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Model Structure Learning: A Support Vector Machine Approach for
LPV Linear-Regression Models

Roland Toth, Vincent Laurain, Wei Xing Zheng and Kameshwar Poolla

Abstract— Accurate parametric identification of Linear  the model parameters are functions of the measurable time-
Parameter-Varying (LPV) systems requires an optimal prior  varying signalp. Using scheduling variables as changing
selection of a set of functional dependencies for the parametriza- operating conditions or endogenous/free signals of thetpla

tion of the model coefficients. Inaccurate selection leads to the cl f LPV t d ibe both i d
structural bias while over-parametrization results in a variance e class o systems can describe both nonlinear an

increase of the estimates. This corresponds to the classical bias- time-varying phenomena.
variance trade-off, but with a significantly larger degree of Identification of the LPV-ARX model (1) can be addressed

freedom and sensitivity in the LPV case. Hence, itis attractive to  py ejther following alocal or a global approach. In the

estimate the underlying model structure of LPV systems based |54 case, LTI snapshots of the model are identified for
on measured data,i.e.,, to learn the underlying dependencies '

of the model coefficients together with model orders etc. In cor?stant Iev_els ofp followed by an interpolatio_n _OVEP’
this paper a Least-Squares Support Vector Machine (LS-SvM) While by using a global approach, the coefficient func-
approach is introduced which is capable of reconstructing the tions of (1) are estimated based on a data recdrd =

dependency structure for linear regression based LPV models {(u(k),p(k),y(k))}g_l with varying p. These approaches

even in case of rational dynamic dependency. The properties of have their pros and cons, but in the global setting a compact
the approach are analyzed in the prediction error setting and ’

its performance is evaluated on representative examples. estimation of (1) becomes available by realizing that (1) ca
Index Terms— Linear parameter-varying; support vector ma- b€ written as a linear regression. This is possible under the
chines; linear regression; ARX; identification, model structure ~ assumption that each functien andb; can be decomposed

selection. in terms of a priori selected basis sgf; : P — R as

. INTRODUCTION a;(p(k)) = i + 0i1ia (p(k)) + ... + 0irtis, (p(k)), (2)

Estimation oflinear parameter-varyindLPV) polynomial  \here g,; ¢ R are theunknown parameterso be iden-
models in aninput-output(l0) setting has received a sig- tified. In the ARX case, this delivers identification of (1)
nificant attention recently in the identification literaguisee, i, terms of a simpleleast-squares(LS) estimate in the
€.g., [1]-{7]). In discrete-time, the most basic modelstiee  ¢|assicalprediction-error (PE) setting [1]. Furthermore, this
in this context is the so-calleduto-regressive model with parametrization allows to formulate an LPV extension of the
exogenous iNpUARX) which is often defined in theingle-  pg framework, where stochastic analysis of the estimation
input single-outpu(SISO) case as and general noise models can be addressed [3], [5].

"a b Besides the classical questions of model structure sefecti

y(k)+Y_ ai(p(k)y(k—i) = b;(p(k))u(k—j)+e(k), (1)  interms of model order (like, andn, input delay, etc.), the

=1 J=0 adequate selection of the basis §¢f; } has a paramount im-
wherek € Z is the discrete timey : Z — R andy : Z — R portance in this setting. To capture the unknown dependence
denote the input and the output signals respectiyelyZ —  of a; andb; on p, which can range from simple polynomial to
P is the so calledscheduling variablewith rangelP C R™  complicated rational or even discontinuous functionseroft
and e is a white stochastic noise process. Furthermore (@ large set of basis functions is applied from which only a
keep the notation simple), the coefficient functiansb; :  few might actually be needed for an accurate approximation.
P — R havestatic dependencen p, i.e., they only depend This means that most commonly, the LS estimation is faced
on the instantaneous value pfk). with a seriously over-parametrized model structure whieee t

Itis a general mark of LPV models that the signal relationsinderlying true parameter vectdy, can be rather sparse.
are linear just as in thinear time-invariant(LTI) case, but Hence the variance of the estimates can be seriously large

even if the order of the actual model is low. Moreover, if
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modeling of nonlinear systems requires that the model cés completely characterized by, (.)},2,. As it is almost
efficients not only depend on the instantaneous valuegs ofexclusively done in the LPV identification literature (see,
(static dependengdout also on its time-shifted versiondy- e.g.,[1]-[3], [5], [16], [17]), assume that eaah; is linearly
namic dependengg9]. Thus, estimating LPV-ARX models parameterized as

with dynamic dependence is often required for obtaining ac- e

curate models of the underlying system. Parametrizatiom wi ¢i(-) = bio + Z Oijpis (), ®)
such dependency seriously increases the dimension of the 5 =1

parametrization space and commonly renders the adequifere {gij}?if}ﬂ are unknown parameters and
selection of {¢;;} based on heuristics to be infeasible in{¢i;};1j—;, with s; € N, are functions chosen by the

practice. user. Denote(k) asps. In this case, (1) can be written as
To obtain an efficient solution _for this proble_msqpport y(k) = 0To(k) + e(k), (4)

vector machingSVM) approach is introduced in this paper

with the aim of providing “nonparametric” reconstruction o whered =[ 010 ... 015, 020 ...0n, s, ]" and

the dependency structure for linear regression based LPV o B B B

models. SVM'’s have been originally developed as a class of (k) = [ y(k = 1) Y (pr)y(k = 1)

supervised learningnethods [10], [11] for efficient recon- Vs, (PR)Y(k —1) .. =, (Pr)y(k —na)

strgction (?]f underlying fLrJ]nctir(])nal rellati?]ns(:jhips ant?c stues u(k) . Yngs,, (pr)u(k —np) ]T.

in data. These approaches have also had a significant impact_. B N

on nonlinear block modeidentification via variousleast C_5|ven a data S.eDN - {(u(k.)’p(k)’y(k))}’?:l’.the LS

square-SVM(LS-SVM) approaches [12]-[15]. In general,eSt'mate for the linear regression model (4) is given by

LS-SVM'’s are particular variations of the original SVM 0 = arg ;161& V(b,e), (5)

approach using af, loss function. Their main advantage is

the uniqueness of the solution, obtained by solvinmear L

problemm a computathnally efficient way. H_ence our aim V(b,e) & N”e(k’)“%w e(k) 2 y(k) — 0Tp(k). (6)

is to use the computational and reconstruction potential of ) . o

LS-SVM's to provide an efficient solution in the LPV case. © guarantee a unique solution of (5), it is assumed that
It must be noted that in [4], a semi-parametric functiona{wi} ¢} ;=1 are chosen such that (1) is globally identifiable

i=1,j=1
dependence estimation approach ugitigpersion functions

wheren = >"7%, 1+ s, (according to (3)), and

there exist n@ and#’, such that the 1-step ahead predictor

was introduced. However, this approach, as we will see, rgsulting.from (1) is. not disting_u_ishable féraqd@’) and that

less effective in the bias-variance trade-off than the M3AS Dy provides epersistently excitingegressor in (4) (see [5],

scheme to be proposed and hence it shows lower accurzi&)g])' Note that idgzntifiability in particul;’;\r holds for (4yith

in the considered simulation study. Due to the underlying7é 0 iff for eachi € {1,...,ng}, {¢}5L, corresponds to

commonsum-of-normgost function and nonparametric na- set of linearly independent functions Bn By organizing

ture of the estimation, the proposed LS-SVM scheme can 6'36 data as .

considered as a next step on this path towards an automated Y = [ y(1) y@2) ... yV) ] ) (7a)

and effective model structure learning in the LPV setting. o=[ 1) @2 ... p(N) ]T7 (7b)
The paper is organized as follows. In Section Il, a short

overview of the LPV-ARX model structure and its LS-basedhe optimal solution to (5) can be expressed as

identifiqation method is given, defining the problem setting Oy = (@T@)_l Ty @8)
In Section 1ll, such models are formulated in the LS-SVM
setting and an algorithm is proposed for nonparametric [1l. LS-SVM FORLPV SYSTEMS

identification. In Section IV, the properties of the prophse In this section, we show how the SVM approach can

approach are apalyzed and compared t(.) sparse e.St'matr%sformulated with respect to the estimation of (1) without
and the dispersion approach of [4], while in Section V

the algorithm is validated on a Monte Carlo study anfgpecn‘ymg the underlying dependencies required to derive

compared in performance to [4]. Finally, conclusions an simple LS solution. As we will see, without such a prior
futurz directiorrl)s of the research ére givgh in Section VI pecification, the SVM is still capable of conducting consis

tent estimation of the underlying system and preserving the

II. LPV IDENTIFICATION VIA ARX MODELS low computational need of the LS estimation.
In this paper, we focus on LPV systems with ARX typeA. LPV modeling in the SVM setting
of 10 representation defined in (1). Introduce In contrast with the standard LS setting introduced in
[ 1 ... On, ]Té [ ay ... an, bo ... by, ]T7 Section I, the structural dependence of the coefficients

on p is now assumed to be priori unknown. Consequently,

with ng = na + ny + 1, where eachg;(.) is a real yhe parametrized model of system (1) is introduced as

function with static dependence pnlt is assumed that these g
functions are non-singular oR, thus the solutions of the M, k) — wT b 2 (k) + e(k 9
system given by (1) are well-defined and the process part ¥ y(k) ; ¢ 9ilpe)ai(h) +e(h), - ©)



where eachp; : R — R™® denotes an undefined, potentially

infinite (ng = oc0) dimensionalfeature mapw; € R"® is
the i** parameter vector and

zi(k) =y(k—i), i=1,...,n,, (10a)
Lnp+1+5 (k) - U(k - .7)’ ] = Oa <oy b (1Ob)
Additionally, introducev = [ w{ ...w, ]T € R""" and

.
o(k) = [ of(pr)a1(k) k)T, (K) ], (11)
such that (9) can be rewritten in the regression form as
y(k) = w (k) + e(k). 12)

B. Ridge regression

To simplify the notation, let; (k) = ¢;(px). The LS-SVM
approach aims at minimizing the cost function

1o P 1 o~
J(w,e)=5 > wlwi+ 5> () =5 lwlf, + llet)IIZ,
=1 k=1

(13)
where the scalary € R; is the regularization parameter
Note that (13) is a so-calledum-of-normscriterion as

Y =(Q+9"'1In)aq, (18)

wherea = [a; ... ay]’ € RY, and Q) is the so-called
Kernel matrix which is defined in this case as

g

[k =D 174

i=1

(19)

with

[0 = 2 ()] ()i (k)ws(k),

( N
() (K (p(4), p(k))) i (k).

Here K' is a positive definite kernel function defining
the inner products o, (j)¢; (k). ConsequentlyK® defines
Q and hence characterizes the feature mgpg,*, in an
efficient fashion. This allows to characterize a wide ranfje o
nonlinear dependencies as a linear combination of infinitel
many functions (g = oo) defined through the choice of
the particular inner product and a relatively low dimension
parametery. Called thekernel trick[10], [11], this approach
allows the identification of the coefficient functioms and

it contains both the equation error term from (9) and 3. without explicitly defining the feature maps involved.

regularization term: thé, cost ofw scaled byy. This added

Note that the kernel trick can be applied as a regularization

regularization term, as we will see later, is used to addregproach in a wide range of optimization problems, like in

the estimation (learning) of the unknown dependencies.

[16], where it was used to regularize dimension explosion in

Consider the modelM.,, ., as in (9) whose estimation | py sybspace approaches.

corresponds to the following optimization problem

Ng N
1 e
min  J(w,e) = B Zw;wi + g Z e(k)?, (14a)
i=1 t=1

w,b,e

St k) = ylR) — 3 o (R ). (14b)

A typical type of kernel is, for example, tiieadial Basis
Function (RBF) kernel:

. I 2
K'(pj,pr) = exp (—W) , (20)

but other kernels, likgpolynomialkernels, can also be used.
The choice of the kernel defines the class of dependencies

This constrained optimization problem is solved by CONfhat can be represented. By using a particular kerinel,

structing theLagrangian
‘C(wv 6704) = j(wv 6)_

Z g (Zg wi ¢i(k)ai(k) + e(k) — y(k)) (15)
k=1 i=1

with o, € R being theLagrangian multipliers The global
optimum is obtained when

oL
20 =0 = ax=relk), (16a)
Y N

v 0 — w= ;ak@(k)mi(k), (16Db)
oL e

g =0 ek =yk) - ;w%i(/@)xi(iﬁ). (16¢)

Substituting (16a) and (16b) into (16c¢) leads to the folloyvi
set of equations
Ng N
y(k) = Oékxi(k)(b;r(k)) ¢i(k)zi(k)+y " ai (17)
2 L

- e(k)

T
i

for k € {1,..., N}. This is equivalent to

w.

defining €2, the solution of (18) is given by

a=(Q+~yIy) Y. (21)

Using «, the minimizer of (14a-b).e., the model estimate is
computed according to (16b). This gives that the estimated
coefficient functions are obtained as

N
a;(x) = wi ¢i() = Y i (k)K' (p(k), ), (22a)
k=1

N ~
bi() = wl ¢5(:) = Y ana; (k) K (p(k),.),  (22b)
k=1

wherej = n, + 1 + j. Note that the parameter vector

is never accessible in the SVM framework, and only the
combined estimatiow; '¢;(.) = a;(+) or b;(.) = w;(b;(.) is
computable using the defined kernel functions.

IV. PROPERTIES AND COMPARISON

In this section, a brief overview of the major properties
and advantages of the proposed LPV LS-SVM scheme is
given and the approach is compared to the NNG method [8]
and the dispersion function method [4].



A. Advantages of the semi-parametric formulation computationally more demanding than the LS-SVM scheme.

The SVM scheme does not require explicit declaration dPther sparse estimators, like the Lasso approach, implemen
the feature maps; or estimation of the high dimensional pa-the above described strategy by minimizing the combined
rameter vectors;. Instead, it requires the declaration of thePbjectives of|le(%)[|7, and [|0]4,. It is immediate that due
kernel functionsK’, i = 1,...,n,, which explicitly define to the fact that_the_se estimators must operate on a relativel
the set of nonlinear functions where the optimal estimat@fg€ parametrization space, the proposed LS-SVM scheme
of the dependencies is searched for. For exact recovery A" be considered more attractive. Furthermoréy it oo,
these dependenciel,; = Span(K(p,.)) for p € P should SParse estimators can consistently estimate the_ support of
contain the corresponding dependereg.,a;(.). In case of Fhe trued,,, which corresponds to t.he da’ga—generatmg system
polynomial dependencies with maximum degreedpit is " the model set, but are inconsistent in thesense (see
sufficient to chooselt"-order polynomial kernels, however [21]). The latter is a particular drawback in comparison to
choosing an RBF kernel gives the representation posyibilifhe LS-SVM.
of a wide range of nonlinearities even including rational. Comparison to the dispersion approach

funct_ions. Independent dgfin_itions ‘ﬁ,f also allow anya The dispersion approach proposed in [4] can be considered
priori knowledge to be easily included in the model Structur&y pe similar to the LS-SVM method as it is also a semi-

We refer to [11] for further discussions on the adequatfarametric approach with a required number of estimated
selection _Of kernels. L . parameters being, x N, it uses a sum-of-norms type of
Regarding the over-parametrization based LS solution iy finction with a regularization parameter and it does no
Section I, which also involves a chou_:_e of the funCt'OnSi_'equire priori knowledge of the underlying dependencies (n
Vi, the LS-SVM scheme has a significant advantage: lf,e, 5 choice of kernels). However, the larger number of
only requires the estimation ef, whose size is equal t&, arameters to be estimated, (x N > N) implies that the
and this is independent of the set of nonlinearities chosel.hiavable bias-variance traée—off by the dispersionamr
(even for infinite dimensional feature maps). Consequently inherently worse than in the SVM case. This claim is
it_ avoids usi_ng ultra-large scale over-parametrization b¥|so supported by an experimental study in Section V. Fur-
S|_mply adopt|-ng an RBF, kernel. Therefore, it represents fhermore, the dispersion method corresponds to a quadratic
highly attractive bias-variance trade-off. Regarding sien optimization problem which can be considered to be compu-

tency properties of the LS-SVM estimation we refer 10 th§aignally more demanding than the analytical SVM solution
classical results in [10], [11]. _ _Nonetheless, due to the availability of efficient interiaint
Recently an instrumental variable extension of the digqeqgs; the difference between them in this aspect is often
cussed LS'S\_/M scheme h_as been d_enved in [19]3 which a111'egligible in practice. Additionally, the flexible defiroti
!OWS the conS|_ster_|t estlmatllon of nophnear regressionetsod of the kernels in the SVM case allows to include prior
in case the noise involved is not white. This approach can R mation about the expected dependencies (if avajjable
extended to LPV-10 models with general noise structure I'kf’or more accurate results, unlike in the dispersion case.
Box-Jenkingsee [3], [5]), which gives a wide applicability
of the proposed LPV LS-SVM approach in practice. Further- V. ILLUSTRATIVE EXAMPLES
more, extension of the method taultiple-input multiple- To assess the performance of the presented algorithm, two
output (MIMO) models follows easily just like in the LS examples are presented in this section. The first example is
case and due to the flexibility of the definitions of the kerneborrowed from [4], which is used to compare the proposed
functions, recovery of complex dynamic dependencies ov&PV LS-SVM method to the dispersion approach of [4].
p can also be ensured. The second example is used to demonstrate the statistical
properties and reconstruction capabilities of the LS-SVM

B. Comparison to sparse estimators lorith tative Monte Carlo simulati
. , . algorithm on a representative Monte Carlo simulation.
The NNG method, proposed in the LPV case in [8], is g P

based on the over-parametrized regression form (4), thusA|t Example 1. LPV-SVM vs. the dispersion approach

requires the priori selection dfi; ;}. However, besides the  In the example of [4], the considered LPV data-generating
minimization of [|e(k)|?, it also aims to minimizef|d[|,,. ~SYystem is given as:

The latter means that it tries to shrink the suppord ¢ the B =S b (o ulk — )+ e (k 23
most necessary basis functions associated parametess. Thi y(k) ; i(Pre—)ulk = 1) + e (k), (23)
is done by using weighting of a given LS solutiérof (4)  \ith p = [~1,1], e, being a zero mean stochastic noise

regularized through a parameter> 0. As \ increases, the ,5cess and
weights of the less important parameters shrink, and finally
end up exactly at zero. This results in less complex model bo(pi) = —exp(=px),  br(pr—1) =1+ pi-1,
estimates, as long as the overall fit of the model estimate on 02(Pr—2) = tan™ " (pr—2).

the available (validation) data is still acceptable. Ancgdint Note that this IO representation has a nonlinear dynamic
way to implement this strategy is to use a path followinglependence om and it is in a so-calledfinite impulse
parametric estimation, which calculates a piecewise affimesponse(FIR) form (a special case of ARX). A model of
solution path for\ [20]. However, such approaches are(23) can be formulated in the proposed SVM setting as



y(k) = w ¢i(pr—i)ulk — i) + e(k). (24)
i=0 QgQane

true

bO(p)
-

Note that dynamic dependence of the feature maps in (24) g el comonied

does not impose any difficulty in formulating the ridge [ e C Iy a [4;‘3 |

regression. To be able to compare the results, the same

conditions of excitation and measurements as in [4] are used s

during simulations of (23). A data séiy with N = 400 is =

generated by (23) using(k) = sin(%k), p(k) = sin(0.25k) i

ande, (k) = 0 (noise-free measurement). Note thatZiny, i — L - Eﬁ“"‘a‘”‘

u(k) = —u(k — 2) for all k. 08 06 04 02 0 02 04 06 08 1
On the gathered data séy, the proposed LS-SVM

approach has been applied and the obtained results with re- L

spect to the estimation of the underlying coefficient fuorcsi S osf ppomen e '

are shown in Figure 1. To characterize the nonlinearities oo 0002088 ‘m;g

in this system, RBF kernels have been used for K? e L LW

and K3 with 0y = 0o = 03 = 0.7. Based on trial- e

and-error, the regularization parameter has been tuned to o N o

7 = 500. It is important to mention that n this noise-freet S, L, ETE S5 o be e tlore 1 Bee VA

case, the choice of these parameters is not very critic@kset correction along with the resuits from [4].

Their tuning is consequently not necessary to demonstrate TABLE |

the advantageous properties of the proposed method in W&AN AND STANDARD DEVIATION OF THE BFR ON VALIDATION DATA .

example. As in the data set(k) = —u(k — 2) for all k,

by andb, are not uniquely identifiable: any pair of functions

{bo(pr)+f,b2(pr—2)+f} produces the same output response

for any arbitraryf € R under the given excitation. This fact In this case, the 10 representation of the system has only

results in a pure constant bias foy and b, over P (with  static dependence op, but the nonlinearities involved in

f = 0.81 using the given parameters settings), and the biag andb, are difficult to approximate (especially if using a

is clearly visible in the results of Figure 1 given by the dash polynomial parametrization as it is normally presentechia t

lines. By adding an extra constraint to (14b) for centerlmg t literature of regression based methods).

estimated coefficient functions, this bias can be effestive The identification problem of (25) is formulated in the

eliminated and the estimated coefficient functions (dashegroposed LS-SVM setting by considering the following

Mean | STD
LS-SVM || 95.22 | 0.005

doted lines in Figure 1) show a perfect fit over model structure
Comparing the performance of the LS-SVM to the results 3 T
of [4], the dispersion approach results in a much largerrerro y(k) = Z“’vﬁ i(pr—i)zi(k) + e(k), (26)
=0

for by andb, for low values ofp (see Fig. 1). This can be the
effect of the better bias-variance trade-off when usind tBe i ' i
SVM approach for data sets of such size. As stated befofélF — 1)- To provide an informative data seby for

a particular advantage of the LS-SVM over the dispersiomennflcatlon,u is taken as a zero-mean white noise process

approach is the smaller number of estimated parameters.‘{VE')tOhOaF””ritfr?grnmgirztrib“:m_i’{;;i’ ae?jn?owﬁltg E”;tgjz :s'an
B. Example 2: LPV-ARX model - Y co(k) is assu v usst

_ distribution /(0,02 ) with 0., > 0. To investigate the
To assess the stochastic performance, as a next exampjgsformance under fairly severe noise conditions sigeal-
the proposed LPV LS-SVM approach is tested on an LPYp-noise ratio(SNR) is set aSNR = 101log PPXV — 10dB,
data-generating SyStem in an ARX form under rather SeVe{fhere PX is the average power of Signa], Wﬁmh is the
noise conditions. In this case, the considered data-gémgra deterministic component af (noise-free output of (25)).

system is described by For numerical illustration, a Monte-Carlo simulation of

where 1 (k) = y(k — 1) and z2(k) = wu(k), z3(k) =

1
T ' . Nyic = 100 runs has been accomplished with new realiza-
y(k) +ai(pr)y(k — 1) = ;b’(p’“)“(k i)+ eo(k), (25) tion of the noise and input in each run. Using the gathered
with P = [~1,1], e, being a zero mean stochastic noiséld@ Sets, the LPV LS-SVM appro?ch 2has be(zn applied to
process and estimate (26) with RBF kernels fd*, K< and K> having
sin(m2py) o1 = 09 = 03 = 0.7. The regularization parameter, based on
ai(pk) =0.1- T trial-and-error, has been tuned 0= 10%. The estimation
. results foray, by andb; are displayed in Figure 2 in terms of
+0.5 if pp > 0.5 - :
. . mean and standard deviation of the estimates over the 100
bo(pr) = Pk if —0.5<p. <05

05 ifpe < —05 Monte Carlo runs. It is remarkable that without using any
' 2pk ' prior information about the system (except the continuity
bi(pr) = —0.2 - p(tx)". of the dependencies of implied by the RBF kernels),
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Fig. 2. Estimation results of the coefficient functions in Exde V-B by the proposed LPV-SVM approach. The true nonlirfaactions are given with

solid black together with the mean estimate (solid grey) #nd- standard deviation (dashed black) computed over 100 Monte-@ans.

the considered nonlinear functions are estimated without ]
significant bias and the variance is also small compared to
the heavy noise conditions. To quantify the model quality,[4]
let us consider théithess scorer Best Fit Rate(BFR):

Ix (%) = x(K)ll,,
(k) = xlle,

where y is the mean ofy. The mean and the standard (6]
deviation of the BFR with respect to the model estimates

are computed on a validation data set and displayed in Table
I. From these measures, it follows that the proposed aphroac,[7
provides a quite accurate estimation approach for this non-
trivial LPV model. Furthermore its computational load is [8]
relatively low and the methods does not need any prior

structural information about the dependencies.

BFR = 100% - max | 1 — 00, (27)

(5]

VI. CONCLUSION [9]

In this a paper a semi-parametric identification approach
based orleast-squares support vector machinés$-SvM),  [10]
has been introduced for LPV regression models. In cort!]
trast to the currently used over-parametrization baseltteq;z
nigues forleast squareqLS) estimation of such models,
the proposed approach is capable of providing consisteﬂg]
estimates without prior information on the parametrizatio
of the underlying coefficient dependencies. This is not only
favorable in the common practical situation of unknown'4l
structural dependency of the model, but also lowers the vari
ance of the estimates due to the efficient dual optimizations]
scheme involved. Furthermore, the computational load of
the method is relatively low. It has also been shown opg)
a relevant example that the LS-SVM approach achieves a
better performance with respect to the dispersion functi
approach proposed in the literature for LPV semi-parametr
identification. Besides, the proposed approach is capdble o
capturing difficult nonlinear dependencies. An intereg;tin[ls]
topic for future research is to test the performance of the
LS-SVM approach on real applications and also to capture
hysteresis type of dependencies using multidimensional kd19]
nels with dynamic dependency.

17]
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