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Introducing Instrumental Variables
in the LS-SVM Based ldentification Framework

Vincent Laurain, Wei Xing Zheng and Rolandfh

Abstract— Least-Squares Support Vector Machines (LS- prior knowledge on the nonlinearities unlike other nonpara
SVM) represent a promising approach to identify nonlinear metric methodsd.g, [9]).
systems via nonparametric estimation of the nonlinearities in Variants of linear regression based methods in identifi-
a computationally and stochastically attractive way. All the ti h b d | di der t ith listi
methods dedicated to the solution of this problem rely on the cafion z_;lve een eve_ope in oraer o_cope WIith realistic
minimization of a squared-error criterion. In the identificaton ~ assumptions on the noise [10]-{12]. To introduce the same
literature, an instrumental variable based optimization criterion ~ generality of noise structures, some recurrent LS-SVM have
was introduced in order to cope with estimation bias in case of a peen developed in [13], while in [14], a particular linear
noise modeling error. This principle has never been used in the parametric noise model has been introduced in the LS-

LS-SVM context so far. Consequently, an instrumental variable SVM f K H the ch - del ol
scheme is introduced into the LS-SVM regression structure, ramework. However, thé chosen noise model plays

which not only preserves the computationally attractive feature a@n important role in the consistency of the estimates. In
of the original approach, but also provides unbiased estimates the parametric identification framework, the strength of IV

under general noise model structures. The effectiveness di¢  methods is to deliver consistent estimates independently o
proposed scheme is demonstrated by a representative example. yya chosen noise model assumption in a computationally
attractive way. Consequently, the use of an instrumental
|. INTRODUCTION variable based criterion in the LS-SVM framework can
lead to a performance improvement of the current LS-SVM
Support Vector Machine¢SVMs) have been originally approaches. Nonetheless, such a method would require the
developed as a class stipervised learningnethods aiming dual solution of the IV optimization problem [10], [15],
at data analysis and pattern recognition in classificatiowhich has not been developed so far. To overcome this
problems and regression analysis [1], [2]. SVMs have hagap, this paper aims to derive a dual solution to the reg-
a paramount impact on thmachine learningfield since ularized IV optimization problem and to introduce the use
their extension as a theoretical framework in that settB]g [ of the Instrumental VariablgV) scheme into the LS-SVM
These methods also offer an attractive approacBysiem regression structure. This contribution not only presethe
identification especially in the nonlinear context. In non-computationally attractive feature of the original apmioa
linear system identification, most of the research intemast but also provides unbiased estimates for general noisemode
been dedicated toonlinear block modelssing varioud_east structures/conditions.
Square-SVMLS-SVM) approaches [4]-[6]. In general, LS-  The rest of the paper is organized as follows: after defining
SVMs are particular variations of the original support eect the problem setting considered in Section II, both the prima
machine approach using afy loss function. Their main and the dual solution of the usual optimization problem
advantage is the uniqueness of the solution, which is ollainused in LS-SVM methods are presented in Section IlI. In
by solving a set of linear equations. Section IV, the IV optimization problem is introduced both
Given the convexity of the estimation problem andn the primal form and in the newly introduced dual form.
the large number of parameters typically involved in LSin Section V, the use of the dual IV solution to the LS-
SVMs, these approaches can be regarded as so-aalezd  SVM framework is developed, resulting in an IV-LS-SVM
parametrization approaches the nonlinear framework [7], method. The statistical performance of the proposed IV-LS-
[8]. However, due to the existence of powerful regular@mati SVM method is compared in Section VI to the traditional LS-
methods for SVMs [1], [2], the variance of the estimatedSVM approach via a Monte Carlo study of the identification
nonlinear functions is significantly lower than in the claaé of a nonlinear system with a@utput Error (OE) noise
over-parametrization methods. On the other hand, SVMs alstructure. Finally, conclusions and some future directioh
offer the possibility of incorporating a model structuredan the research are given in Section VII.
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wherewu andy are the input and output signals respectively(and potentially infinite). Hence, a regularization term on
k denotes the discrete timgf?, g7 : R — R are a set is applied, leading to the minimization of the cost function
of possibly nonlinear functions ane,(k) is a zero-mean 1 N 1

white noise sequence with,(k) € N(0,02). Note that  J(p, e):iprJr %z:eQ(k):iﬂpH?2 - %||e(k)||§2, 7
representation (1) is general enough to describe usuak bloc k=1

structures such adammersteiror Wienersystems. Formu- where the scalary € Rar is the regularization parameter
lation of (1) in theMulti-Input Multi-Output (MIMO) case Note that (7) is a so-callesum-of-normsriterion as it con-
is also available as shown in [5]. It is important to note thatains both the equation error teragk) and a regularization
the considered system class is more restrictive than the nagrm: the/, cost of p scaled byy.

linear NARX class presented in [16]. This simplification is The solution of this optimization problem both in the

used to present the underlying idea behind this contributigorimal and dual forms are presented in the next subsections.

in a clear fashion. S ;
The nonlinearities involved in (1) are supposed toae A Solutu_)n n prlm_al form S o )

priori unknown. In the LS-SVM context, the assumption '€ Primal solution to minimize the criterion (7) is ob-

is made that each nonlineariffy can be modeled using an t@inéd by simply deriving the analytical solution of

ny dimensional feature map, : R — R (whereny is aJ (p,e) 0 ®)

potentially infinite). A feature map in this setting repnetse ap '

nonlinear mappings from the extended input-output space s leads to the minimum at:

the output space (feature space). Nevertheless, befope pro N -1y

erly addressing the LS-SVM problem and in order to clearly 5, — 771]% + Z t,a(k)go(k)T] . [Z (p(k)y(k)] . (9)

develop the motivations for the proposed approach, it is is el el

assumed that each nonlinearity has an explicit descriptiony; can pe further noticed that by using the notation

nyx

— [ 4 T N
Filylk =) = pi i (y(k —i)). ) Y=[y1) ... y(N)] eRY, (10a)
= S=[p1) ... p(N)]TeRN™,  (10b)
g;(u(k — i) = ij,l¢j,z(u(k — ). ©) the primal solution can be written as:
1=0 pp=[® 0+, ] DY (11)
with ; = n, + 1 + j. This assumption leads to the —_—

Rp(7,N)
T B. Solution in the dual form
y(k) = (k) " p+ e(k), ) The optimization problem (7) w.r.t. the constraints (4) can
where e(K) is the equation error and the regressisrdefined also be solved by COHSAEVUC“”Q thegrangian
as .
o) = [ ST 1)) - 8T (ol —na) L(p,e,a)=T (p,e) ;ak (k) p+e(k)—y(k) (12)

o k) b i (u(k =) ]T (5) with ar € R bei_ng the Lagrangian multipliers. The global

optimum is obtained when

parametrized modeM ,

with ¢; : R — R™® beingny dimensional basis functions,
p=1pl .o poin |l € R™ is the parameter oL _,

=0 = = ve(k), 13a
vector, p; € R™ andn, = (na + np, + 1)ny. aag - o = ve(k) (13a)
- LetM = {M, | p € R™} be the collection of all mode!s 95 _o o y(k) = pT (k) + e(k), (13b)
in the form of (4).M represents the set of models in which oy, N
we are searching for the “best1,, that describesS, given oL B L 13
a data seDy = {y(k),u(k)}\_, generated bys,. a0 p= kz::laksﬁ( ) (13c)

In the considered problem setting it is assumed that the = = ,
system belongs to the model set defined and therefore théngt'tUt'ng (13a) and (13c) into (13b) leads to

exists ap, € R such that . N )
y(k) = o(B)T| Y anp(k) | +7 ' (14)
k=1

y(k) = p(k) " po + e (k). (6) ~
[1l. OPTIMIZATION CRITERION P
The quality of the model fit is formulated in terms of afor & € {1,..., N'}. This set of equations is equivalent to:
cost function7 (p, ¢), wheree is given by (4). Minimization Yy — [(M)T i ,yflIN] o, (15)

of J(p,e) corresponds to the estimation of the parameter

vector p. In the LS-SVM framework, the used minimiza-Wherea = [oy ... an]" € RY. This linear problem admits
tion criterion is the LS error criterion on. However, the the solution: )

dimensionny of the regressor involved is usually large a=[00" +77'Iy] Y. (16)



According to (13c),0 = ® "o and therefore o In general, the recent IV approaches offer a similar
R T T 1. a1 performance as the optimal (minimum variance and
pp =P [q)q) +7 IN] Y. a7 unbiased estimates) prediction error methods in case of

Rp(v,N) correct assumptions on the system and noise models.

o As it will be shown later, the IV-based LS-SVM
problem can be solved in a very similar way to the
LS-SVM problem, implying approximately the same
computational load as well as the same complexity.

o Most importantly, the IV-schemes provide consistent
estimates in case of incorrect noise assumptions. This
feature is really important in practical situations as
usually no physical models of the noise are available.

Nonetheless, while the IV methods are now widely used

Cl vy —co. under the primal form of the optimization problem, they

C2 E{p(k)eo(k)} =0, VkeZ have never been introduced in a dual setting to the best of

This implies that both C1 and C2 must also hold for the duahe authors’ knowledge. Thus, the question arises: Can the

estimate to be consistent. For the system class Considéied,para"ensm between the primal and dual solutions, explore

only holds ife, is white asp(k) is constructed using past sig- jn Section II, be used to introduce an IV scheme for the dual
nals values of; and the input signal which is uncorrelated form without any performance degradation?

to the noise. Nonetheless the ARX structure as describedAn IV in the primal form

Section 1l is unrealistic in most practical applicationsias =~ ) P . ) . )

implies that the noise on the output has the same dynamics! e Primal solution of (18) is straightforwardly given as

and nonlinearities as the system itself. Consequently,datm N “1rn

practical applications, the minimization of criterion @)l 5L = 7*1]% 4 ZC(k)‘P(k)T] . [Z C(k)’y(k)]‘ (19)

lead to a biased estimate. The next section introduces an IV k=1 k=1

method in order to cope with this issue. By using the notation (10b) and by declaring
IV. INSTRUMENTAL VARIABLE APPROACH Z=[¢1) ... ¢(N)]T eRN*m (20)

Among the available identification approaches used i
the regression framework, thiestrumental Variable(lV)

C. Equivalence and bias of the solutions

It is important to notice that, under the condition that
both Rp (v, N) € RY*¥ in (17) andRp(y, N) € R X"
in (11) are non-singular, then the dual and primal solutions
are equivalent. Assuming that boity (v, N) and Rp (v, N)
are non-singular, then it can be proven using the well-
known properties of the primal solution that the estimate
is consistentlE{p} = p,) under the conditions:

trhe primal IV estimate can be expressed as:

approach has been successfully applied to resolve in asimpl o = [ZT@ +~71, rlZTy_ (21)
and highly efficient fashion the inconsistency problem of ¢
LS regression under a noise-modeling [10], [11], [15], [17] Ry (v.N)

The most restrictive condition guaranteeing consisterscy i Many instruments can be chosen in order to fulfill X2.
condition C2. In most problems, including the LS-SVMNonetheless, the existence of the estimate is now consttain
case, the regressor is correlated (implicitly or explgito by the non-singularity of?pY (v, N') in (21). The discussion
the noise and C2 does not hold. Thus, in the parametr@Pout the choice of a suitable instrument guaranteeing this
context, a IV identification criterion has been introducedroperty is too technical. Hence, due to the space resticti
which relaxes C2 to a less restrictive condition and presenthe authors refer to [15] for a discussion about this issue.
the deterioration of the estimation performance [15]. Th8. IV in the dual form

idea is to introduce @o-calledinstrument((k) € n, such

: - The main contribution of this paper is to introduce the
that the consistency conditions become:

solution of the instrumental variable optimization (21}t

X1 v — oc. dual form. Introducey;, and¢ (k) satisfying:

X2 E{((k)e,(k)} =0, VkeZ.

While the condition C2 depends grik) and therefore on the ar = e(k), (222)
model assumed, X2 depends ¢fi:) which can be chosen y(k) = (k)" p+e(k), (22b)

by the user. There is a wide range of possible solutions to N

pick an instrument uncorrelated to the noise. To respect the p=> ar((k). (22c)
consistency conditions, the IV estimate corresponds to the k=1

solution of the criterion We will prove that the choice of (22c¢) is necessary to

1 & obtain the dual solution of the optimization criterion (18)
TV = sol {N D o+ ACk) [ytk) — ¢ p] = 0} . (18) Substituting (22a) and (22c) into (22b) yields the follogin

k=1 set of linear equations:
Similarly to (7), a regularization term omweighted byy is N
also involved in this estimation scheme. y(k) = (k)" (Z akC(k‘)) + oy, (23)
The motivation to pursue an IV-scheme based solution for k=1 e(k)

bias elimination are the following: 0



for k € {1,..., N}, which leads to the solution Consequently, given a set of kernel functidiis definesG
and hence characterizés This is called theékernel trick[1],

-1
a=[eZT +y7N] Y, (24)  [2], which allows the identification of the nonlinear furats
wherea = oy ... ay]T € RY. According to (22c),p = Ji» 95 Without explicitly defining the feature maps involved.
7T and therefore A typical type of kernel is, for example, thRadial Basis
X 4T [fl)ZT N ]_1Y (25) Function (RBF) kernel:
a0 — . 2
R b= K ail) () = oxp (0O )
RYY (v,N) i

which is equivalent tgpty (see (21)) if bothRY (v, N) and  but other kernels, likgpolynomialkernels, can also be used.
RY(v,N) are non-singular. Consequently, is the dual Another remark is that the parameter vecfgy is never
solution of the IV optimization problem (18}, = 51y and accessible in the LS-SVM framework, and only the combined
this estimate is consistent, independently of the noiseainodestimationp; " ¢;(.) = f;(.) is computable using the kernel
assumed under the conditions X1 and X2. In conclusion tHenctions defined. Nonetheless, even if the estimatg if

IV optimization solution has been introduced in the duanot accessible, the consistency properties C1 and C2 hold.

representation and the next section describes its agplicat g |nstrumental variable for the LS-SVM framework

o the LS-SVM framework. The final aim of this paper is to introduce the IV solu-

V. INSTRUMENTAL VARIABLE IN THE LS-SVM cONTEXT tion in the the LS-SVM framework. The conditions on the

So far in this paper, the studied system was considered i{bstrument in order to obtain a consistent estimate hava bee
lie in the model set c]efined by and could be described derived in the previous section. It must be emphasized that

using a finite dimensional parameter vector. It allowed t§' & nonlinear context, the choice of an optimal instrument
derive the statistical properties for both the primal andldu dePends highly on the system structure and the noise model
solutions of different optimization criteria (LS based and®SSumed, and is mostly an open problem. Consequently, the
IV based). Nonetheless, in a nonlinear context, finding afiStrument chosen to address the IV-LS-SVM solution is
appropriate model set can be a tedious task. In most lineSPired by the instrument proposed in [10] which leads to
regression methods, explicit feature maps are defined (ft€ V4 solution in the primal form:

example polynomial) along with their dimension. Nonethe- Ck) = [ & (wis(k = 1) ... &) yrs(k —na)
less, this implies the quality of the model will highly deplen . T e T
on the structure chosen and in most cases, will lead to a D1 (k) o by (ulk —np)) |, (30)

structural bias. A possible way to avoid this structurabbg@ \ynere yrs is the simulated output of the model given by
to increase the dimension of the feature mapg — oc and e LS-SVM method ands; are the same as in (5). This

thereforen, — oo. In this casen, > N, and the use of the jnstrument always guarantees X2 in the considered case and
dual solution becomes necessary. It must be pointed out thahas peen successfully used in the primal context.

defining explicitly an infinite dimensional feature map and |, the same fashion as in (26), the [Brammian matrix
therefore an infinite dimensional regressor is not feasible ; _ 477 is defined as

practice. Hence, the main advantage of the LS-SVM method n,
is to be able to handle infinite dimensional feature maps with [T)n = Z[Ji] - (31)
a low computational load via a dual solution. » »

A. LS-SVM method W't;‘i | o R e 3

In the LS-SVM context,p(k) is composed of possibly [J*]5.6 = (i(2i (7)), di(&i ))>‘— b(xi(]);fi( ), (32)
infinite dimensional feature maps; — oc: thereforen, — §i(k) =yrs(k—i), i=1,....,n,, (33a)
oo and p cannot be explicitly computed. The main feature Snat145(k) =ulk —7), 7=0,...,np. (33b)

of the LS-SVM method is that the vectorcan be explicitly It is possible to derive the conditions on the instrument

;OTﬁ%ﬁi(\;’2t?ﬁ;ts?.ig[gg?;,m\’;f(i?:tr?ggZfiatgnga 8r applying the kernel trick. Nonetheless, this issue is no

) ; . . . discussed here due to space restrictions. The definition of
in (16), which can be defined without the explicit knowledge[he kernel functionsi’ aﬁows an explicit expression of
of ®. Notice that

i=1

n, «. Consequently, it can be concluded from (22c) that the
(Gl = Z[Gib‘ L (26) resulting IV4-LS-SVM estimate is given by
. 7 i=1 7 N '
with | Fil) = 6 Wi = 3 an (k). ), (34a)
Gk = (i(x:())), @i(wi(k))) = K*(x:(j), w:(K)), (27) k=1

where K is a positive definitekernel functionand

xi(k)=ylk—14), i=1,...,n,, (28a)
Tpor14(k) =ulk —3j), 7=0,...,n,. (28Db) wherej = n, +1+j. The IV4-LS-SVM algorithm w.r.t. the
instrument (30) is summarized as Algorithm 1.

gi() = 61 (Jp; = D K (& (k). ), (34b)
k=1



Algorithm 1 IV4-LS-SVM TABLE |

- MEAN AND STANDARD DEVIATION OF THE ESTIMATED PARAMETER
use the LS-SVM method to obtain a model,s_svm P
AND THE BFR COMPUTED ON VALIDATION DATA.

=

2: use Mrs_syMm to generatey g by simulation

3: computeé and J via (33a-b) and (32) Meanp: | stdp: | Mean BFR| std BFR

4: computea by solving (24) True value —0.7 - - -

LS-SVM —0.528 | 0.0142 82.61 1.29
IV4-LS-SVM —0.699 | 0.0202 91.99 1.86
VI. SIMULATION EXAMPLE .
_ Ix(k) = x(®)l|,,
A. Data generating system BFR = 100% - max | 1 — T = 0], (36)
L2

The main advantage of the IV methods is their rObUStne%ﬁth X being the mean 015(_ This search has resulted in
when facing modeling errors in the noise structure. Consg:, — 3, s, = 0.5. The v parameters have been however
quently, in order to compare the LS-SVM and the IV4-LSyppiimized separately (by exhaustive search too) as they
SVM methods under realistic noise conditions, a nonlineagre directly linked to the different optimization problems

Output Error (OE) systemsS, is considered : considered. This leads ta.s = 3500 and v = 500.
x(k) = =0.7x(k — 1) + f(x(k — 2)) + g(u(k)), (35a) C. Simulation results
y(k) = x(k) + eo (k), (35b)  Table I displays the mean and standard deviation of the
where estimated parameter,. It can be seen that, in line with the
—0.922 if z>0 theory, the LS-SVM algorithm is biased while the proposed
f(z) = 0 else (35¢)  IV4-LS-SVM method is unbiased. Like in the linear regres-
sion framework, the IV based method displays a slightly

g(z) = —x + 22 + cos(10z). (35d) larger variance than the LS method. Note thain this case
is explicitly defined s, can be directly accessed, while this

In the sequel, the input(k) is taken as a zero-mean white
is not the case for the other parametgssand ps.

noise process with a uniform distributidn(—0.5,0.5) and Fi 1 sh h L | by th
with length N = 1200 to generate data set®y of S,. igure 1 shows the estimation results ofu) by the

eo(k) is taken as a zero-mean white noise sequence Wi{NA"LS'SyM and the .LS'SVM algorithms and eXpOses th'e
eo(k) € N(0,02 ). mean estimated function together with the standard dewiati

interval. As expected, both algorithms perform similanty i
B. Model structures estimatingg asu(k) is uncorrelated withe(k) and therefore
Both the conventional LS-SVM approach and the proposeg, (k) = (»(k). Figure 2 shows the estimation results of
IV4-LS-SVM approach use the same ARX model structurg(y) by the IV4-LS-SVM and the LS-SVM algorithms in
M, given as: terms of the mean and standard deviation of the estimates.
y(k) = pry(k — 1) +¢2T(y(lf _ 2))p2+¢>;(u(k))p3 +e(k). _The_bie_ls of the LS-SVM method algo_rithm clearly appears
) ) i in this figure. In contrast, the mean estimatefdfy the 1V4-
Note that the equation erre(k) is not white. The robustness | 5_svm algorithm is centered on the original one. Note that
of the proposed 1V4-LS-SVM and the existing LS-SVMg more advanced instrument might lead to even better results
algorithms are analyzed undesignal-to-noise ratiNR = Table | also displays the mean and standard deviation of
10log 7= = 7dB, where P,, and P, are the average the BFR for both algorithms on a validation set. This clearly
power of the signalsy, and e, respectively. To provide shows that on the validation set, the proposed IV4-LS-SVM
representative results, a Monte Carlo simulatiomafc =  method achieves, even for this simple model, significantly
100 runs with new noise realization in each run is applied.petter performance than the usual LS-SVM algorithm. As
One of the advantage of the LS-SVM algorithm is to bgne computation time of is negligible, this implies that the
able to use soma priori knowledge which, in this case, gxecution time of the IV4-LS-SVM is only approximately

means the explicit definition @ (y(k —1)) = y(k—1). TO o times of the LS-SVM method, where the latter is known
characterize the nonlinearities, RBF kernels are usedfor g pe computationally efficient.

and K3. It is important to note that the main contribution Finally, it needs to be pointed out that w.r.t. (35a-b),

of this paper is the introduction of the IV optimization congition X2 holds only ify(k — 2) < 0. Even though, the
criterion (18) and its solution in the LS-SVM framework achieved estimation performance by the proposed approach
(24). Therefore, in order to evaluate the impact of thigas considerably increased on the whole feature space (even
criterion only, it is important that the model structure i@t for \ (x—2) > 0). This highlights that condition X2 cannot be
same for both the LS-SVM method and the 1V4-LS-SVMasserted for any nonlinear structures, but it holds in géner
methods. In the present context, where the feature mag§ structures which are linear in the output (Hammerstein,
are implicitly defined, the model structure is defined by thgnear parameter varying, etc.).

kernels used and therefore by theparameters. The model

structure is chosen such that it maximizes Best Fit Rate VIl. CONCLUSION

(BFR) on the estimation data set for the LS-SVM method In this paper, an instrumental variable estimation scheme
(using an exhaustive search) where: has been proposed for the SVM framework, which signif-
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