3, ξ7,2 = 0.3,
ξ1,8 = 0.2, ξ2,8 = 0.2, ξ8,8 = 0.4, ξ7,8 = 0.2,
ξ1,7 = 0.5, ξ2,7 = 0.1, ξ8,7 = 0.2, ξ7,7 = 0.2,
ξ5,5 = 0.1, ξ4,5 = 0.3, ξ1,5 = 0.3, ξ6,5 = 0.3,

Node N-W ξ5,4 = 0.2, ξ4,4 = 0.2, ξ1,4 = 0.3, ξ6,4 = 0.3,
ξ5,1 = 0.2, ξ4,1 = 0.2, ξ1,1 = 0.4, ξ6,1 = 0.2,
ξ5,6 = 0.5, ξ4,6 = 0.1, ξ1,6 = 0.2, ξ6,6 = 0.2.

Table 1. Transmission coefficients used for the numerical
simulations of Figures 10 and 11 given node by node.
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Figure 11. The asymptotic fluxes of the arcs of the network
composed of 12 arcs and 4 nodes at time T = 30, with the same
data as Fig. 10.

symmetric perturbation of a constant state C0 = 9000. The total mass is µ0 = 9000,
as shown in Figure 12. The solution presents a clear blow-up at time T = 0.1, see
Fig. 13. This blow-up seems associated to non physical negative values of the
density function u, and it is observed in the same way even for refined meshes (see
Table 2 for the case of two arcs). This is not surprising, since the quasimonotonicity
of the system, see again [24], is violated when the gradient φx is larger than λ.

Example 2. Here we take two arcs of length L1 = 6 and L2 = 2 and the initial
density as in Fig. 5, with ai = bi = 1, ui(x, 0) = φi(x, 0), and vi(x, 0) = 0, i = 1, 2.
Then we change the values of velocities λ1 and λ2 in order to see how they influence
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Figure 13. Blow-up of the solution at time T = 0.1, for data in
Fig. 12 with L = 1, λ = 10, h = 0.001, µ0 = 9000: on the left the
blow-up density u and the concentration φ, on the right the flux v.

the behavior of solutions to system (1.1). At the junction we assume transmission
and dissipative coefficients, taking ξ1,1 = 0.96 and then satisfying equations (2.13)–
(2.14). What we observe is that solutions blow up in finite time or not according
to the relative values of λ1 and λ2, as it is shown in Figure 14. More precisely, we
can observe three different regimes. If λ2 is large with respect to 1

λ1−2
, solutions

stay bounded and converge to stationary solutions (green ”x” in Figure 14). If λ1

is small with λ2 large enough, then solutions blow up in finite time (red ”+” in
Figure 14). Finally, there is a small region in between, λ1 around the value 3 and λ2

small enough, such that solutions present a large spike at the boundaries (marked
by blue asterisks “*”).
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Figure 14. Schematization of the regions describing the behavior
of solution for µ0 =160 and the velocities λ1 and λ2 varying: blow-
up (marked by red crosses “+“), solutions with a spike at the
boundaries (marked by blue asterisks “*”) and stable stationary
solutions (marked by green “x“).

Let us now focus on the blow-up behavior. Referring to Fig. 14, we can choose
a pair of velocities belonging to the blow-up region marked by red crosses “+“, to
say λ1 = 1 and λ2 = 2. The time step just before the numerical blow-up time of
corresponding solutions, starting from initial data as in Fig. 5, is plotted in Fig.
15. Even if apparently we are close to the transmission point, there are many grid
points separating it from the blow-up point. To show that the blow-up is not just
a numerical artifact, we perform the same simulation with the same data, but on
refined grids. In Table 2 we report the blow-up time of solutions to system (1.1)
for a fixed global mass µ0 when either the CFL condition ν = k

hλ or h go to zero.
Out of the case of ν = 1, which appears to be more unstable, the blow-up time
is independent of the meshes and has to be considered to occur in the analytical
solutions.

Blow-up time

h ν = 1 ν = 1
2

ν = 1
4

ν = 1
8

0.01 2 4 4 4

0.0025 1 4 4 4

0.001 0.5 4 4 4

Table 2. Blow-up times of the solutions to system (1.1) when
either the CFL condition ν = k

hλ or h go to zero, with transmission
coefficients of dissipative type, L1 = 6, L2 = 2, λ1 = 1, λ2 = 2,
µ0 = 160.
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Figure 15. Blow-up at time T = 4, for initial data as in Fig. 5,
with L1 = 6, L2 = 2, λ1 = 1 and λ2 = 2, dissipative coefficients
with ξ1,1 = 0.96, the total mass is equal to µ0 = 160: on the left
the density u and the concentration φ, on the right the flux v. The
space steps are equal to h1 = 0.001, h2 = 0.002.

4.4. Comparisons and errors. Let us now introduce the formal order of
convergence of a numerical method γw for the computation of the solution w as the
minimum among the orders on the arcs of the network:

(4.7) γw = min
i

γi
w,

where

(4.8) γi
w = log2

(
ei(hi)

ei
(
hi

2

)
)
, i = 1, . . . , N.

The L1-error for the numerical solution on each arc is

(4.9) ei
(
hi

n

)
=

hi

n

∑

l=0,...,nMi

∣∣∣∣w
T
l

(
hi

n

)
− wT

2l

(
hi

2n

)∣∣∣∣ n = 1, 2,

where wT
j (h) denotes the numerical solution obtained with the space step

discretization equal to h, computed in xj at the final time T . The total L1-error is

(4.10) TOTerr =

N∑

i=1

ei(hi).

Table 3 shows the L1-error (4.9) on the asymptotic solutions u, φ and v and
order of convergence (4.7) of the approximation scheme applied to the considered
network.

The results in Table 3 show the effectiveness of AHO approximation scheme
in the solution of the transmission problem represented by the hyperbolic model
(1.1). We notice indeed that even in this more general case the scheme still keeps
a formal accuracy of first order, although the interactions at the boundaries could
deteriorate its accuracy.
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h γu Error on u γφ Error on φ γv Error on v
0.025 0.916393 1.78849e-04 0.965238 1.78848e-04 1.212334 3.34559e-07
0.0125 0.959614 8.87206e-05 0.982631 8.87207e-05 -0.058657 1.44060e-07
0.00625 0.980243 4.41941e-05 0.990856 4.41954e-05 0.666605 1.49949e-07
0.003125 0.986317 2.20550e-05 0.992983 2.20651e-05 0.863690 9.43741e-08
0.0015625 0.937936 1.10172e-05 0.937109 1.10280e-05 0.955806 5.17981e-08

Table 3. Orders and errors of the approximation scheme for the
solutions to system (1.1), Li = 1, λi = 4, i = 1, 2, µ0 = 120.056,
T = 25.
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