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Model Structure Learning: A Support Vector Machine Approach f or
LPV Linear-Regression Models

Roland T́oth, Vincent Laurain, Wei Xing Zheng and Kameshwar Poolla

Abstract— Accurate parametric identification of Linear
Parameter-Varying (LPV) systems requires an optimal prior
selection of a set of functional dependencies for the parametriza-
tion of the model coefficients. Inaccurate selection leads to
structural bias while over-parametrization results in a variance
increase of the estimates. This corresponds to the classical bias-
variance trade-off, but with a significantly larger degree of
freedom and sensitivity in the LPV case. Hence, it is attractive to
estimate the underlying model structure of LPV systems based
on measured data,i.e., to learn the underlying dependencies
of the model coefficients together with model orders etc. In
this paper a Least-Squares Support Vector Machine (LS-SVM)
approach is introduced which is capable of reconstructing the
dependency structure for linear regression based LPV models
even in case of rational dynamic dependency. The properties of
the approach are analyzed in the prediction error setting and
its performance is evaluated on representative examples.

Index Terms— Linear parameter-varying; support vector ma-
chines; linear regression; ARX; identification, model structure
selection.

I. I NTRODUCTION

Estimation oflinear parameter-varying(LPV) polynomial
models in aninput-output (IO) setting has received a sig-
nificant attention recently in the identification literature (see,
e.g., [1]–[7]). In discrete-time, the most basic model structure
in this context is the so-calledauto-regressive model with
exogenous input(ARX) which is often defined in thesingle-
input single-output(SISO) case as

y(k)+

na∑

i=1

ai(p(k))y(k−i)=

nb∑

j=0

bj(p(k))u(k−j)+e(k), (1)

wherek ∈ Z is the discrete time,u : Z → R andy : Z → R

denote the input and the output signals respectively,p : Z →
P is the so calledscheduling variablewith rangeP ⊆ R

np

and e is a white stochastic noise process. Furthermore (to
keep the notation simple), the coefficient functionsai, bj :
P → R havestatic dependenceon p, i.e., they only depend
on the instantaneous value ofp(k).

It is a general mark of LPV models that the signal relations
are linear just as in thelinear time-invariant(LTI) case, but
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the model parameters are functions of the measurable time-
varying signalp. Using scheduling variables as changing
operating conditions or endogenous/free signals of the plant,
the class of LPV systems can describe both nonlinear and
time-varying phenomena.

Identification of the LPV-ARX model (1) can be addressed
by either following a local or a global approach. In the
local case, LTI snapshots of the model are identified for
constant levels ofp followed by an interpolation overP,
while by using a global approach, the coefficient func-
tions of (1) are estimated based on a data recordDN =
{(u(k), p(k), y(k))}N

k=1 with varying p. These approaches
have their pros and cons, but in the global setting a compact
estimation of (1) becomes available by realizing that (1) can
be written as a linear regression. This is possible under the
assumption that each functionai andbj can be decomposed
in terms of a priori selected basis setψij : P → R as

ai(p(k)) = θi0 + θi1ψi1(p(k)) + . . . + θi1ψisi
(p(k)), (2)

where θij ∈ R are theunknown parametersto be iden-
tified. In the ARX case, this delivers identification of (1)
in terms of a simpleleast-squares(LS) estimate in the
classicalprediction-error(PE) setting [1]. Furthermore, this
parametrization allows to formulate an LPV extension of the
PE framework, where stochastic analysis of the estimation
and general noise models can be addressed [3], [5].

Besides the classical questions of model structure selection
in terms of model order (likena andnb, input delay, etc.), the
adequate selection of the basis set{ψij} has a paramount im-
portance in this setting. To capture the unknown dependence
of ai andbj onp, which can range from simple polynomial to
complicated rational or even discontinuous functions, often
a large set of basis functions is applied from which only a
few might actually be needed for an accurate approximation.
This means that most commonly, the LS estimation is faced
with a seriously over-parametrized model structure where the
underlying true parameter vectorθo can be rather sparse.
Hence the variance of the estimates can be seriously large
even if the order of the actual model is low. Moreover, if
there is no prior information about the nonlinearities of the
system, the basis set{ψij} can be particularly inadequate,
leading to a potential structural bias. While regularization of
the variance and accurate identification of the support ofθo

w.r.t. a given parametrization can be efficiently achieved via
sparse estimators, like thenonnegative garrote(NNG) [8],
adequate selection/estimation of{ψij} based on data poses
a much harder problem.

Additionally, realization theory of LPV models and LPV



modeling of nonlinear systems requires that the model co-
efficients not only depend on the instantaneous values ofp

(static dependence) but also on its time-shifted versions (dy-
namic dependence) [9]. Thus, estimating LPV-ARX models
with dynamic dependence is often required for obtaining ac-
curate models of the underlying system. Parametrization with
such dependency seriously increases the dimension of the
parametrization space and commonly renders the adequate
selection of{ψij} based on heuristics to be infeasible in
practice.

To obtain an efficient solution for this problem, asupport
vector machine(SVM) approach is introduced in this paper
with the aim of providing “nonparametric” reconstruction of
the dependency structure for linear regression based LPV
models. SVM’s have been originally developed as a class of
supervised learningmethods [10], [11] for efficient recon-
struction of underlying functional relationships and structures
in data. These approaches have also had a significant impact
on nonlinear block modelidentification via variousleast
square-SVM(LS-SVM) approaches [12]–[15]. In general,
LS-SVM’s are particular variations of the original SVM
approach using anℓ2 loss function. Their main advantage is
the uniqueness of the solution, obtained by solving alinear
problem in a computationally efficient way. Hence our aim
is to use the computational and reconstruction potential of
LS-SVM’s to provide an efficient solution in the LPV case.

It must be noted that in [4], a semi-parametric functional
dependence estimation approach usingdispersion functions
was introduced. However, this approach, as we will see, is
less effective in the bias-variance trade-off than the LS-SVM
scheme to be proposed and hence it shows lower accuracy
in the considered simulation study. Due to the underlying
commonsum-of-normscost function and nonparametric na-
ture of the estimation, the proposed LS-SVM scheme can be
considered as a next step on this path towards an automated
and effective model structure learning in the LPV setting.

The paper is organized as follows. In Section II, a short
overview of the LPV-ARX model structure and its LS-based
identification method is given, defining the problem setting.
In Section III, such models are formulated in the LS-SVM
setting and an algorithm is proposed for nonparametric
identification. In Section IV, the properties of the proposed
approach are analyzed and compared to sparse estimators
and the dispersion approach of [4], while in Section V,
the algorithm is validated on a Monte Carlo study and
compared in performance to [4]. Finally, conclusions and
future directions of the research are given in Section VI.

II. LPV IDENTIFICATION VIA ARX MODELS

In this paper, we focus on LPV systems with ARX type
of IO representation defined in (1). Introduce

[
φ1 . . . φng

]⊤
,

[
a1 . . . ana

b0 . . . bnb

]⊤
,

with ng = na + nb + 1, where eachφi(¦) is a real
function with static dependence onp. It is assumed that these
functions are non-singular onP, thus the solutions of the
system given by (1) are well-defined and the process part

is completely characterized by{φi(¦)}
ng

i=1. As it is almost
exclusively done in the LPV identification literature (see,
e.g.,[1]–[3], [5], [16], [17]), assume that eachφi is linearly
parameterized as

φi(¦) = θi0 +

si∑

j=1

θijψij(¦), (3)

where {θij}
ng,si

i=1,j=1 are unknown parameters and
{ψij}

ng,si

i=1,j=1, with si ∈ N, are functions chosen by the
user. Denotep(k) aspk. In this case, (1) can be written as

y(k) = θ⊤ϕ(k) + e(k), (4)

whereθ = [ θ1,0 . . . θ1,s1
θ2,0 . . . θng,sng

]⊤ and

ϕ(k) =
[
−y(k − 1) −ψ11(pk)y(k − 1) . . .

−ψ1s1
(pk)y(k − 1) . . . −ψnasna

(pk)y(k − na)

u(k) . . . ψngsng
(pk)u(k − nb)

]⊤
.

Given a data setDN = {(u(k), p(k), y(k))}N
k=1, the LS

estimate for the linear regression model (4) is given by

θ̂ = arg min
θ∈Rn

V(θ, e), (5)

wheren =
∑ng

i=1 1 + si (according to (3)), and

V(θ, e) ,
1

N
‖e(k)‖2

ℓ2
, e(k) , y(k) − θ⊤ϕ(k). (6)

To guarantee a unique solution of (5), it is assumed that
{ψij}

ng,si

i=1,j=1 are chosen such that (1) is globally identifiable
(there exist noθ andθ′, such that the 1-step ahead predictor
resulting from (1) is not distinguishable forθ andθ′) and that
DN provides apersistently excitingregressor in (4) (see [5],
[18]). Note that identifiability in particular holds for (4)with
e 6= 0 iff for each i ∈ {1, . . . , ng}, {ψij}

si

j=1 corresponds to
a set of linearly independent functions onP. By organizing
the data as

Y =
[

y(1) y(2) . . . y(N)
]⊤

, (7a)

Φ =
[

ϕ(1) ϕ(2) . . . ϕ(N)
]⊤

, (7b)

the optimal solution to (5) can be expressed as

θ̂N =
(
Φ⊤Φ

)−1
Φ⊤Y. (8)

III. LS-SVM FOR LPV SYSTEMS

In this section, we show how the SVM approach can
be formulated with respect to the estimation of (1) without
specifying the underlying dependencies required to derive
a simple LS solution. As we will see, without such a prior
specification, the SVM is still capable of conducting consis-
tent estimation of the underlying system and preserving the
low computational need of the LS estimation.

A. LPV modeling in the SVM setting

In contrast with the standard LS setting introduced in
Section II, the structural dependence of the coefficientsφi

on p is now assumed to bea priori unknown. Consequently,
the parametrized model of system (1) is introduced as

Mω,ϕ : y(k) =

ng∑

i=1

ω⊤
i φi(pk)xi(k) + e(k), (9)



where eachφi : R → R
nH denotes an undefined, potentially

infinite (nH = ∞) dimensionalfeature map, ωi ∈ R
nH is

the ith parameter vector and

xi(k) = y(k − i), i = 1, . . . , na, (10a)

xna+1+j(k) = u(k − j), j = 0, . . . , nb. (10b)

Additionally, introduceω = [ ω⊤
1 . . . ω⊤

ng
]⊤ ∈ R

ngnH and

ϕ(k) =
[

φ⊤
1(pk)x1(k) . . . φ⊤

ng
(pk)xng

(k)
]⊤

, (11)

such that (9) can be rewritten in the regression form as

y(k) = ω⊤ϕ(k) + e(k). (12)

B. Ridge regression

To simplify the notation, letφi(k) = φi(pk). The LS-SVM
approach aims at minimizing the cost function

J (ω, e)=
1

2

ng∑

i=1

ω⊤
i ωi +

γ

2

N∑

k=1

e2(tk)=
1

2
‖ω‖2

ℓ2
+

γ

2
‖e(tk)‖2

ℓ2

(13)
where the scalarγ ∈ R

+
0 is the regularization parameter.

Note that (13) is a so-calledsum-of-normscriterion as
it contains both the equation error term from (9) and a
regularization term: theℓ2 cost ofω scaled byγ. This added
regularization term, as we will see later, is used to address
the estimation (learning) of the unknown dependencies.

Consider the modelMω,ϕ as in (9) whose estimation
corresponds to the following optimization problem

min
w,b,e

J (ω, e) =
1

2

ng∑

i=1

ω⊤
i ωi +

γ

2

N∑

t=1

e(k)2, (14a)

s.t. e(k) = y(k) −

ng∑

i=1

ω⊤
i φi(k)xi(k). (14b)

This constrained optimization problem is solved by con-
structing theLagrangian:

L(ω, e, α) = J (ω, e)−
N∑

k=1

αk

(
ng∑

i=1

ω⊤
i φi(k)xi(k) + e(k) − y(k)

)

(15)

with αk ∈ R being theLagrangian multipliers. The global
optimum is obtained when

∂L

∂e
= 0 → αk = γe(k), (16a)

∂L

∂ωi

= 0 → ωi =

N∑

k=1

αkφi(k)xi(k), (16b)

∂L

∂αk

= 0 → e(k) = y(k) −

ng∑

i=1

ω⊤
i φi(k)xi(k). (16c)

Substituting (16a) and (16b) into (16c) leads to the following
set of equations

y(k) =

ng∑

i=1

(
N∑

k=1

αkxi(k)φ⊤
i (k)

)

︸ ︷︷ ︸

ω⊤

i

φi(k)xi(k)+γ−1αk
︸ ︷︷ ︸

e(k)

(17)

for k ∈ {1, . . . , N}. This is equivalent to

Y =
(
Ω + γ−1IN

)
α, (18)

where α = [α1 . . . αN ]⊤ ∈ R
N , and Ω is the so-called

Kernel matrix, which is defined in this case as

[Ω]j,k =

ng∑

i=1

[Ωi]j,k (19)

with
[Ωi]j,k = xi(j)φ

⊤
i (j)φi(k)xi(k),

= xi(j)〈φi(j), φi(k)〉xi(k),

= xi(j)
(
Ki(p(j), p(k))

)
xi(k).

Here Ki is a positive definite kernel function defining
the inner products ofφ⊤

i (j)φi(k). Consequently,Ki defines
Ω and hence characterizes the feature maps{φi}

ng

i=1 in an
efficient fashion. This allows to characterize a wide range of
nonlinear dependencies as a linear combination of infinitely
many functions (nH = ∞) defined through the choice of
the particular inner product and a relatively low dimensional
parameterα. Called thekernel trick[10], [11], this approach
allows the identification of the coefficient functionsai and
bj without explicitly defining the feature maps involved.
Note that the kernel trick can be applied as a regularization
approach in a wide range of optimization problems, like in
[16], where it was used to regularize dimension explosion in
LPV subspace approaches.

A typical type of kernel is, for example, theRadial Basis
Function (RBF) kernel:

Ki(pj , pk) = exp

(

−
‖pj−pk‖

2
ℓ2

σ2
i

)

, (20)

but other kernels, likepolynomialkernels, can also be used.
The choice of the kernel defines the class of dependencies
that can be represented. By using a particular kernel,i.e.,
definingΩ, the solution of (18) is given by

α =
(
Ω + γ−1IN

)−1
Y. (21)

Usingα, the minimizer of (14a-b),i.e., the model estimate is
computed according to (16b). This gives that the estimated
coefficient functions are obtained as

ai(¦) = ω⊤
i φi(¦) =

N∑

k=1

αkxi(k)Ki(p(k), ¦), (22a)

bj(¦) = ω⊤
j̃

φj̃(¦) =

N∑

k=1

αkxj̃(k)K j̃(p(k), ¦), (22b)

where j̃ = na + 1 + j. Note that the parameter vectorω

is never accessible in the SVM framework, and only the
combined estimationωi

⊤φi(¦) = ai(¦) or bj(¦) = ω⊤
j̃

φj̃(¦) is
computable using the defined kernel functions.

IV. PROPERTIES AND COMPARISON

In this section, a brief overview of the major properties
and advantages of the proposed LPV LS-SVM scheme is
given and the approach is compared to the NNG method [8]
and the dispersion function method [4].



A. Advantages of the semi-parametric formulation

The SVM scheme does not require explicit declaration of
the feature mapsφi or estimation of the high dimensional pa-
rameter vectorsωi. Instead, it requires the declaration of the
kernel functionsKi, i = 1, . . . , ng, which explicitly define
the set of nonlinear functions where the optimal estimate
of the dependencies is searched for. For exact recovery of
these dependencies,Πi = Span(Ki(p, ¦)) for p ∈ P should
contain the corresponding dependency,e.g.,ai(¦). In case of
polynomial dependencies with maximum degree ofd, it is
sufficient to choosedth-order polynomial kernels, however
choosing an RBF kernel gives the representation possibility
of a wide range of nonlinearities even including rational
functions. Independent definitions ofKi also allow anya
priori knowledge to be easily included in the model structure.
We refer to [11] for further discussions on the adequate
selection of kernels.

Regarding the over-parametrization based LS solution in
Section II, which also involves a choice of the functions
ψi,j , the LS-SVM scheme has a significant advantage: it
only requires the estimation ofα, whose size is equal toN ,
and this is independent of the set of nonlinearities chosen
(even for infinite dimensional feature maps). Consequently,
it avoids using ultra-large scale over-parametrization by
simply adopting an RBF kernel. Therefore, it represents a
highly attractive bias-variance trade-off. Regarding consis-
tency properties of the LS-SVM estimation we refer to the
classical results in [10], [11].

Recently an instrumental variable extension of the dis-
cussed LS-SVM scheme has been derived in [19], which al-
lows the consistent estimation of nonlinear regression models
in case the noise involved is not white. This approach can be
extended to LPV-IO models with general noise structure like
Box-Jenkins(see [3], [5]), which gives a wide applicability
of the proposed LPV LS-SVM approach in practice. Further-
more, extension of the method tomultiple-input multiple-
output (MIMO) models follows easily just like in the LS
case and due to the flexibility of the definitions of the kernel
functions, recovery of complex dynamic dependencies over
p can also be ensured.

B. Comparison to sparse estimators

The NNG method, proposed in the LPV case in [8], is
based on the over-parametrized regression form (4), thus it
requires the priori selection of{ψi,j}. However, besides the
minimization of ‖e(k)‖2

ℓ2
it also aims to minimize‖θ‖ℓ0 .

The latter means that it tries to shrink the support ofθ̂ to the
most necessary basis functions associated parameters. This
is done by using weighting of a given LS solution̂θ of (4)
regularized through a parameterλ > 0. As λ increases, the
weights of the less important parameters shrink, and finally
end up exactly at zero. This results in less complex model
estimates, as long as the overall fit of the model estimate on
the available (validation) data is still acceptable. An efficient
way to implement this strategy is to use a path following
parametric estimation, which calculates a piecewise affine
solution path forλ [20]. However, such approaches are

computationally more demanding than the LS-SVM scheme.
Other sparse estimators, like the Lasso approach, implement
the above described strategy by minimizing the combined
objectives of‖e(k)‖2

ℓ2
and ‖θ‖ℓ0 . It is immediate that due

to the fact that these estimators must operate on a relatively
large parametrization space, the proposed LS-SVM scheme
can be considered more attractive. Furthermore, ifN → ∞,
sparse estimators can consistently estimate the support of
the trueθo, which corresponds to the data-generating system
in the model set, but are inconsistent in theℓ2 sense (see
[21]). The latter is a particular drawback in comparison to
the LS-SVM.

C. Comparison to the dispersion approach

The dispersion approach proposed in [4] can be considered
to be similar to the LS-SVM method as it is also a semi-
parametric approach with a required number of estimated
parameters beingng × N , it uses a sum-of-norms type of
cost function with a regularization parameter and it does not
require priori knowledge of the underlying dependencies (not
even a choice of kernels). However, the larger number of
parameters to be estimated (ng × N > N ) implies that the
achievable bias-variance trade-off by the dispersion approach
is inherently worse than in the SVM case. This claim is
also supported by an experimental study in Section V. Fur-
thermore, the dispersion method corresponds to a quadratic
optimization problem which can be considered to be compu-
tationally more demanding than the analytical SVM solution.
Nonetheless, due to the availability of efficient interior point
methods, the difference between them in this aspect is often
negligible in practice. Additionally, the flexible definition
of the kernels in the SVM case allows to include prior
information about the expected dependencies (if available)
for more accurate results, unlike in the dispersion case.

V. I LLUSTRATIVE EXAMPLES

To assess the performance of the presented algorithm, two
examples are presented in this section. The first example is
borrowed from [4], which is used to compare the proposed
LPV LS-SVM method to the dispersion approach of [4].
The second example is used to demonstrate the statistical
properties and reconstruction capabilities of the LS-SVM
algorithm on a representative Monte Carlo simulation.
A. Example 1: LPV-SVM vs. the dispersion approach

In the example of [4], the considered LPV data-generating
system is given as:

y(k) =

2∑

i=0

bi(pk−i)u(k − i) + eo(k), (23)

with P = [−1, 1], eo being a zero mean stochastic noise
process and

b0(pk) = − exp(−pk), b1(pk−1) = 1 + pk−1,

b2(pk−2) = tan−1(pk−2).

Note that this IO representation has a nonlinear dynamic
dependence onp and it is in a so-calledfinite impulse
response(FIR) form (a special case of ARX). A model of
(23) can be formulated in the proposed SVM setting as



y(k) =

2∑

i=0

ω⊤
i φi(pk−i)u(k − i) + e(k). (24)

Note that dynamic dependence of the feature maps in (24)
does not impose any difficulty in formulating the ridge
regression. To be able to compare the results, the same
conditions of excitation and measurements as in [4] are used
during simulations of (23). A data setDN with N = 400 is
generated by (23) usingu(k) = sin(π

2 k), p(k) = sin(0.25k)
and eo(k) ≡ 0 (noise-free measurement). Note that inDN ,
u(k) = −u(k − 2) for all k.

On the gathered data setDN , the proposed LS-SVM
approach has been applied and the obtained results with re-
spect to the estimation of the underlying coefficient functions
are shown in Figure 1. To characterize the nonlinearities
in this system, RBF kernels have been used forK, K2

and K3 with σ1 = σ2 = σ3 = 0.7. Based on trial-
and-error, the regularization parameter has been tuned to
γ = 500. It is important to mention that in this noise-free
case, the choice of these parameters is not very critical.
Their tuning is consequently not necessary to demonstrate
the advantageous properties of the proposed method in this
example. As in the data set,u(k) = −u(k − 2) for all k,
b0 andb2 are not uniquely identifiable: any pair of functions
{b0(pk)+f, b2(pk−2)+f} produces the same output response
for any arbitraryf ∈ R under the given excitation. This fact
results in a pure constant bias forb0 and b2 over P (with
f = 0.81 using the given parameters settings), and the bias
is clearly visible in the results of Figure 1 given by the dashed
lines. By adding an extra constraint to (14b) for centering the
estimated coefficient functions, this bias can be effectively
eliminated and the estimated coefficient functions (dashed-
doted lines in Figure 1) show a perfect fit overP.

Comparing the performance of the LS-SVM to the results
of [4], the dispersion approach results in a much larger error
for b0 andb2 for low values ofp (see Fig. 1). This can be the
effect of the better bias-variance trade-off when using theLS-
SVM approach for data sets of such size. As stated before,
a particular advantage of the LS-SVM over the dispersion
approach is the smaller number of estimated parameters.

B. Example 2: LPV-ARX model

To assess the stochastic performance, as a next example,
the proposed LPV LS-SVM approach is tested on an LPV
data-generating system in an ARX form under rather severe
noise conditions. In this case, the considered data-generating
system is described by

y(k) + a1(pk)y(k − 1) =

1∑

i=0

bi(pk)u(k − i) + eo(k), (25)

with P = [−1, 1], eo being a zero mean stochastic noise
process and

a1(pk) = 0.1 ·
sin(π2pk)

π2pk

,

b0(pk) =







+0.5 if pk > 0.5
pk if − 0.5 ≤ pk ≤ 0.5
−0.5 ifpk < −0.5

b1(pk) = −0.2 · p(tk)2.
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Fig. 1. Estimation results of the coefficient functions in Example V-A
by the proposed LPV-SVM approach, including the results before and after
offset correction along with the results from [4].

TABLE I

MEAN AND STANDARD DEVIATION OF THE BFR ON VALIDATION DATA .

Mean STD
LS-SVM 95.22 0.005

In this case, the IO representation of the system has only
static dependence onp, but the nonlinearities involved in
a1 and b0 are difficult to approximate (especially if using a
polynomial parametrization as it is normally presented in the
literature of regression based methods).

The identification problem of (25) is formulated in the
proposed LS-SVM setting by considering the following
model structure

y(k) =

3∑

i=0

ω⊤
i φi(pk−i)xi(k) + e(k), (26)

where x1(k) = y(k − 1) and x2(k) = u(k), x3(k) =
u(k − 1). To provide an informative data setDN for
identification,u is taken as a zero-mean white noise process
with a uniform distributionU(−1, 1) and with lengthN =
1500. Furthermore,eo(k) is assumed to have a Gaussian
distribution N (0, σ2

eo
) with σeo

> 0. To investigate the
performance under fairly severe noise conditions, thesignal-
to-noise ratio(SNR) is set asSNR = 10 log

Pχ

Pχ−y
= 10dB,

where Pχ is the average power of signalχ, which is the
deterministic component ofy (noise-free output of (25)).

For numerical illustration, a Monte-Carlo simulation of
NMC = 100 runs has been accomplished with new realiza-
tion of the noise and input in each run. Using the gathered
data sets, the LPV LS-SVM approach has been applied to
estimate (26) with RBF kernels forK1, K2 andK3 having
σ1 = σ2 = σ3 = 0.7. The regularization parameter, based on
trial-and-error, has been tuned toγ = 104. The estimation
results fora1, b0 andb1 are displayed in Figure 2 in terms of
mean and standard deviation of the estimates over the 100
Monte Carlo runs. It is remarkable that without using any
prior information about the system (except the continuity
of the dependencies onP implied by the RBF kernels),
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Fig. 2. Estimation results of the coefficient functions in Example V-B by the proposed LPV-SVM approach. The true nonlinearfunctions are given with
solid black together with the mean estimate (solid grey) and+/− standard deviation (dashed black) computed over 100 Monte-Carlo runs.

the considered nonlinear functions are estimated without a
significant bias and the variance is also small compared to
the heavy noise conditions. To quantify the model quality,
let us consider thefitness scoreor Best Fit Rate(BFR):

BFR = 100% · max

(

1 −
‖χ(k) − χ̂(k)‖ℓ2

‖χ(k) − χ̄‖ℓ2

, 0

)

, (27)

where χ̄ is the mean ofχ. The mean and the standard
deviation of the BFR with respect to the model estimates
are computed on a validation data set and displayed in Table
I. From these measures, it follows that the proposed approach
provides a quite accurate estimation approach for this non-
trivial LPV model. Furthermore its computational load is
relatively low and the methods does not need any prior
structural information about the dependencies.

VI. CONCLUSION

In this a paper a semi-parametric identification approach
based onleast-squares support vector machines(LS-SVM),
has been introduced for LPV regression models. In con-
trast to the currently used over-parametrization based tech-
niques for least squares(LS) estimation of such models,
the proposed approach is capable of providing consistent
estimates without prior information on the parametrization
of the underlying coefficient dependencies. This is not only
favorable in the common practical situation of unknown
structural dependency of the model, but also lowers the vari-
ance of the estimates due to the efficient dual optimization
scheme involved. Furthermore, the computational load of
the method is relatively low. It has also been shown on
a relevant example that the LS-SVM approach achieves a
better performance with respect to the dispersion function
approach proposed in the literature for LPV semi-parametric
identification. Besides, the proposed approach is capable of
capturing difficult nonlinear dependencies. An interesting
topic for future research is to test the performance of the
LS-SVM approach on real applications and also to capture
hysteresis type of dependencies using multidimensional ker-
nels with dynamic dependency.

REFERENCES

[1] B. Bamieh and L. Giarŕe, “Identification of linear parameter varying
models,” Int. Journal of Robust and Nonlinear Control, vol. 12, pp.
841–853, 2002.

[2] X. Wei, “Advanced LPV techniques for diesel engines,” Ph.D. disser-
tation, Johannes Kepler University, Linz, 2006.

[3] V. Laurain, M. Gilson, R. T́oth, and H. Garnier, “Refined instrumental
variable methods for identification of LPV Box-Jenkins models,”
Automatica, vol. 46, no. 6, pp. 959–967, 2010.

[4] K. Hsu, T. L. Vincent, and K. Poolla, “Nonparametric methodsfor the
identification of linear parameter varying systems,” inProc. of the Int.
Symposium on Computer-Aided Control System Design, San Antonio,
Texas, USA, Sept. 2008, pp. 846–851.
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[11] B. Scḧolkopf and A. Smola,Learning with kernels. Cambridge MA:

MIT Press, 2002.
[12] J. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Van-

dewalle,Least Squares Support Vector Machines. Singapore: World
Scientific, 2002.

[13] T. Falck, K. Pelckmans, J. Suykens, and B. De Moor, “Identification
of wiener-hammerstein systems using LS-SVMs,” in15th IFAC sym-
posium on System Identification, Saint Malo, France, July 2009.

[14] I. Goethals, K. Pelckmans, J. Suykens, and B. De Moor, “Identification
of MIMO Hammerstein models using least squares support vector
machines,”Automatica, vol. 41, no. 7, pp. 1263–1272, 2005.

[15] F. Giri and E.-W. Bai,Lecture Notes in Control and Information
Sciences, ser. Block-oriented Nonlinear System Identification. Berlin:
Springer-Germany, 2010.

[16] V. Verdult and M. Verhaegen, “Kernel methods for subspace identifica-
tion of multivariable LPV and bilinear systems,”Automatica, vol. 41,
no. 9, pp. 1557–1565, 2005.
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