
HAL Id: hal-00763711
https://hal.science/hal-00763711v1

Submitted on 3 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Study on Dominance-Based Local Search Approaches
for Multiobjective Combinatorial Optimization

Arnaud Liefooghe, Salma Mesmoudi, Jérémie Humeau, Laetitia Jourdan,
El-Ghazali Talbi

To cite this version:
Arnaud Liefooghe, Salma Mesmoudi, Jérémie Humeau, Laetitia Jourdan, El-Ghazali Talbi. A Study
on Dominance-Based Local Search Approaches for Multiobjective Combinatorial Optimization. SLS
2009 - 2nd International Workshop on Engineering Stochastic Local Search Algorithms: Designing, Im-
plementing and Analyzing Effective Heuristics, Sep 2009, Brussels, Belgium. pp.120-124, �10.1007/978-
3-642-03751-1_11�. �hal-00763711�

https://hal.science/hal-00763711v1
https://hal.archives-ouvertes.fr


A Study on Dominance-based Local Search

Approaches for Multiobjective Combinatorial

Optimization

Arnaud Liefooghe, Salma Mesmoudi, Jérémie Humeau,
Laetitia Jourdan, and El-Ghazali Talbi

Laboratoire d’Informatique Fondamentale de Lille, UMR CNRS 8022,
INRIA Lille-Nord Europe, Université Lille 1, Villeneuve d’Ascq, France

Arnaud.Liefooghe@lifl.fr

Abstract. The purpose of the current paper is twofold. First, a unified
view of dominance-based multiobjective local search algorithms is pro-
posed. We focus on methods based on the iterative improvement of the
nondominated set by means of a neighborhood operator. Next, the effect
of current solutions selection and of neighborhood exploration techniques
for such purpose is studied. Experiments are conducted on a permutation
flowshop scheduling problem in a two- and a three-objective variant.

1 Introduction

The aim of this study is to provide a unified view of dominance-based local
search for multiobjective optimization. Contrary to the single-objective case, a
Multiobjective Combinatorial Optimization Problem (MCOP) does not yield
a unique optimal solution. Instead, a set of compromise solutions, known as
efficient solutions must generally be identified. Since they are naturally well-
suited to find multiple efficient solutions in a single simulation run, a tremendous
number of multiobjective evolutionary algorithms have been proposed over the
last two decades [1]. However, local search methods are known to be efficient
metaheuristics for single-objective optimization. Local search, also referred to
as hill-climbing, descent, iterative improvement, etc., is likely the oldest and
simplest metaheuristic [2]. But multiobjective local search principles based on
a dominance relation appeared quite recently [1, 3]. Hence, some dominance-
based multiobjective local search methods have been proposed in the literature,
including the Pareto Archived Evolution Strategy (PAES) [4], the Pareto Local
Search (PLS) [5] or the Bicriteria Local Search (BLS) [6]. Such methods generally
combine the definition of a neighborhood structure with the use of a population
of solutions. They maintain a set of potentially efficient solutions, and iteratively
improves this set by exploring part of its neighborhood. Our first purpose is to
give a unified view of dominance-based multiobjective local search. We describe
the basic components shared by all these algorithms and we introduce a general-
purpose model for their design. Afterwards, we concentrate on a subpart of
components involved into the unified model in order to study their respective
behavior on a multiobjective permutation flowshop scheduling problem.



2 Dominance-based Multiobjective Local Search

Until now, each DMLS algorithm was designed independently of the others, and
was implemented as a self-contained method with its own specific components.
In the following, we identify the common components shared by all DMLS al-
gorithms and propose a unifying model that takes them into account. Hence,
whatever the MCOP to be solved, the common concepts for the design of a
DMLS algorithm can be stated as follows: (1) design a representation, (2) de-
sign a initialization strategy, (3) design a way of evaluating a solution, (4) design
a suitable neighborhood structure, (5) design a way of evaluating a neighboring
solution incrementally (if possible), (6) decide a current set selection strategy,
(7) decide a neighborhood exploration strategy, (8) decide an archive manage-
ment strategy, (9) decide a stopping condition. When dealing with any kind of
metaheuristics, one may distinguish problem-related and problem-independent
components. Hence, the first five issues presented above strongly depend of the
MCOP under consideration, whereas the last four ones can be seen as generic
components. In addition, three data structures are used to store (i) the archive
contents, (ii) the current set of solutions whose neighborhood is to be explored,
and (iii) the candidate set of neighbor solutions that will potentially enter the
archive. Problem-related components are assumed to be designed for the MCOP
at hand, so that they are not discussed in the paper due to space limitation.

2.1 Problem-independent Issues

Current Set Selection. The first phase of a local search step deals with the
selection of a set of solutions from which the neighborhood will be explored.
Generally speaking, in the frame of the DMLS model presented in the paper,
two strategies can be applied. Firstly, an exhaustive selection, where all solutions
from the archive are selected. Second, a partial selection, where only a subset of
solutions is selected. Such a set may be selected at random, or also with respect
to a diversity measure. Of course, if some archive members are marked as visited,
they must be discarded of the current set selection for obvious efficiency reasons.

Neighborhood Exploration. From the current set, a number of candidate
solutions must be generated by means of a neighborhood structure. Such a set
is obtained by a repeated local transformation of every solution contained in the
current set. For a given current solution, two classes can be clearly distinguished.
Firstly, an exhaustive neighborhood exploration, where the neighborhood is eval-
uated in a full and deterministic way. Every possible move of the current solution
is applied and the neighboring solutions are all added to the candidate set. The
solutions of the current set can then all be marked as visited. Second, a partial

neighborhood exploration, where only a subset of moves are applied. The number
of moves to be applied is generally defined by a user-given parameter.



Archiving. The archive allows to store either all or a subset of nondominated
solutions found during the search process. Its main aim is to prevent the loss
of interesting solutions. But archive members are also integrated into the search
process by providing solutions to exploit in the DMLS model presented in this
paper. Different archiving techniques can be distinguished depending on the
problem properties, the designed algorithm and the number of desired solutions:
(i) an unbounded archive or (ii) a bounded archive. Firstly, when an archive
is maintained, it usually comprises the current nondominated set approxima-
tion, as dominated solutions are discarded. Then, an unbounded archive can
be used in order to save the whole set of nondominated solutions. However, as
some MCOPs may contain an exponential number of nondominated solutions,
additional operations must be used to bound the archive size.

Stopping Condition. Since an iterative method computes successive approx-
imations, a practical test is generally required to determine when the process
must stop. Popular examples are a given number of iterations or a given run-
time. However, when it is possible to mark archive members as visited, a natural
stopping criterion arises when all archive solutions are marked as visited.

3 Computational Experiments

The goal of this section is to experiment the efficiency of some state-of-the-art
strategies for both current set selection and neighborhood exploration. For each
component, a set of 2 different schemes are investigated. This gives rise to a
combination of 4 DMLS algorithms. Hence, with regards to the current set se-
lection, either (i) each or (ii) a random single unvisited solution is selected from
the archive. Next, with regards to the neighborhood exploration, either (i) all
or (ii) a single random neighbor per solution is proposed as a candidate for in-
tegrating the archive. The corresponding algorithms are denoted by DMLS(1·1),
DMLS(1·⋆), DMLS(⋆·1) and DMLS(⋆·⋆). Note that the algorithm denoted by and
DMLS(1·1) is closely related to PAES [4], DMLS(1·⋆) to PLS [5], and DMLS(⋆·⋆)

to BLS [6]. For each problem instance to be solved, different maximum run-
time values, from 2 to 20 minutes, have been investigated in order to study the
evolution of the search efficiency over time. However, as some algorithms stop
in a natural way, a simple random restart has been performed to continue the
search process until the maximum runtime is reached. For all the experiments,
the initial population size is set to 1, and an unbounded archive is maintained.

3.1 A Permutation Flowshop Scheduling Problem

The Flowshop Scheduling Problem (FSP) consists of scheduling N jobs on
M machines. We here focus on a permutation FSP, where the operating se-
quences of the jobs are identical and unidirectional on every machine. We will
consider a two-objective FSP (denoted by FSP-2), where both the makespan
and the total tardiness are to be minimized. Additionally, we will also consider



a three-objective variant (denoted by FSP-3), where the maximum tardiness is
the additional objective to be minimized. The reader is referred to [7] for more
information on multiobjective scheduling.

The problem-related components used for the specific case of the FSP pre-
sented above are the following ones. Firstly, the representation is based on a
permutation of size N . Next, the initialization strategy consists of generating
solutions randomly. At last, the neighborhood is based on the insertion opera-
tor, i.e. a job at position i is inserted at position j 6= i, and the jobs located
between positions i and j are shifted.

3.2 Results and Discussion

To evaluate the performance of the algorithms experimented in this paper, we
consider various benchmark test instances1. Six problem instances involving from
20 jobs and 5 machines to 50 jobs and 20 machines are experimented. A set of
10 runs per instance has been performed for each search method. For a given
instance, let Zall denote the union of the outputs we obtained during all our ex-
periments. We first compute a reference set Z⋆

N
containing all the nondominated

points of Zall. Now, to measure the quality of an output set A in comparison
to Z⋆

N
, we compute the difference between these two sets by using the unary

hypervolume metric and the additive ǫ-indicator [8].

DMLS(1·1) and DMLS(⋆·1) can generally not compete with other algorithms
on small size problem instances. This can be explained by the fact that they
do not handle any kind of natural stopping condition, so that they are never
able to restart. On the contrary, DMLS(1·⋆) and DMLS(⋆·⋆) quickly reach a state
where each archive member is marked as visited, and can then restart with
a different initial solution. However, DMLS(1·1) and DMLS(⋆·1) perform better
on bigger instances. In particular, these two algorithms appear very efficient in
comparison to the others on the 50 10 01 and 50 20 01 instances when a short
amount of runtime is available. Moreover, on the 50 20 01 instance of FSP-3,
they perform better than all the other algorithms, even when a large runtime is
allowed. Now, with regards to DMLS(⋆·⋆), this approach performs very well on
20-job instances. For larger ones, the convergence is really slow in the biobjective
case, but finally reaches competitive results after a long runtime. However, in
the three-objective case, this method appears inefficient for problem instances of
50 jobs. Finally, the DMLS(1·⋆) algorithm, that embeds similar techniques than
PLS [5], seems to reach the best overall performances. Indeed, it appears to be
as good as DMLS(⋆·⋆) on 20-job instances for both FSP-2 and FSP-3. For the
50 05 01 instance, it clearly outperforms the other algorithms all time long. For
bigger instances, even if it is slightly dominated at the beginning of the search,
it finally reaches the better results in the two-objective case. For FSP-3, same
conclusions can be drawn on the 50 10 01 instance. But the last instance is the
single one where DMLS(1·⋆) is always dominated by DMLS(1·1) and DMLS(⋆·1).

1 These instances are available at http://www.lifl.fr/~liefooga/benchmarks/.



4 Conclusion

In this paper, a unification of dominance-based local search approaches for mul-
tiobjective combinatorial optimization has been attempted. Such methods can
be seen as a generalization of the classical single-objective hill climbing, com-
bined with the use of a population of solutions. They are based on the iterative
improvement of the set of nondominated solutions by means of a neighborhood
operator. A unified model has been proposed and its main issues have been iden-
tified. The problem-independent components of current set selection, neighbor-
hood exploration as well as archiving strategies have been especially discussed.
This model has been used as a starting point for the design and the implementa-
tion of an open-source software framework for dominance-based multiobjective
local search. This contribution has been conceived as a plug-in to be integrated
into the ParadisEO-MOEO software framework2. At last, the issues of current
set selection and neighborhood exploration have been experimentally compared
on a multiobjective flowshop scheduling problem. We showed the benefit of per-
forming a full neighborhood exploration in order to avoid the revaluation of some
neighboring solutions and to reach a natural stopping criterion. Furthermore, we
concluded that selecting a single solution from the current population to explore
its neighborhood in an exhaustive manner was especially efficient for the problem
under consideration. As a next step, we will investigate larger instances for the
flowshop scheduling problem as well as other kinds of multiobjective problems.

References

1. Ehrgott, M., Gandibleux, X.: Approximative solution methods for multiobjective
combinatorial optimization. TOP 12(1) (2004) 1–89

2. Talbi, E.G.: Metaheuristics: from design to implementation. Wiley (2009)
3. Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective com-

binatorial optimization: A review. In: Handbook of Approximation Algorithms and
Metaheuristics. Chapman & Hall / CRC (2007)

4. Knowles, J.D., Corne, D.: Approximating the nondominated front using the Pareto
archived evolution strategy. Evolutionary Computation 8(2) (2000) 149–172

5. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: An experimental study. In: [9]. Springer-Verlag
(2004) 177–199

6. Angel, E., Bampis, E., Gourvés., L.: A dynasearch neighbohood for the bicriteria
traveling salesman problem. In: [9]. Springer-Verlag (2004) 153–176

7. T’Kindt, V., Billaut, J.C.: Multicriteria Scheduling: Theory, Models and Algo-
rithms. Springer-Verlag, Berlin, Germany (2002)

8. Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7(2) (2003) 117–132

9. Gandibleux, X., Sevaux, M., Sörensen, K., T’Kindt, V., eds.: Metaheuristics for
Multiobjective Optimisation. Volume 535 of Lecture Notes in Economics and Math-
ematical Systems. Springer-Verlag, Berlin, Germany (2004)

2 The plug-in is available at http://paradiseo.gforge.inria.fr/DMLS/.


