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Abstract. Full Waveform Inversion (FWI) is a promising seismic imaging method. It aims
at computing quantitative estimates of the subsurface parameters (bulk wave velocity, shear
wave velocity, rock density) from local measurements of the seismic wavefield. Based on a
particular wave propagation engine for wavefield estimation, it consists in minimizing iteratively
the distance between the predicted wavefield at the receivers and the recorded data. This
amounts to solving a strongly nonlinear large scale inverse problem. This minimization is
generally performed using gradient-based methods. We investigate the possibility of applying
the truncated Newton (TrN) method to this problem. This is done through the development of
general second-order adjoint state formulas that yield an efficient algorithm to compute Hessian-
vector products, and the design of an adaptive stopping criterion for the inner conjugate gradient
(CG) iterations. Numerical results demonstrate the interest of using the TrN method when
multi-scattered waves dominate the recorded data.

1. Introduction

Full Waveform Inversion (FWI) computes quantitative estimates of the subsurface parameters,
such as the bulk wave velocity, the shear wave velocity, or the rock density. Applications
range from the localisation of natural resources, such as oil and gas, to reservoir and storage
monitoring, and seismic risk prevention. The seismic data is collected through the so-called
seismic experiment: several sources and receivers are located at the ground surface or in
wells, and the wavefield generated by these sources is recorded locally by the receivers. Based
on a wave propagation modeling (from the simplest acoustic equation to more sophisticated
anisotropic visco-elastic dynamics), the FWI method consists in minimizing a misfit function,
which measures a distance between the data predicted by the forward problem and the recorded
data. We consider the general wave equation

S(p)u = ϕ, (1)

where the subsurface parameters are denoted by p ∈ R
m (model space), the linear forward

problem operator corresponding to the two-way wave equation 1 is denoted by S(p), the source
vector is denoted by ϕ, and the wavefield vector is denoted by u. These notations are general

1 Note that the operator S(p) depends non-linearly on parameter p



and can be applied either in the time domain or in the frequency domain. The FWI problem is
expressed as the nonlinear least-square problem

min
p

f(p) =
1

2

Ns∑

s=1

‖Rsus(p) − ds‖
2, (2)

where ds and us(p) are respectively the recorded dataset and the solution of the forward problem
associated with the source ϕs, Ns is the total number of sources, and Rs is a restriction operator
that maps the wavefield us to the receiver locations.

The minimization of f(p) is based on the local Newton approach. A sequence pk is computed
from an initial guess p0 using the update formula

pk+1 = pk + γk∆pk, (3)

where the scalar γk is computed through a globalization method (linesearch, trust-region) and
∆pk is the solution of

∇2f(pk)∆pk = −∇f(pk), (4)

where the Hessian operator is denoted by ∇2f(pk). The computation of the gradient ∇f(p) can
be performed efficiently with the adjoint-state method [6]. Because of the large-scale aspect of
the FWI problem (even for 2D applications, the problem often involves hundred thousands of
unknowns parameters and discrete data), explicit computation and storage of ∇2f(p), a fortiori

(∇2f(p))−1, is prohibitive. Therefore, standard methods use an approximation Qk of the inverse
Hessian. Different choices can be made. For instance, choosing simply the identity matrix yields
the steepest-descent method, which may converge slowly. A more sophisticated and efficient

choice is the l-BFGS approximation [1]. This method estimates the effect of
(
∇2f(pk)

)−1
on

the gradient. At iteration k, this approximation is based on finite differences of the l previous
values of the gradient.

However, Pratt et al [7] emphasize the crucial role of the inverse Hessian operator in FWI:
its acts as a defocusing filter, improving the resolution of the subsurface parameter estimation,
and can help to remove artifacts on the model update related to the presence of large amplitude
double-scattered waves. Accounting more accurately for effects of the inverse Hessian operator
may thus yield significant improvements. As a consequence, we present in this study an
implementation of a matrix-free truncated Newton (TrN) method [5] for FWI. Instead of using an
approximation of the inverse Hessian operator, this method partially solves the linear system (4)
using a matrix-free conjugate gradient (CG) algorithm. This requires the capability of computing
efficiently Hessian-vector products. This can be achieved using the second-order adjoint state
formulas we present in the second section. In addition, an efficient adaptive stopping critertion
for the CG iterations must be designed, in order to prevent from oversolving the equation
(4), which would generate prohibitive computation costs. The Eisenstat stopping criterion [2]
fulfills this requirement. Within this framework, numerical examples presented in the third
section demonstrate that the computation cost of the l-BFGS method and the TrN method are
comparable, and that the presence of large amplitude multi-scattered waves prevents the l-BFGS
method from converging while the TrN method provides significantly more reliable results.

2. Method

2.1. Efficient computation of Hessian-vector products

In the following, we consider that Ns = 1 and we drop index s. Formulas for Ns > 1 are obtained
straightforwardly by summation. We define the function gv(p) such that

gv(p) = (∇f(p), v) = R
(
J†R†(Ru(p) − d), v

)
, (5)



where u(p) is the solution of (1), J(p) = ∂pu(p), R denotes the real part operator, and † the
adjoint operator. We have ∇gv(p) = ∇2f(p)v. The Lagrangian function associated with the
functional gv(p) is

Lv (p, u, α, λ, µ) = R
(
R†(Ru − d), α

)
+ R (S(p)u − ϕ, µ) + R


S(p)α +

m∑

j=1

vj∂pj
S(p)u, λ


 ,

(6)
where the first term is related to the function gv(p), the second term to the wave equation (1)
and the third term to the first derivatives of (1). For ũ and α̃ such that

S(p)ũ = ϕ, S(p)α̃ = −
m∑

j=1

vj∂pj
S(p)ũ, (7)

we have

∇gv(p) = ∂pLv (p, ũ, α̃, λ, µ) + ∂uLv (p, ũ, α̃, λ, µ) ∂pũ(p) + ∂αLv (p, ũ, α̃, λ, µ) ∂pα̃(p). (8)

We define λ̃ and µ̃ such that

∂uLv

(
p, ũ, α̃, λ̃, µ̃

)
= 0, ∂αLv

(
p, ũ, α̃, λ̃, µ̃

)
= 0. (9)

We have

S(p)†µ̃ = −R†Rα̃ −

m∑

j=1

vj

(
∂pj

S(p)
)†

λ̃, S(p)†λ̃ = −R†(Rũ − d), (10)

and

(∇2f(p)v)i = R


((∂pi

S(p)) ũ, µ̃) +
(
(∂pi

S(p)) α̃, λ̃
)

+

m∑

j=1

vj

((
∂pj

∂pi
S(p)

)
ũ, λ̃

)

 , i = 1, . . . ,m.

(11)
Since computation of ∇f through the adjoint state method already requires the computation
of λ̃ and ũ [6], the computation of one matrix vector product ∇2f(p)v requires to solve one
additional forward problem for α̃ and one additional adjoint problem for µ̃, as reported in [3, 4].
For Ns > 1, the overall computation cost is multiplied by Ns.

2.2. CG stopping criterion

An efficient implementation of the truncated Newton method requires the definition of an
adaptive stopping criterion for the CG criterion. Newton methods are based on the sequential
minimization of local quadratic approximations

qk(∆pk) = f(pk) + (∇f(pk), ∆pk) + (∇2f(pk)∆pk,∆pk). (12)

The accuracy required to solve the system (4) should reflect the accuracy of these local
approximations to prevent from oversolving. This is achieved using the Eisenstat stopping
criterion [2]:

‖H(pk)∆pk + ∇f(pk)‖ ≤ ηk‖∇f(pk)‖, (13)

where the forcing term ηk measures the distance between the misfit gradient and its first order
development

ηk =
‖∇f(pk) −∇f(pk−1) − H(pk−1)∆pk−1‖

‖∇f(pk−1)‖
. (14)

Moreover, far from the solution, the Hessian operator should be indefinite. An additional
stopping criterion is thus introduced: as soon as a negative curvature direction is computed
during the resolution of the system (4), the CG iterations are stopped.



Figure 1. l-BFGS inversion results. Exact model (left), initial model (middle), estimated model
(right).

Figure 2. Convergence curves for the Marmousi II test case (left), for the near-surface imaging
test case (right). N: truncated Newton method, LB: l-BFGS, ST: steepest-descent

3. Numerical results

3.1. The Marmousi II test case

The numerical results presented in this study are obtained in the 2D acoustic frequency domain
FWI context. An estimation of the pressure wave velocity is computed. We first consider the
Marmousi II benchmark test case. The Marmousi II model is 16 km wide and 3.5 km deep.
The discretization step is set to 25 m. We use 144 sources and 660 receivers located near the
surface to generate synthetic data. Four datasets corresponding to the frequencies 3, 5, 8, 12
Hz are simultaneously inverted. The efficiencies of the steepest-descent, the l-BFGS algorithm
and the TrN algorithm are compared. The three methods are implemented with the same
linesearch globalization method. The iterations are stopped when the relative cost function
f(p)/f(p0) reaches 10−3. The estimated models obtained using the three different methods are
very similar. The one obtained with the l-BFGS method is presented in figure 1.

The convergence curves (fig 2) are plotted as a function of the total number of the forward-
problem resolutions. As expected, the steepest-descent algorithm converges very slowly, while
the l-BFGS and the TrN method provide faster convergence. Note that the l-BFGS method is
the fastest.

3.2. A near-surface imaging test case

We consider next a near-surface seismic imaging problem. Detecting and correctly imaging two
concrete structures buried in the subsurface at few meters depth (fig. 4) is a challenge. The



Figure 3. Dataset associated with the exact model (left), data associated with the initial
homogeneous domain (right)

depth of investigation is limited to 3 m, the width of the exact model is 15 m. The discretization
step is set to 0.15 m. We use a full acquisition system: four lines of sources/receivers are located
on each side of the domain. We compute 9 datasets, from 100 Hz to 300 Hz each 25 Hz.

The very high velocity contrast between the background (300 m.s−1) and the concrete
foundations (4000 m.s−1) generates energetic reflections. In addition, the close distance between
the two structures is responsible for important multiple scattering. This is illustrated in figure 3
where two datasets in the time domain are presented1, computed using the exact model and the
homogeneous background model. The background model correctly predicts only the first-arrival
waves. The signal below the first arrival on the left figure, corresponding to the multi-scattered
waves, is not predicted. Starting from this background model, we invert simultaneously the
9 datasets, using the l-BFGS algorithm, and the TrN method. The convergence curves and
the corresponding results are presented in figures 2 and 4 (the steepest-descent result is not
presented since it is very similar to the result provided by the l-BFGS method). While the

Figure 4. Pressure wave velocities. Exact model (left), l-BFGS estimation (middle), TrN
estimation (right).

steepest-descent and the l-BFGS method stop after few iterations, trapped in a local minimum,
the TrN method further reduces the misfit function. Why in this case the TrN method performs
better than the l-BFGS method? Consider the Hessian operator expression:

∇2f(p) =

Ns∑

s=1

J†
s (p)R†

sRsJs(p) +

Ns∑

s=1

R†
s (Rsus(p) − ds) ∂ppus(p). (15)

1 These two datasets are generated using a Ricker source located at the surface between the two concrete structures
at x = 6.5 m, centered on the frequency 200 Hz.



The first term of the Hessian operator is positive definite by construction, while the second one
is indefinite, related to the double-scattered wavefield ∂ppus(p) and the residuals Rsus(p) − ds.
When single scattered waves dominate the data, gradient-based methods converge quickly from
the first iterations. Therefore, the residuals decrease, and the Hessian operator tends to become
positive definite. The l-BFGS methods builds a symmetric definite positive approximation of the
inverse Hessian along the minimization process, and therefore improves the convergence speed
of standard gradient methods. Since the Marmousi II model does not present high velocity
contrasts, the amplitude of the multiscattered wavefield for this test case is weak, and the
l-BFGS method is efficient.

When multiscattered waves cannot be neglected, as in our second test case, gradient-based
methods face difficulties to fit the data, since the gradient direction only accounts for single
scattered waves. Therefore, for the first iterations, the l-BFGS estimation only slowly decreases
the residuals as the inverse Hessian approximation is close from the identity. As a consequence,
the true Hessian operator stays indefinite while the l-BFGFS method build a definite positive
approximation of its inverse. This explains why the l-BFGS method fails in this case. Conversely,
the TrN method better accounts for the Hessian operator and is able to converge.

4. Conclusion and perspectives

Second-order adjoint formulas and the Eisenstat stopping criterion [2] yield an efficient
implementation of the TrN method. Within this framework, the comparison of the TrN method
with the l-BFGS method demonstrates the interest of using the TrN method when the seismic
data is dominated by multi-scattered waves. In this case, the second-order information embedded
in the Hessian operator, which is better accounted for by the TrN method, is crucial. The authors
now look forward for the application of the TrN method to more general context, such as multi-
parameter inversion and elastic FWI. The possibility of computing the inverse Hessian locally is
also investigated in order to compute the posterior covariance matrix and provides an uncertainty
estimation of the parameter reconstruction. Finally, the use of matrix-free preconditionners in
order to speed-up the convergence of the CG algorithm will also be investigated.
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