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Abstract

This paper is concerned by the study of barycenters for random probability measures in
the Wasserstein space. Using a duality argument, we give a precise characterization of the
population barycenter for various parametric classes of random probability measures with
compact support. In particular, we make a connection between averaging in the Wasserstein
space as introduced in Agueh and Carlier [2], and taking the expectation of optimal transport
maps with respect to a fixed reference measure. We also discuss the usefulness of this
approach in statistics for the analysis of deformable models in signal and image processing.
In this setting, the problem of estimating a population barycenter from n independent and
identically distributed random probability measures is also considered.
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1 Introduction

In this paper, we consider the problem of characterizing the barycenter of random probability
measures on R

d. The set of Radon probability measures endowed with the 2-Wasserstein distance
is not an Euclidean space. Consequently, to define a notion of barycenter for random probability
measures, it is natural to use the notion of Fréchet mean [23] that is an extension of the usual
Euclidean barycenter to non-linear spaces endowed with non-Euclidean metrics. If Y denotes a
random variable with distribution P taking its value in a metric space (M, dM), then a Fréchet



mean (not necessarily unique) of the distribution P is a point m∗ ∈ M that is a global minimum
(if any) of the functional

J(m) =
1

2

∫

M

d2M(m, y)dP(y) i.e. m∗ ∈ arg min
m∈M

J(m).

In this paper, a Fréchet mean of a random variable Y with distribution P will be also called
a barycenter. An empirical Fréchet mean of an independent and identically distributed (iid)
sample Y1, . . . ,Yn of distribution P is

Ȳn ∈ arg min
m∈M

1

n

n∑

j=1

1

2
d2M(m,Yj).

For random variables belonging to nonlinear metric spaces, a well-known example is the com-
putation of the mean of a set of planar shapes in the Kendall’s shape space [31] that leads to
the Procrustean means studied in [25]. Many properties of the Fréchet mean in finite dimen-
sional Riemannian manifolds (such as consistency and uniqueness) have been investigated in
[1, 7, 9, 10, 30]. For random variables taking their value in metric spaces of nonpositive cur-
vature (NPC), a detailed study of various properties of their barycenter can be found in [39].
However, there is not so much work on Fréchet means in infinite dimensional metric spaces that
do not satisfy the global NPC property as defined in [39].

1.1 A parametric class of random probability measures

Let Ω = B(0, r) ⊂ R
d be the closed ball centered at zero of a given radius r > 0. In this paper,

we consider the case where Y = µ is a random probability measure whose support is included in
Ω. The support of the measure µ is understood as the smallest closed set of µ-mass equal to 1.

Let us now define a specific parametric class of random probability measures. Let M+(Ω) be
the set of Radon probability measures with support included in Ω endowed with the 2-Wasserstein
distance dW2

between two probability measures. Let Φ : (Rp,B(Rp)) → (M+(Ω),B (M+(Ω)) be
a measurable mapping, where B(Rp) is the Borel σ-algebra of Rp and B (M+(Ω)) is the Borel
σ-algebra generated by the topology induced by the distance dW2

. For a measurable subset Θ
of Rp (with p ≥ 1), we consider the parametric set of probability measures {µθ = Φ(θ), θ ∈ Θ}.
Futhermore, we assume that, for any θ ∈ Θ, the measure µθ = Φ(θ) ∈ M+(Ω) admits a density
with respect to the Lebesgue measure on R

d. It follows that if θ ∈ R
p is a random vector with

distribution PΘ admitting a density g : Θ → R+, then µθ = Φ(θ) is a random probability
measure with distribution Pg on (M+(Ω),B (M+(Ω)) that is the push-forward measure defined
by

Pg(B) = PΘ(Φ
−1(B)), for any B ∈ B (M+(Ω)) . (1.1)

In this paper, we propose to study some properties of the barycenter µ∗ of µθ defined as the
following Fréchet mean

µ∗ = arg min
ν∈M+(Ω)

J(ν), (1.2)
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where

J(ν) =

∫

M+(Ω)

1

2
d2W2

(ν, µ)dPg(µ) = E

(
1

2
d2W2

(ν, µθ)

)
=

∫

Θ

1

2
d2W2

(ν, µθ)g(θ)dθ, ν ∈ M+(Ω).

If it exists and is unique, the measure µ∗ will be referred to as the population barycenter of the
random measure µθ with distribution Pg.

The empirical counterpart of µ∗ is the barycenter µ̄n defined as

µ̄n = arg min
ν∈M+(Ω)

1

n

n∑

i=1

1

2
d2W2

(ν, µθi
), (1.3)

where θ1, . . . ,θn are iid random vectors in Θ with density g.

1.2 Main results of the paper

The main contribution of this paper is to give an explicit characterization of the population
barycenter µ∗ that can be (informally) stated as follows: let µ0 ∈ M+(Ω) be a fixed reference
measure that is absolutely continuous with respect to the Lebesgue measure on R

d, and let
Tθ : Ω → Ω be the optimal mapping that transports µ0 onto µθ. This mapping is such that
µθ = Tθ#µ0, where Tθ#µ0 denotes the push-forward of the measure µ0, and its satisfies

d2W2
(µ0, µθ) =

∫

Ω
|Tθ(x)− x|2dµ0(x).

Thanks to the well-known Brenier’s theorem [17] the mapping Tθ is uniquely defined µ0-almost
everywhere on the support Ω0 ⊂ Ω of the reference measure µ0.

A first result of this paper is that if E(Tθ(x)) = x for all x ∈ Ω0, then µ0 is equal to the
population barycenter µ∗, and one has that

inf
ν∈M+(Ω)

J(ν) =
1

2

∫

Ω
E
(
|Tθ(x)− x|2

)
dµ∗(x) =

1

2

∫

Ω

∫

Θ

(
|Tθ(x)− x|2

)
g(θ)dθdµ∗(x).

This property is already known for empirical barycenters from the arguments in Remark 3.9 in
[2]. This characterization of barycenters can also be written in the form µ∗ = T̄#µ0, where
T̄ = E(Tθ) is the mapping defined by T̄ (x) = E(Tθ(x)), for all x ∈ Ω0. This suggests that
averaging in the Wasserstein space may amount to take the expectation (in the usual sense)
of the optimal transport map Tθ with respect to a fixed reference measure µ0. However, this
result is generally not true if E(Tθ) 6= I , where I = Ω0 → Ω0 denotes the identity mapping.
Nevertheless, we propose to consider sufficient conditions (beyond the case E(Tθ) = I) ensuring
that

µ∗ = T̄#µ0. (1.4)

To the best of our knowledge, such a result on the population barycenter in the 2-Wasserstein
space is new. A similar result has been established in [15] for the empirical barycenter, namely
that

µ̄n =

(
1

n

n∑

i=1

Tθi

)
#µ0, (1.5)
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under specific assumptions on the optimal maps Tθi
and the reference measure µ0 such that

µθj
= Tθj

#µ0 for i = 1, . . . , n. The validity of equation (1.5) stated in [15] is restricted to a
specific class of optimal transport maps that is assumed to be admissible in the following sense
(see Definition 4.2 in [15]): there exists i0 such that Tθi0

= I, for each 1 ≤ i ≤ n, Tθi
is a

one-to-one mapping, and the composition Tθi
◦T−1

θj
of two maps in this class remains an optimal

one for all 1 ≤ i, j ≤ n. The extension of the results in [15] to the population barycenter has
not been considered so far. In this paper, when T̄ = E(Tθ) 6= I, we do not assume that the
collection of maps (Tθ)θ∈Θ is an admissible class to prove that µ∗ = T̄#µ0, in the sense that it is
not required that Tθ ◦ T−1

θ′ is an optimal map for any θ, θ′ 6= Θ. Indeed, to prove equation (1.4),
we mainly use, in this work, the assumption that Tθ ◦ T̄−1 is an optimal map for all θ ∈ Θ. For
some deformable models of signals and images, it will be shown that such an assumption may
be weaker than the notion of admissible maps introduced in [15].

Equation (1.4) is not difficult to prove in a one-dimensional setting (d = 1) i.e. for random
measures supported on the real line. The main issue is then to extend this result to higher
dimensions d ≥ 2. To this end, we consider a dual formulation of the optimization problem (1.2)
that allows a precise characterization of some properties of the population barycenter that are
used to prove equation (1.4). These results are based on an adaptation of the duality arguments
developed in [2] for the characterization of an empirical barycenter. Therefore, our approach is
very much connected with the theory of optimal mass transport, and with the characterization
of the Monge-Kantorovich problem via arguments from convex analysis and duality, see [43] for
further details on this topic.

Another contribution of this paper is to discuss the usefulness of barycenters in the Wasser-
stein space for the statistical analysis of deformable models in signal and image processing.
Statistical deformable models are widely used for the analysis of a sequence of random signals
or images showing a significant amount of geometric variability in time or space. We refer to
[5] for a detailed review of deformable models. In such settings, it is of fundamental interest
to propose a consistent notion of averaging for signals or images sampled from such models. In
this paper, we study random measures µθ whose associated densities qθ satisfy the following
semi-parametric deformable model:

qθ(x) =
∣∣∣det

(
Dϕ−1

θ

)
(x)
∣∣∣ q0
(
ϕ−1

θ
(x)
)
x ∈ Ω, (1.6)

where ϕθ : Ω → Ω is a random parametric diffeomorphism, det
(
Dϕ−1

θ

)
(x) denotes the determi-

nant of its Jacobian matrix at point x, and q0 is a fixed reference density with support Ω0 ⊂ Ω.
In model (1.6), it seems natural to define the “average of qθ” as the density q̄ given by

q̄(x) =
∣∣det

(
Dϕ̄−1

)
(x)
∣∣ q0
(
ϕ̄−1(x)

)
x ∈ Ω,

where ϕ̄ : Ω0 → Ω is defined by ϕ̄(x) = E
(
ϕθ(x)

)
=
∫
Θ ϕθ(x)g(θ)dθ, x ∈ Ω0. In this paper, a

novel result is to propose sufficient conditions on the random diffeomorphism ϕθ which ensure
that the measure µ̄ with density q̄ corresponds to the population barycenter in the Wasserstein
space of the random measure µθ.

Finally, we also study the consistency of the empirical barycenter µ̄n to its population coun-
terpart µ∗ as the number n of measures tends to infinity.
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1.3 Related results in the literature

A similar notion (to the one in this paper) of a population barycenter and its connection to
optimal transportation with infinitely many marginals have been studied in [36]. In particular,
a similar class of parametric random probability measures, where the parameter set Θ is one-
dimensional, is also considered in [36] for the purpose of studying the existence and uniqueness
of µ∗. Some generalization of these notions for probability measures defined on a Riemannian
manifold, equipped with the Wasserstein metric, have been recently proposed in [33] and [32].
A detailed characterization of empirical barycenters, in a broader setting, in terms of existence,
uniqueness and regularity, together with its link to the multi-marginal problem in optimal trans-
port can be found in [2].

In the literature on signal and image processing, there exists various applications of the no-
tion of an empirical barycenter in the Wasserstein space. For example, it has been successfully
used for texture analysis in image processing [16, 37]. There also exists a growing interest on
the development of fast algorithms for the computation of empirical barycenters with various
applications in image processing [8, 18]. The theory of optimal transport for image warping has
also been shown to be usefull tool, see e.g. [28, 29] and references therein. Some properties of
the empirical barycenter in the 2-Wasserstein space of random measures satisfying a deformable
model similar to (1.6) have also been studied in [15]. To study the registration problem of distri-
butions, the use of semi-parametric models of densities similar to (1.6) has also been considered
in [3].

The main contribution of this paper, with respect to existing results in the literature, is to
show the benefits of considering the dual formulation of the (primal) problem (1.2) to characterize
the population barycenter in the 2-Wasserstein space for a large class of deformable models of
measures/densities. To the best of our knowledge, the characterization of a population barycenter
in deformable models throughout such arguments is novel.

1.4 Organisation of the paper

The paper is then organized as follows. In Section 2, we introduce some definitions and notation
for the framework of the paper, and we discuss the existence and uniqueness of the population
barycenter. In Section 3, we characterize the population barycenter in the one-dimensional case,
i.e. for random measures supported on Ω ⊂ R. In Section 4, we study a dual formulation of the
optimization problem (1.2). In Section 5, we prove the main result of the paper, namely equation
(1.4) in dimension d ≥ 2. As an application of the methodology developed in this paper, we
discuss, in Section 6, the usefulness of barycenters in the Wasserstein space for the analysis
of deformable models in statistics. The consistency of the empirical barycenter is discussed in
Section 7. In Section 8 , we give some perspectives on the extension of this work.

2 Existence and uniqueness of the population barycenter

2.1 Some definitions and notation

We use bold symbols Y,µ,θ, . . . to denote random objects. The notation |x| is used to denote
the usual Euclidean norm of a vector x ∈ R

m and the notation 〈x, y〉 denotes the usual inner
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product for x, y ∈ R
m. We recall that M+(Ω) is the set of Radon probability measures with

support included in Ω = B(0, r), and that the following assumption is made throughout the
paper.

Assumption 1. The mapping Φ : (Θ ⊂ R
p,B(Rp)) → (M+(Ω),B (M+(Ω)) is measurable.

Moreover, it is such that, for any θ ∈ Θ, the measure µθ = Φ(θ) ∈ M+(Ω) admits a density with
respect to the Lebesgue measure on R

d.

The squared 2-Wasserstein distance between two probability measures µ, ν ∈ M+(Ω) is

d2W2
(µ, ν) := inf

γ∈Π(µ,ν)

{∫

Ω×Ω
|x− y|2dγ(x, y)

}
,

where Π(µ, ν) is the set of all probability measures on Ω × Ω having µ and ν as marginals, see
e.g. [43]. We recall that γ̃ ∈ Π(µ, ν) is called an optimal transport plan between µ and ν if

d2W2
(µ, ν) =

∫

Ω×Ω
|x− y|2dγ̃(x, y).

Let T : Ω → Ω be a measurable mapping, and let µ ∈ M+(Ω). The push-forward measure T#µ
of µ through the map T is the measure defined by duality as
∫

Ω
f(x)d(T#µ)(x) =

∫

Ω
f(T (x))dµ(x), for all continuous and bounded functions f : Ω −→ R.

We also recall the following well known result in optimal transport due to Brenier [17] (see also
[43] or Proposition 3.3 in [2]):

Proposition 2.1. Let µ, ν ∈ M+(Ω). Then, γ ∈ Π(µ, ν) is an optimal transport plan between µ
and ν if and only if the support of γ is included in the set ∂φ that is the graph of the subdifferential
of a convex and lower semi-continuous function φ satisfying

φ = arg min
ψ ∈ C

{∫

Ω
ψ(x)dµ(x) +

∫

Ω
ψ∗(x)dν(x)

}
,

where ψ∗(x) = supy∈Ω {〈x, y〉 − ψ(y)} is the convex conjugate of ψ, and C denotes the set of
proper convex functions ψ : Ω → R that are lower semi-continuous

If µ admits a density with respect to the Lebesgue measure on R
d, then there exists a unique

optimal transport plan γ ∈ Π(µ, ν) that is of the form γ = (id, T )#µ where T = ∇φ (the gradient
of φ) is called the optimal mapping between µ and ν. The uniqueness of the transport plan holds
in the sense that if ∇φ#µ = ∇ψ#µ, where ψ : Ω → R is a lower semi-continuous convex
function, then ∇φ = ∇ψ µ-almost everywhere. Moreover, one has that

d2W2
(µ, ν) =

∫

Ω
|∇φ(x)− x|2dµ(x).
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2.2 About the measurability of Tθ

Let µ0 be a fixed reference measure that is absolutely continuous with respect to the Lebesgue
measure on R

d. In the introduction, for any θ ∈ Θ , we have defined Tθ : Ω → Ω as the optimal
mapping to transport µ0 onto µθ. By Proposition 2.1, such a mapping exists, and it is the
µ0-almost everywhere unique one that can be written as the gradient of a convex function φθ.
Then, thanks to Assumption 1, it follows, by Theorem 1.1 in [22], that there exists a function
(θ, x) 7→ T (θ, x) which is measurable with respect to the σ-algebra B(Rp) ⊗ B (M+(Ω)), and
such that for PΘ-almost everywhere θ ∈ Θ,

T (θ, x) = Tθ(x), for µ0-almost everywhere x ∈ Ω.

In particular, the mapping (x, θ) 7→ Tθ(x) is measurable with respect to the completion of
B(Rp) ⊗ B (M+(Ω)) with respect to g(θ)dθdµ0(x) (we recall the assumption that dPΘ(θ) =
g(θ)dθ).

2.3 Existence and uniqueness of µ∗

Let us now prove the existence and uniqueness of the barycenter (i.e. the Fréchet mean) of the
parametric random measures µθ with distribution Pg, as defined in equation (1.1). We recall
that this amounts to study the solution (if any) of the optimization problem (1.2).

Remark 2.1 (About the existence and finiteness of J(ν)). Let ν ∈ M+(Ω). The integral defining
J(ν) will be defined as soon as θ 7→ d2W2

(ν, µθ)g(θ) is a measurable application. The measurability
of this mapping follows from Assumption 1. Moreover, since Ω is compact, it follows that, for
any θ ∈ Θ, d2W2

(ν, µθ) ≤ 4δ2(Ω), where δ2(Ω) = supx∈Ω{|x|2} < +∞. Therefore, one has that

J(ν) = 1
2

∫
Θ d

2
W2

(ν, µθ)g(θ)dθ ≤ 2δ2(Ω) < +∞, for any ν ∈ M+(Ω).

As shown below, using standard arguments, the existence and the uniqueness of µ∗ are not
difficult to prove. To this end, a key property of the functional J defined in (1.2) is the following:

Lemma 2.1. Suppose that Assumption 1 holds. Then, the functional J : M+(Ω) → R is strictly
convex in the sense that

J(λµ+(1−λ)ν) < λJ(µ)+(1−λ)J(ν), for any λ ∈]0, 1[ and µ, ν ∈ M+(Ω) with µ 6= ν. (2.1)

Proof. Inequality (2.1) follows immediately from the assumption that, for any θ ∈ Θ, the measure
µθ admits a density with respect to the Lebesgue measure on R

d, and from the use of Theorem
2.9 in [6] (for similar results to those in [6] on the strict convexity, one can read Lemma 3.2.1 in
[36]).

Hence, thanks to the strict convexity of J , if a barycenter µ∗ exists, then it is necessarily
unique. The existence of µ∗ is then proved in the next proposition.

Proposition 2.2. Under Assumption 1, the optimization problem (1.2) admits a unique mini-
mizer.
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Proof. Let νn be a minimizing sequence of the optimization problem (1.2). Since Ω is compact,
the sequence

∫
Ω |x|2dνn(x) is uniformly bounded by δ2(Ω). Hence, by Chebyshev’s inequality, the

sequence νn is tight and by Prokhorov’s Theorem there exists a (non relabeled) subsequence that
weakly converges to some µ∗ ∈ M+(Ω). Therefore, 1

2d
2
W2

(µθ, µ
∗) ≤ lim infn→+∞

1
2d

2
W2

(µθ, ν
n),

and thus, by Fatou’s Lemma
∫

Θ

1

2
d2W2

(µθ, µ
∗)g(θ)dθ ≤

∫

Θ
lim inf
n→+∞

1

2
d2W2

(µθ, ν
n)g(θ)dθ ≤ lim inf

n→+∞

∫

Θ

1

2
d2W2

(µθ, ν
n)g(θ)dθ.

Therefore, J(µ∗) = infν∈M+(Ω)
1
2

∫
Θ d

2
W2

(ν, µθ)g(θ)dθ, which proves that the optimization prob-
lem (1.2) admits a minimizer.

By the strict convexity of the functional J (as stated in Lemma 2.1), it follows that the
barycenter of µθ is necessarily unique.

3 Barycenter for measures supported on the real line

In this section, we study some properties of the population barycenter µ∗ of random measures
supported on the real line i.e. we consider the case d = 1 where Ω = [−r, r] ⊂ R. In this setting,
our characterization of µ∗ will follow from the well known fact that if µ and ν are measures
belonging to M+(Ω) then

d2W2
(ν, µ) =

∫ 1

0

∣∣F−1
ν (x)− F−1

µ (x)
∣∣2 dx, (3.1)

where F−1
ν (resp. F−1

µ ) is the quantile function of ν (resp. µ). This explicit expression for the
Wasserstein distance allows a simple characterization of the barycenter of random measures. In
particular, we prove that equation (1.4) always holds for d = 1. This result means that, in
dimension 1, computing a barycenter in the Wasserstein space amounts to take the expectation
(in the usual sense) of the optimal mapping to transport a fixed (non-random) reference measure
µ0 onto µθ.

Theorem 3.1. Let µ0 be any fixed measure in M+(Ω) that is absolutely continuous with respect
to the Lebesgue measure, and whose supported is denoted by Ω0. Suppose that Assumption 1 hold.
Let µθ = Φ(θ) be a random measure where θ is a random vector in Θ with density g. Let Tθ be
the random optimal mapping between µ0 and µθ given by Tθ(x) = F−1

µθ
(Fµ0(x)), x ∈ Ω0, where

F−1
µθ

is the quantile function of µθ, and Fµ0 is the cumulative distribution function of µ0.

Then, the barycenter of µθ exists, is unique, and satisfies:

µ∗ = T̄#µ0, (3.2)

where T̄ : Ω0 → Ω denotes the optimal mapping between µ0 and µ∗ that is defined by

T̄ (x) = E
(
Tθ(x)

)
=

∫

Θ
Tθ(x)g(θ)dθ, for all x ∈ Ω0.

8



Furthermore, the quantile function of µ∗ is for y ∈ [0, 1]

F−1
µ∗ (y) = E

(
F−1
µθ

(y)
)
=

∫

Θ
F−1
µθ

(y)g(θ)dθ.

Thus, the barycenter µ∗ does not depend on the choice of µ0, and one has that

inf
ν∈M+(Ω)

J(ν) =
1

2

∫

Ω
E
(
|T̄θ(x)− x|2

)
dµ∗(x) =

1

2

∫

Ω

∫

Θ
|T̄θ(x)− x|2g(θ)dθdµ∗(x), (3.3)

where T̄θ = Tθ ◦ T̄−1.

Proof. Let ν ∈ M+(Ω) then

J(ν) =

∫

Θ

1

2
d2W2

(ν, µθ)g(θ)dθ =
1

2

∫

Θ

∫ 1

0

∣∣F−1
ν (y)− F−1

µθ
(y)
∣∣2 dyg(θ)dθ.

In the proof, we will repeatedly use Fubini’s Theorem to interchange the order of integration
in the right-hand size of the above equation. To be valid, Fubini’s Theorem requires that the
application (y, θ) 7→

∣∣F−1
ν (y)− F−1

µθ
(y)
∣∣2 g(θ) is measurable. This application will be measurable

as soon as (y, θ) 7→ F−1
µθ

(y) is measurable. Since, by definition, F−1
µθ

(y) = Tθ(F
−1
µ0 (y)) for any

y ∈ [0, 1], the measurability of (y, θ) 7→ F−1
µθ

(y) is ensured by the continuity of y 7→ F−1
µ0 (y) and

the measurability of the mapping (x, θ) 7→ Tθ(x) which has been stated in Section 2.2.

Let us now consider the function E

(
F−1
µθ

)
: [0, 1] → Ω defined by

E

(
F−1
µθ

)
(y) := E

(
F−1
µθ

(y)
)
=

∫

Θ
F−1
µθ

(y)g(θ)dθ < +∞

for any y ∈ [0, 1]. We will now prove that E

(
F−1
µθ

)
is a quantile function. To this end, let

δ2(Ω) = supx∈Ω{|x|2} = r2. Then, by Assumption 1, the measure µθ admits a density with
respect to the Lebesgue measure, and thus the function y 7→ F−1

µθ
(y) is continuous on [0, 1], for

any θ ∈ Θ. Hence, since |F−1
µθ

(y)| ≤ δ(Ω) for any (θ, y) ∈ Θ × [0, 1] it follows, by Lebesgue’s

dominated convergence theorem, that y 7→ E

(
F−1
µθ

)
(y) is a continuous function on [0, 1]. Since

y 7→ F−1
µθ

(y) is increasing for any θ ∈ Θ, it is also clear that y 7→ E

(
F−1
µθ

)
(y) is an increasing

function. Hence, thanks to the property that any continuous and increasing function from [0, 1]
to Ω is the quantile of some probability measure belonging to M+(Ω) (see e.g. [21]), one obtains

that E

(
F−1
µθ

)
is a quantile function.

Now, it is clear that E

(
|F−1
µθ

(y)|2
)

≤ δ2(Ω) < +∞ for any y ∈ [0, 1]. Hence, applying

Fubini’s Theorem, and the fact that E |a−X|2 ≥ E |E(X)−X|2 for any squared integrable real

9



random variable X and real number a, we obtain that
∫

Θ
d2W2

(ν, µθ)g(θ)dθ =

∫ 1

0

∫

Θ

∣∣F−1
ν (y)− F−1

µθ
(y)
∣∣2 g(θ)dθdy =

∫ 1

0
E

∣∣∣F−1
ν (y)− F−1

µθ
(y)
∣∣∣
2
dy

≥
∫ 1

0
E

∣∣∣E
(
F−1
µθ

(y)
)
− F−1

µθ
(y)
∣∣∣
2
dy

=

∫ 1

0

∫

Θ

∣∣∣E
(
F−1
µθ

(y)
)
− F−1

µθ
(y)
∣∣∣
2
g(θ)dθdy

=

∫

Θ
d2W2

(µ∗, µθ)g(θ)dθ, (3.4)

where µ∗ is the measure in M+(Ω) with quantile function given by F−1
µ∗ = E

(
F−1
µθ

)
. The above

inequality shows that J(ν) ≥ J(µ∗) for any ν ∈ M+(Ω). Therefore, µ∗ is a barycenter of the
random measure µθ, and the unicity of µ∗ follows from the strict convexity of the functional
J as stated in Lemma 2.1. Finally, let µ0 be any fixed measure in M+(Ω) that is absolutely
continuous with respect to the Lebesgue measure, and whose support is Ω0. Hence, one has that
Fµ0 ◦ F−1

µ0 (y) = y for any y ∈ [0, 1]. Therefore, equation (3.2) follows from the equalities

F−1
µ∗ = E

(
F−1
µθ

)
= E

(
F−1
µθ

◦ Fµ0
)
◦ F−1

µ0 = E
(
Tθ
)
◦ F−1

µ0 = T̄ ◦ F−1
µ0 ,

where T̄ = E
(
Tθ
)
= F−1

µ∗ ◦ Fµ0 . Note that it is clear that T̄ : Ω0 → Ω is an increasing and
continuous function, and thus it is the optimal mapping between µ0 and µ∗ by Proposition 2.1.
Finally, by equation (3.4) and Fubini’s Theorem, one has that

∫

Θ
d2W2

(µ∗, µθ)g(θ)dθ =

∫ 1

0
E

∣∣∣F−1
µ∗ (y)− F−1

µθ
(y)
∣∣∣
2
dy = E

(∫ 1

0

∣∣∣F−1
µ∗ (y)− F−1

µθ
(y)
∣∣∣
2
dy

)

= E

(∫

Ω

∣∣∣F−1
µθ

◦ Fµ∗(x)− x
∣∣∣
2
dµ∗(x)

)

= E

(∫

Ω

∣∣∣F−1
µθ

◦ Fµ0 ◦ F−1
µ0 ◦ Fµ∗(x)− x

∣∣∣
2
dµ∗(x)

)

= E

(∫

Ω

∣∣Tθ ◦ T̄−1(x)− x
∣∣2 dµ∗(x)

)

where the last equality follows from the fact that Tθ = F−1
µθ

◦ Fµ0 and T̄−1 = F−1
µ0 ◦ Fµ∗ . Hence,

this proves equation (3.3), and it completes the proof.

To illustrate Theorem 3.1, we consider a simple construction of random probability measures
in the case where Ω = [−r, r]. Let µ̃ ∈ M2

+(Ω) admitting the density f̃ with respect to the
Lebesgue measure on R, and cumulative distribution function (cdf) F̃ . We assume that the
density f̃ is continuous on Ω, and that it is supported in a sub-interval Ω̃ of Ω. Let θ = (a,b) ∈
]0,+∞[×R be a two dimensional random vector with density g, such that ax + b ∈ Ω for any
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x ∈ Ω̃. We denote by µθ the random probability measure admitting the density

fθ(x) =
1

a
f̃

(
x− b

a

)
, x ∈ Ω,

where we have extended f̃ outside Ω by letting f̃(u) = 0 for u /∈ Ω. Thanks to our assumptions,
the density fθ is supported in a sub-interval of Ω. Moreover, the cdf and quantile function of
µθ are given by

Fµθ
(x) = F̃

(
x− b

a

)
, x ∈ Ω, and F−1

µθ
(y) = aF̃−1(y) + b, y ∈ [0, 1].

By Theorem 3.1, it follows that the barycenter of µθ is the probability measure µ∗ whose quantile
function is given by

F−1
µ∗ (y) = E(a)F̃−1(y) + E(b), y ∈ [0, 1].

Therefore, µ∗ admits the density

f∗(x) =
1

E(a)
f̃

(
x− E(b)

E(a)

)
, x ∈ Ω,

with respect to the Lebesgue measure on R. Moreover, if µ0 is any fixed measure in M+(Ω),
that is absolutely continuous with respect to the Lebesgue measure, then

µ∗ = T̄#µ0, where T̄ (x) = E(a)F̃−1(Fµ0(x)) + E(b), x ∈ Ω0.

Now, we remark that extending Theorem 3.1 to dimension d ≥ 2 is not straightforward.
Indeed, the two key ingredients in the proof of Theorem 3.1 are the use of the well-known
characterization (3.1) of the Wasserstein distance in dimension d = 1 via the quantile functions,
and the fact that, in dimension d = 1, the composition of two optimal maps (which are increasing
functions) remains an optimal one (thanks to Proposition 2.1). However, the property (3.1) which
explicitly relates the Wasserstein distance dW2

(ν, µθ) to the marginal distributions of ν and µθ is
not valid in higher dimensions. Moreover, the composition of two optimal maps is not necessarily
an optimal one in dimension d ≥ 2. Nevertheless, we show in Section 5 that analogs of Theorem
3.1 can still be obtained in dimension d ≥ 2.

4 Dual formulation

In this section, we introduce a dual formulation of problem (1.2) that is inspired by the one
proposed in [2] to study the properties of empirical barycenters. This dual formulation is then
the key property to state the main result of this paper given in Section 5. Let us recall the
optimization problem (1.2) as

(P) JP := inf
ν∈M+(Ω)

J(ν), where J(ν) =
1

2

∫

Θ
d2W2

(ν, µθ)g(θ)dθ. (4.1)

11



Then, let us introduce some definitions. Let X = C(Ω,R) be the space of continuous functions
f : Ω → R equipped with the supremum norm

‖f‖X = sup
x∈Ω

{|f(x)|} .

We also denote by X ′ = M(Ω) the topological dual of X, where M(Ω) is the set of Radon
measures with support included in Ω. The notation fΘ = (fθ)θ∈Θ ∈ L1(Θ,X) will denote any
mapping {

fΘ : Θ → X
θ 7→ fθ

such that for any x ∈ Ω ∫

Θ
|fθ(x)|dθ < +∞.

Then, following the terminology in [2], we introduce the dual optimization problem

(P∗) JP∗ := sup

{∫

Θ

∫

Ω
Sg(θ)fθ(x)dµθ(x)dθ; f

Θ ∈ L1(Θ,X) such that
∫

Θ
fθ(x)dθ = 0, ∀x ∈ Ω

}
,

(4.2)

where

Sg(θ)f(x) := inf
y∈Ω

{
g(θ)

2
|x− y|2 − f(y)

}
,∀x ∈ Ω and f ∈ X.

Let us also define

Hg(θ)(f) := −
∫

Ω
Sg(θ)f(x)dµθ(x),

and the Legendre-Fenchel transform of Hg(θ) for ν ∈ X ′ as

H∗
g(θ)(ν) := sup

f∈X

{∫

Ω
f(x)dν(x)−Hg(θ)(f)

}
= sup

f∈X

{∫

Ω
f(x)dν(x) +

∫

Ω
Sg(θ)f(x)dµθ(x)

}
.

In what follows, we show that the problems (P) and (P∗) are dual to each other in the sense
that the minimal value JP in problem (P) is equal to the supremum JP∗ in problem (P∗). This
duality is the key tool for the proof of Theorem 5.1.

Proposition 4.1. Suppose that Assumption 1 is satisfied. Then,

JP = JP∗ .

Proof. 1. Let us first prove that JP ≥ JP∗ .
By definition for any fΘ ∈ L1(Θ,X) such that ∀x ∈ Ω,

∫
Θ fθ(x)dθ = 0, and for all y ∈ Ω we

have

Sg(θ)fθ(x) + fθ(y) ≤
g(θ)

2
|x− y|2.

12



Let ν ∈ M+(Ω) and γθ ∈ Π(µθ, ν) be an optimal transport plan between µθ and ν. By integrating
the above inequality with respect to γθ we obtain

∫

Ω
Sg(θ)fθ(x)dµθ(x) +

∫

Ω
fθ(y)dν(y) ≤

∫

Ω×Ω

g(θ)

2
|x− y|2dγθ(x, y) =

g(θ)

2
d2W2

(µθ, ν).

Integrating now with respect to dθ and using Fubini’s Theorem we get
∫

Θ

∫

Ω
Sg(θ)fθ(x)dµθ(x)dθ ≤

∫

Θ

g(θ)

2
d2W2

(µθ, ν)dθ.

Therefore we deduce that JP ≥ JP∗ .

2. Let us now prove the converse inequality JP ≤ JP∗ .
Thanks to the Kantorovich duality formula (see e.g. [43], or Lemma 2.1 in [2]) we have that
H∗
g(θ)(ν) =

1
2d

2
W2

(µθ, ν)g(θ) for any ν ∈ M+(Ω). Therefore, it follows that

JP = inf

{∫

Θ
H∗
g(θ)(ν)dθ, ν ∈ X ′

}
= −

(∫

Θ
H∗
g(θ)dθ

)∗

(0). (4.3)

Define the inf-convolution of
(
Hg(θ)

)
θ∈Θ

by

H(f) := inf

{∫

Θ
Hg(θ)(fθ)dθ; f

Θ ∈ L1(Θ,X),

∫

Θ
fθ(x)dθ = f(x),∀x ∈ Ω

}
, ∀f ∈ X.

We have in the other hand that
JP∗ = −H(0).

Using Theorem 1.6 in [34], one has that for any ν ∈ M+(Ω)

H∗(ν) =

∫

Θ
H∗
g(θ)(ν)dθ.

Then, thanks to (4.3), it follows that

JP = −H∗∗(0) ≥ −H(0) = JP∗ .

Let us now prove that H∗∗(0) = H(0). Since H is convex it is sufficient to show that H is
continuous at 0 for the supremum norm of the space X (see e.g. Proposition 4.1 in [20]). For
this purpose, let fΘ ∈ L1(Θ,X) and remark that it follows from the definition of Hg(θ) that

Hg(θ)(fθ) =

∫

Ω
sup
y∈Ω

{
fθ(y)−

g(θ)

2
|x− y|2

}
dµθ(x)

≥ fθ(0) −
g(θ)

2

∫

Ω
|x|2dµθ(x),

which implies that

H(f) ≥ f(0)−
∫

Θ

g(θ)

2

∫

Ω
|x|2dµθ(x)dθ > −∞, ∀f ∈ X.
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Let f ∈ X such that ‖f‖X ≤ 1/4 and choose fΘ ∈ L1(Θ,X) defined by fθ(x) = f(x)g(θ) for all
θ ∈ Θ and x ∈ Ω. It follows that

H(f) ≤
∫

Θ
Hg(θ)(f(·)g(θ))dθ ≤

∫

Θ

∫

Ω
sup
y∈Ω

{
g(θ)

4
− g(θ)

2
|x− y|2

}
dµθ(x)dθ

≤
∫

Θ

∫

Ω

g(θ)

4
dµθ(x)dθ =

1

4
.

Hence, the convex function H never takes the value −∞ and is bounded from above in a neigh-
borhood of 0 in X. Therefore, by standard results in convex analysis (see e.g. Lemma 2.1 in
[20]), H is continuous at 0, and therefore H∗∗(0) = H(0) which completes the proof.

5 An explicit characterization of the population barycenter

In this section, we extend the results of Theorem 3.1 to dimension d ≥ 2. Let µθ ∈ M+(Ω)
denote the parametric random measure with distribution Pg, as defined in equation (1.1). Let
µ0 be a fixed (reference) measure in M+(Ω) admitting a density with respect to the Lebesgue
measure on R

d. Then, by Proposition 2.1, there exists, for any θ ∈ Θ, a unique optimal mapping
Tθ : Ω → Ω such that µθ = Tθ#µ0, where Tθ = ∇φθ µ0-almost everywhere, and φθ : Ω → R is a
lower semi-continuous convex (l.s.c) function. Let Ω0 (resp. Ωθ) be the support of µ0 (resp. µθ).

In Theorem 5.1 below, we give sufficient conditions on the expectation of Tθ which imply
that the barycenter of µθ is given by µ∗ = E

(
Tθ
)
#µ0. This result means that computing a

barycenter in the Wasserstein space amounts to take the expectation (in the usual sense) of the
optimal mapping Tθ to transport µ0 onto µθ.

To state the main result of this section, we first need to introduce the mapping T̄ : Ω0 → Ω
defined for x ∈ Ω0 by

T (x) = E
(
Tθ(x)

)
=

∫

Θ
Tθ(x)g(θ)dθ.

A key point in what follows is to assume that T is a C1 diffeomorphism from the interior of Ω0

to the interior of its range Ω = T (Ω0). To simplify the presentation, it is always understood that
diffeomorphisms are defined on open sets although it will not always be mentioned. Then, for
any θ ∈ Θ, we introduce the mapping T̄θ defined for any x in Ω by

T̄θ(x) = Tθ ◦ T̄−1(x). (5.1)

The next theorem is the main result of the paper.

Theorem 5.1. Let θ ∈ R
p be a random vector with a density g : Θ → R such that g(θ) > 0 for

all θ ∈ Θ. Let µθ = Φ(θ) be a parametric random measure with distribution Pg. Let µ0 be a fixed
measure in M+(Ω) admitting a density with respect to the Lebesgue measure on R

d. Suppose
that Assumption 1 hold. If for any θ ∈ Θ the following asumptions hold

(i) Tθ is a C1 diffeomorphism from Ω0 to Ωθ, (5.2)

(ii) T̄ is C1 diffeomorphism from Ω0 to Ω , (5.3)

(iii) T̄θ(x) = ∇φ̄θ(x) for all x ∈ Ω, (5.4)

14



where φ̄θ : Ω → R is a l.s.c. convex function, that is such that, for any x ∈ Ω, the function
θ 7→ φ̄θ(x) is integrable with respect to PΘ and satisfies the normalization condition

∫

Θ
φ̄θ(x)g(θ)dθ =

1

2
|x|2 for all x ∈ Ω. (5.5)

Then the population barycenter is the measure µ∗ ∈ M+(Ω) given by

µ∗ = T#µ0, (5.6)

and the optimization problem (1.2) satisfies

inf
ν∈M+(Ω)

J(ν) =
1

2

∫

Θ
d2W2

(µ∗, µθ)g(θ)dθ =
1

2

∫

Ω
E
(
|T̄θ(x)− x|2

)
dµ∗(x). (5.7)

Proof. Under the assumptions of Theorem 5.1, it follows from Proposition 2.2 that the barycenter
µ∗ exists and is unique.

The proof relies on the dual formulation (4.2) of the optimization problem (1.2), and we refer
to Section 4 for further details and notation. To prove the results stated in Theorem 5.1, we
will use the dual characterization of the barycenter µ∗ that is stated in Proposition 4.1. For this
purpose, we need to find a maximizer fΘ = (fθ)θ∈Θ ∈ L1(Θ,X) of the dual problem (P∗), see
equation (4.2). In the proof, we repeatedly use the fact that µθ = T̄θ#µ̄ where, by definition,
µ̄ = T̄#µ0, and the property that T̄θ = Tθ ◦ T̄−1 is a C1 diffeomorphism from Ω to Ωθ which
follows from Assumptions (5.2) and (5.3).

a) Let us first compute an upper bound of JP∗ . Let fΘ ∈ L1(Θ,X) be such that
∫
Θ fθ(x)dθ = 0

for all x ∈ Ω. By definition of Sg(θ)fθ(x) one has that

Sg(θ)fθ(x) ≤
g(θ)

2
|x− y|2 − fθ(y) (5.8)

for any y ∈ Ω. By using inequality (5.8) with y = T̄−1
θ (x) for x ∈ Ωθ, one obtains that

∫

Θ

∫

Ω
Sg(θ)fθ(x)dµθ(x)dθ ≤

∫

Θ

∫

Ωθ

(
g(θ)

2
|x− T̄−1

θ (x)|2 − fθ
(
T̄−1
θ (x)

))
dµθ(x)dθ

=

∫

Θ

∫

Ω

(
g(θ)

2
|T̄θ(u)− u|2 − fθ (u)

)
dµ̄(u)dθ

=

∫

Θ

∫

Ω

(
g(θ)

2
|T̄θ(u)− u|2

)
dµ̄(u)dθ

Note that to obtain the second inequality above, we have used the change of variable u =
T̄−1
θ (x), while the third inequality has been obtained using the fact that

∫
Θ fθ (u) dθ = 0 for

any u ∈ Ω combined with Fubini’s theorem. Thanks to Condition (5.4), T̄θ is the gradient of a
convex function, and it is such that µθ = T̄θ#µ̄. Hence, by Proposition 2.1, one obtains that∫
Ω |T̄θ(u)− u|2dµ̄(u) = d2W2

(µ̄, µθ) which implies that

J(µ̄) =

∫

Θ

1

2
d2W2

(µ̄, µθ)g(θ)dθ,

=

∫

Θ

∫

Ω

(
g(θ)

2
|T̄θ(u)− u|2

)
dµ̄(u)dθ =

1

2

∫

Ω
E
(
|T̄θ(u)− u|2

)
dµ̄(u),
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where the last equality above is a consequence of Fubini’s Theorem which follows from the
measurability of the mapping (u, θ) 7→ T̄θ(u) that has been stated in Section 2.2.

Therefore, we have shown that
∫

Θ

∫

Ω
Sg(θ)fθ(x)dµθ(x)dθ ≤ J(µ̄),

for any fΘ ∈ L1(Θ,X) such that
∫
Θ fθ(x)dθ = 0 for all x ∈ Ω. This inequality implies that

JP∗ ≤ J(µ̄) =
1

2

∫

Ω
E
(
|T̄θ(u)− u|2

)
dµ̄(u), (5.9)

where JP∗ denotes the maximal value of the dual problem (4.2).

b) Let us recall that we have assumed that g(θ) > 0 for any θ ∈ Θ. Now, for any θ ∈ Θ, we
define the function

fθ(x) = −g(θ)
(
φ̄θ(x)−

1

2
|x|2
)
, x ∈ Ω, (5.10)

where φ̄θ is the l.s.c. convex function introduced in Condition (5.5). First, Assumption (5.4)
ensures that fΘ = (fθ)θ∈Θ belongs to L1(Θ,X). Moreover, by Condition (5.5), one has that∫
Θ fθ(x)dθ = 0 for all x ∈ Ω.

Now, for a given θ ∈ Θ, we need to compute the value of Sg(θ)fθ(x) for any x ∈ Ωθ. To this
end, we introduce, for any x ∈ Ωθ, the function F : Ω → R defined by

F (y) =
g(θ)

2
|x− y|2 − fθ(y) =

g(θ)

2
|x− y|2 + g(θ)

(
φ̄θ(y)−

1

2
|y|2
)
, y ∈ Ω.

Note that F (y) = g(θ)
2 |x|2 − g(θ)〈x, y〉 + g(θ)φ̄θ(y). Hence, F is a convex function, since, by

assumption, φ̄θ is convex. Searching for some y ∈ Ω, where the gradient of F vanishes, leads to
the equation

0 = −g(θ)(x− y) + g(θ)
(
∇φ̄θ(y)− y

)
= −g(θ)(x− y) + g(θ)

(
T̄θ(y)− y

)
,

Since g(θ) > 0, it follows that the convex function y 7→ F (y) has a minimum at y = T̄−1
θ (x) ∈ Ω.

Therefore,

Sg(θ)fθ(x) =
g(θ)

2
|x− T̄−1

θ (x)|2 + g(θ)

(
φ̄θ(T̄

−1
θ (x)) − 1

2
|T̄−1
θ (x)|2

)
, (5.11)

for any x ∈ Ωθ.
Let us introduce the notation J∗

(
fΘ
)
=
∫
Θ

∫
Ω Sg(θ)fθ(x)dµθ(x)dθ. By equation (5.11) and

using the change of variable u = T̄−1
θ (x), one obtains that

J∗
(
fΘ
)

=

∫

Θ

∫

Ω

(
g(θ)

2
|x− T̄−1

θ (x)|2 + g(θ)

(
φ̄θ(T̄

−1
θ (x)) − 1

2
|T̄−1
θ (x)|2

))
dµθ(x)dθ

=

∫

Θ

∫

Ω

(
g(θ)

2
|T̄θ(u)− u|2 + g(θ)

(
φ̄θ(u)−

1

2
|u|2
))

dµ̄(u)dθ

=

∫

Θ

∫

Ω

g(θ)

2
|T̄θ(u)− u|2dµ̄(u) = 1

2

∫

Ω
E
(
|T̄θ(u)− u|2

)
dµ̄(u)dθ,
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where the last equality follows as an application of Fubini’s theorem combined with Condition
(5.5). Hence, thanks to the upper bound (5.9), we finally have that

J∗
(
fΘ
)
= JP∗ =

1

2

∫

Ω
E
(
|T̄θ(u)− u|2

)
dµ̄(u) = J(µ̄),

which proves that fΘ is a maximizer of the dual problem (P∗). Moreover, by Proposition 4.1,
one also obtains that that J(µ̄) ≤ J(ν) for any ν ∈ M+(Ω). Hence, µ̄ = µ∗ is the barycenter of
the random measure µθ. This completes the proof of Theorem 5.1.

Theorem 5.1 shows that, under appropriate assumptions, computing the population barycen-
ter in the Wasserstein space of the parametric random measure µθ amounts to transport the
reference measure µ0 by the expected amount of deformation measured by T . We discuss below
Assumptions (5.2), (5.3) and (5.4) stated in Theorem 5.1.

Assumption (5.2) holds under appropriate smoothness conditions both on the measure µθ and
µ0 and their the supports Ω0 and Ωθ. Such assumptions are difficult to summarize in a general
setting. For a detailed review on this issue, we refer to the discussion in [19]. Nevertheless, in the
next subsection, we provide various examples of statistical models for which such an assumption
holds.

The next proposition give sufficient conditions ensuring that Assumption (5.3) holds, namely
the existence of T̄ as a C1 diffeomorphism.

Proposition 5.1. Assume that for any θ ∈ Θ, Tθ is C1 diffeomorphism from Ω0 to Ωθ. Let
T (x) = E

(
Tθ(x)

)
=
∫
Θ Tθ(x)g(θ)dθ, x ∈ Ω0. Suppose that Ω0 is a convex set, and assume that

for any x ∈ Ω0 there exists ǫ > 0 and an integrable function K : Θ → R (with respect to g(θ)dθ)
such that for any y ∈ B(x, ǫ) one has that

∣∣∣∣
∂

∂x
Tθ(y)

∣∣∣∣ ≤ K(θ). (5.12)

Then, T is a C1 diffeormorphism from Ω0 to Ω.

Proof. By our remarks in Section 2.2, one has that (x, θ) 7→ Tθ(x) is a mesurable mapping
with respect to the completion of B(Rp)⊗B (M+(Ω)) with respect to g(θ)dθdµ0(x). Therefore,
x 7→ T̄ (x) is also a mesurable mapping. Now, by Assumption (5.12), one can apply the Theorem
of differentiability under the integral to obtain that T is C1. Moreover, we have that

∇T (x) =
∫

Θ
∇T θ(x)g(θ)dθ,

for any x ∈ Ω0. Since Tθ is an optimal mapping and a C1 diffeomorphism, it follows that
Tθ is the gradient of a strictly convex function, and therefore we get that ∇T (x) is a positive
definite matrix. Hence, by the local inversion Theorem, we know that, for any x ∈ Ω0, T
is a C1 diffeomorphism in a neighborhood of x. It remains now to prove that x 7→ T (x) is
injective. Take x1 and x2 two distinct points in Ω0. Since, by assumption, Ω0 is a convex
set, the segment [x1, x2] is included in Ω0. Now, for each θ ∈ Θ, the restriction of Tθ to the
segment [x1, x2] remains the derivative of a strictly convex function in dimension one. Thus,
t 7→ T (tx1 + (1− t)x2) =

∫
Θ Tθ(tx1 + (1 − t)x2)g(θ)dθ is a strictly increasing function on [0, 1].

Hence, it follows T (x1) 6= T (x2) and thus x 7→ T (x) is injective.
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In the case where T (x) = x for all x ∈ Ω0, it can be checked that Assumption (5.4) is
necessarily satisfied. This corresponds to the situation where the population barycenter µ∗ is
equal to the reference measure µ0. Note that when T = I, it is not required in Theorem
5.1 that the set of optimal maps (Tθ)θ∈Θ are admissible in the sense of Definition 4.2 in [15].
Indeed, according to this definition, a necessary condition for a countable collection of one-to-one
maps (Tθ)θ∈Θ to be an admissible class is that Tθ ◦ T−1

θ′ is an optimal mapping (in the sense of
Proposition 2.1) for any θ, θ′ ∈ Θ. In the case where T = I, such an assumption is thus not
necessary.

When T 6= I, Assumption (5.4) is not necessarily satisfied since the composition Tθ ◦ T̄−1

between the optimal mapping Tθ and the map T̄−1 is not always an optimal mapping. In the
following section, we describe statistical models to illustrate the usefulness of the barycenter in
the Wasserstein space for data analysis, and we discuss various assumptions on T to ensure that
Assumption (5.4) is satisfied. Condition (5.5) is rather an identifiability condition. Indeed, by
definition of T , one always has that E(T̄θ(x)) =

∫
Θ T̄θ(x)g(θ)dθ = x for all x ∈ Ω. Hence, among

the various convex functions φ̄θ such that T̄θ = ∇φ̄θ, Condition (5.5) implies to choose the one
that “integrates” the relation

∫
Θ T̄θ(x)g(θ)dθ = x without any additional constant term.

Finally, it should be also remarked that Condition (5.4) is weaker than requiring that Tθ ◦
T−1
θ′ is an optimal mapping for any θ, θ′ ∈ Θ. Therefore, even in the case where T 6= I, the

conditions stated in Theorem 5.1 to characterize a population barycenter by averaging optimal
transport maps are weaker than those given in [15], since we do not require that the random
optimal maps (Tθ)θ∈Θ belong to an admissible class of mappings (in the sense of Definition 4.2 in
[15]). Moreover, we recall that the study in [15] is restricted to the characterization of empirical
barycenters and their asymptotic properties.

6 An application to deformable models in statistics

In this section, we propose to discuss some applications of Theorem 5.1. To define probability
models where averaging in the Wasserstein space amounts to take the expectation of an optimal
transport map, we study statistical models for which the notion of population and empirical
barycenters in the 2-Wasserstein space is relevant.

6.1 General framework

In many applications observations are in the form of a set of n one-dimensional signals or gray-
level images X1, . . . ,Xn (e.g. in geophysics, biomedical imaging or in signal processing for neu-
rosciences), which can be considered as iid random variables belonging to an appropriate space
F(Ω) of real-valued functions on a compact domain of Ω ⊂ R

d. In many situations the ob-
served curves or images share the same structure. This may lead to the assumption that these
observations are random elements which vary around a reference template. Characterizing and
estimating such a template is then of fundamental interest in many applications.

In the presence of geometric variability in time or space in the data, a widely used approach
is Grenander’s pattern theory [26, 27, 41, 42] that models such a variability by the action of a Lie
group on an infinite dimensional space of curves or images. Following the ideas of Grenander’s
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pattern theory, a simple assumption is to consider that the data X1, . . . ,Xn are obtained through
the deformation of the same template h ∈ F(Ω) via the so-called deformable model

Xi = h ◦ ϕ−1
i , i = 1, . . . , n, (6.1)

where ϕ1, . . . ,ϕn are iid random variables belonging to the set of smooth diffeomorphisms of
Ω. In signal and image processing, there has been recently a growing interest on the statistical
analysis of deformable models (in the presence of additive noise) using either rigid or non-rigid
random diffeomorphisms ϕi, see e.g. [4, 11, 12, 13, 14, 24, 44] and the review proposed in [5].
Nevertheless, in a data set of curves or images, one generally observes not only a source of
variability in geometry, but also a source of photometric variability (e.g. the intensity of a pixel
changes from one image to another) that cannot be only captured by a deformation of the domain
Ω via a diffeomorphism as in model (6.1).

It is always possible to transform the data X1, . . . ,Xn into a set of n iid random probability
densities by computing the random variables

qi(x) =
X̃i(x)∫

Ω X̃i(u)du
, x ∈ Ω, where X̃i(x) = Xi(x)−min

u∈Ω
{Xi(u)} , i = 1, . . . , n.

Let q0 ∈ F(Ω) be a probability density function. In this section and as already discussed in the
introduction, we consider the following deformable model of densities:

qi(x) =
∣∣det

(
Dϕ−1

i

)
(x)
∣∣ q0
(
ϕ−1
i (x)

)
x ∈ Ω, i = 1, . . . , n, (6.2)

where det
(
Dϕ−1

i

)
(x) denotes the determinant of the Jacobian matrix of the random diffeomor-

phism ϕ−1
i at point x. If we denote by µ1, . . . ,µn ∈ M+(Ω) the random probability measures

with densities q1, . . . ,qn, and by µ0 the measure with density q0, then (6.2) can also be written
as the following deformable model of measures

µi = ϕi#µ0, i = 1, . . . , n. (6.3)

In model (6.3), under appropriate assumptions on the random maps ϕ1, . . . ,ϕn, computing the
empirical barycenter in the Wasserstein space of the random measures µ1, . . . ,µn leads to a
consistent and meaningful estimator of the reference measure µ0 and thus of the template q0.
In the rest of this section, we discuss some examples of model (6.3). The main contribution
is to show how Theorem 5.1 can be used to characterise the population barycenter of random
measures satisfying the deformable model (6.3).

6.2 A parametric class of diffeomorphisms

Let µ0 be a measure on R
d having a density q0 (with respect to the Lebesgue measure dx on R

d)
whose support is equal to a compact set Ω0 ⊂ R

d. We propose to characterise the population
barycenter of a random measure µ satisfying the deformable model µ = ϕ#µ0, for a specific
class of random diffeomorphisms ϕ : Rd → R

d. Let S
+
d (R) be the set of positive definite d × d

symmetric matrices with real entries. Let

φ : (Rp,B(Rp)) →
(
S
+
d (R)× R

d,B
(
S
+
d (R)× R

d
))

(6.4)
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be a measurable mapping, where B(S+d (R) × R
d) is the Borel σ-algebra of S

+
d (R) × R

d. For
θ ∈ R

p, we will use the notations

φ(θ) = (Aθ, bθ) , with Aθ ∈ S
+
d (R), bθ ∈ R

d,

and
Tθ(x) = Aθx+ bθ, x ∈ R

d.

Since the matrix Aθ belongs to S
+
d (R), it is clear that Tθ is the gradient of the convex function

φθ(x) =
1

2
x′Aθx+ b′θx, for x ∈ R

d.

Moreover, for any θ ∈ R
d, it follows that Tθ : Rd → R

d is a C1 diffeomorphism with inverse given
by

T−1
θ (x) = A−1

θ (x− bθ) , x ∈ R
d.

Let Θ ⊂ R
p be a compact set, and let θ ∈ R

p be a random vector with density g (with respect
to the Lebesgue measure dθ on R

p) having a support included in Θ. We propose to study
the population barycenter in the Wasserstein space of the random measure µθ satisfying the
deformable model:

µθ = Tθ#µ0. (6.5)

The above equation may also be interpreted as a semi-parametric model of random densities,
where Tθ is the optimal mapping between µ0 and µθ. For any θ ∈ Θ (not necessarily a random
vector), we define µθ = Tθ#µ0. Since Tθ is a smooth diffeomorphism and µ0 is a measure with
density q0 whose support is the compact set Ω0, it follows that µθ admits a density qθ on R

d

given by

qθ(x) =

{
det
(
A−1
θ

)
q0
(
A−1
θ (x− bθ)

)
if x ∈ Ωθ,

0 if x /∈ Ωθ.
(6.6)

where Ωθ = {Tθ(y), y ∈ Ω0} = {Aθy + bθ, y ∈ Ω0}. It is clear that Tθ is a C1 diffeormorphism
form Ω0 to Ωθ that is the optimal mapping between µ0 and µθ.

Moreover, from the compactness of Ω0, it follows that Ωθ is compact for all θ ∈ Θ. If
we further assume that the mapping φ : Θ → S

+
d (R) × R

d is continuous, one obtains (by the
compactness assumption on Θ) that there exists a radius r > 0 such that Ωθ ⊂ Ω = B(0, r) for
all θ ∈ Θ. Thus, under this assumption, the random measure µθ takes its values in M+(Ω).

As a consequence of Theorem 5.1, one has the following result.

Corollary 6.1. Assume that the mapping φ defined in (6.4) is continuous, and let Ω = B(0, r)
be such that Ωθ ⊂ Ω for all θ ∈ Θ. If

E(Aθ) = I and E(bθ) = 0

where I is the identity matrix, then µ0 = µ∗ is the population barycenter in the Wasserstein space
of the random measure µθ ∈ M+(Ω) satisfying the deformable model (6.5).
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In the case where the condition E(Aθ) = I is not necessarily satisfied, we define, for any
θ ∈ Θ, the following quantities

Āθ = AθĀ
−1 and b̄θ = bθ −AθĀ

−1b̄, (6.7)

where Ā = E
(
Aθ
)

and b̄ = E
(
bθ
)
. For any θ ∈ Θ, we also define the mapping

T̄θ(x) = Tθ(T̄
−1(x)) = Āθx+ b̄θ, x ∈ R

d,

where T̄ (x) = Āx + b̄. To apply Theorem 5.1, it is necessary to assume that T̄θ is the gradient
of a convex function, which means assuming that Āθ = AθĀ

−1 is a positive definite matrix. A
sufficient condition to have this property is to assume that the product AθĀ−1 is symmetric
for any θ ∈ Θ, since the product of two matrices in S

+
d (R) is positive definite if and only if

their product is symmetric (see e.g. [35]). Under such assumptions, it is then possible to apply
Theorem 5.1 to obtain following result.

Corollary 6.2. Assume that the mapping φ defined in (6.4) is continuous, and let Ω = B(0, r)
be such that Ωθ ⊂ Ω for all θ ∈ Θ. If AθĀ

−1 is symmetric for any θ ∈ Θ, then

µ∗ = T̄#µ0.

is the population barycenter in the Wasserstein space of the random measure µθ ∈ M+(Ω)
satisfying the deformable model (6.5).

7 Convergence of the empirical barycenter

Let us now prove the convergence of the empirical barycenter for the set of measures considered
in this paper whose supports are included in the compact set Ω. We recall that this assumption
implies that the Wasserstein space (M+(Ω), dW2

) is compact. This is the key property that we
use to study the convergence of the empirical barycenter.

Let θ1, . . . ,θn be iid random variables in R
p with distribution PΘ. Then, let us define the

functional

Jn(ν) =
1

n

n∑

j=1

1

2
d2W2

(ν, µθj
), ν ∈ M+(Ω), (7.1)

and consider the optimization problem: find an empirical barycenter

µ̄n ∈ arg min
ν∈M+(Ω)

Jn(ν), (7.2)

Thanks to the results in [2], the following lemma holds:

Lemma 7.1. Suppose that Assumption 1 holds. Then, for any n ≥ 1, there exists a unique
minimizer µ̄n of Jn(·) over M+(Ω).

Let us now give our main result on the convergence of the empirical barycenter µ̄n.
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Theorem 7.1. Suppose that Assumption 1 hold. Let µ∗ be the population barycenter defined by
(1.2), and µ̄n be the empirical barycenter defined by (7.2). Then,

lim
n→+∞

dW2
(µ̄n, µ

∗) = 0 almost surely (a.s.)

Proof. For ν ∈ M+(Ω), let us define

∆n(ν) = Jn(ν)− J(ν).

The proof is divided in two steps. It follows standard arguments to obtain a strong law of large
number for random variables belonging to compact metric spaces that can be found in [40].
Theorem 7.1 can be seen as a particular case of the general results in [40]. But in order to be
self contained we include a detailed proof that is inspired by the arguments in [40]. First, we
prove the uniform convergence to zero of ∆n over M+(Ω). Then, we show that any converging
subsequence of µ̄n converges a.s. to µ∗ for the 2-Wasserstein distance.

Step 1. For ν ∈ M+(Ω), let us denote by fν : M+(Ω) → R the real-valued function defined by

fν(µ) =
1

2
d2W2

(ν, µ).

Then, let us define the following class of functions

F = {fν , ν ∈ M+(Ω)} .

Let δ2(Ω) = supx∈Ω{|x|2}. Since Ω is compact, it follows that F is a class of functions
uniformly bounded by 2δ2(Ω) (for the supremum norm). Now, let ν, µ, µ′ ∈ M+(Ω). By the
triangle reverse inequality

|fν(µ)− fν(µ
′)| =

1

2

∣∣d2W2
(ν, µ)− d2W2

(ν, µ′)
∣∣ ≤

√
2δ(Ω)

∣∣dW2
(ν, µ)− dW2

(ν, µ′)
∣∣

≤
√
2δ(Ω)dW2

(µ, µ′).

The above inequality proves that F is an equicontinuous family of functions. Now, let θ1, . . . ,θn
be iid random vectors in R

p with density g, and let us define the random empirical measure on
(M+(Ω),B (M+(Ω)))

P
n
g =

1

n

n∑

i=1

δµθi

=
1

n

n∑

i=1

δφ(θi),

where δµ denotes the Dirac measure. It is clear that

∆n(ν) =

∫

M+(Ω)
fν(µ)dP

n
g (µ)−

∫

M+(Ω)
fν(µ)dPg(µ).

Let f : M+(Ω) → R be a real-valued function that is continuous (for the topology induced by
dW2

) and bounded. Thanks to the mesurability of the mapping φ, one has that the real random
variable

∫
M+(Ω) f(µ)dP

n
g (µ) converges a.s. to

∫
M+(Ω) f(µ)dPg(µ) as n→ +∞, meaning that the
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random measure P
n
g a.s. converges to Pg in the weak sense. Therefore, since F is a uniformly

bounded and equicontinuous family of functions, one can use Theorem 6.2 in [38] to obtain that

sup
ν∈M+(Ω)

|∆n(ν)| = sup
f∈F

∣∣∣∣∣

∫

M+(Ω)
f(µ)dPng (µ)−

∫

M+(Ω)
f(µ)dPg(µ)

∣∣∣∣∣→ 0 as n→ +∞, a.s. (7.3)

which proves the uniform convergence of ∆n to zero over M+(Ω).

Step 2. By Lemma 7.1, there exists a unique sequence (µ̄n)n≥1 of empirical barycenters defined
by (7.2). Thanks to the compactness of the Wasserstein space (M+(Ω), dW2

), one can extract a
converging sub-sequence of empirical barycenters (µ̄nk

)k≥1 such that limk→+∞ dW2
(µ̄nk

, µ̄) = 0
for some measure µ̄ ∈ M+(Ω).

Let us now prove that µ̄ = µ∗. To this end, let us first note that by the definition of µ̄nk
and

µ∗ as the unique minimizer of Jnk
(·) and J(·) respectively, it follows that

∣∣J(µ̄nk
)− J(µ∗)

∣∣ = J(µ̄nk
)− Jnk

(µ̄nk
) + Jnk

(µ̄nk
)− Jnk

(µ∗) + Jnk
(µ∗)− J(µ∗)

≤ 2 sup
ν∈M+(Ω)

|∆nk
(ν)| ,

where we have used the fact that Jnk
(µ̄nk

) − Jnk
(µ∗) ≤ 0. Therefore, thanks to the uniform

convergence (7.3) of ∆n to zero over M+(Ω), one obtains that

lim
k→+∞

J(µ̄nk
) = J(µ∗). (7.4)

Therefore, using that
∣∣Jnk

(µ̄nk
)− J(µ∗)

∣∣ ≤
∣∣Jnk

(µ̄nk
)− J(µ̄nk

)
∣∣+
∣∣J(µ̄nk

)− J(µ∗)
∣∣

≤ sup
ν∈M+(Ω)

|∆nk
(ν)|+

∣∣J(µ̄nk
)− J(µ∗)

∣∣ ,

one finally obtains by (7.3) and (7.4) that

lim
k→+∞

Jnk
(µ̄nk

) = J(µ∗). (7.5)

Since |Jnk
(µ̄)− J(µ̄)| ≤ supν∈M+(Ω) |∆nk

(ν)|, it follows by equation (7.3) that

lim
k→+∞

Jnk
(µ̄) = J(µ̄) a.s. (7.6)

Moreover, for any ǫ > 0, there exists kǫ ∈ N such that dW2
(µ̄nk

, µ̄) ≤ ǫ for all k ≥ kǫ. Therefore,
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using the triangle inequality, it follows that for all k ≥ kǫ

(Jnk
(µ̄))1/2 =


 1

nk

nk∑

j=1

1

2
d2W2

(µ̄, µθj
)




1/2

≤


 1

nk

nk∑

j=1

1

2
d2W2

(µ̄nk
, µθj

)




1/2

+


 1

nk

nk∑

j=1

1

2
d2W2

(µ̄, µ̄nk
)




1/2

≤


 1

nk

nk∑

j=1

1

2
d2W2

(µ̄nk
, µθj

)




1/2

+
ǫ√
2
,

and thus by equations (7.5) and (7.6), we obtain that

J(µ̄) ≤ lim
k→+∞

Jnk
(µ̄nk

) = J(µ∗) a.s. (7.7)

which finally proves that µ̄ = µ∗ a.s. since µ∗ is the unique minimizer of J(ν) over ν ∈ M+(Ω).
Hence, any converging subsequence of empirical barycenters converges a.s. to µ∗ for the

2-Wasserstein distance. Since (M+(Ω), dW2
) is compact, this finally shows that (µ̄n)n≥1 is

a converging sequence such that limn→+∞ dW2
(µ̄n, µ

∗) = 0 a.s. which completes the proof of
Theorem 7.1.

8 Beyond the compactly supported case

To conclude the paper, we briefly discuss the case of a random measure µθ with distribution
PΘ whose support is not included in a compact set Ω of R

d. In the one-dimensional case i.e.
d = 1, let us denote by Fµθ

its cumulative distribution function, and by F−1
µθ

its generalized

inverse (quantile function). Provided that one can define the measure µ∗ with quantile function

F−1
µ∗ (y) = E

(
F−1
µθ

(y)
)

for all y ∈ [0, 1], it is expected that arguments similar to those used in

the proof of Theorem 3.1 can be used to prove that µ∗ is the unique population barycenter of
the random measure µθ with distribution PΘ.

The multi-dimensional case (i.e. d ≥ 2) is more involved. Indeed, the arguments that we used
to prove the main results of the paper for d ≥ 2 strongly depend on the compactness assumption
on the support of the random measure µθ. Adapting these arguments for the extension of this
paper to non-compactly supported measures is an interesting topic for future investigations.

References

[1] B. Afsari. Riemannian lp center of mass: existence, uniqueness, and convexity. Proceedings
of the American Mathematical Society, 139(2):655–673, 2011.

[2] M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM J. Math. Anal.,
43(2):904–924, 2011.

24



[3] A. Agulló-Antolín, J.A. Cuesta-Albertos, H. Lescornel, and J.-M. Loubes. A parametric reg-
istration model for warped distributions with Wasserstein distance. Journal of Multivariate
Analysis, 135:117–130, 2015.

[4] S. Allassonnière, Y. Amit, and A. Trouvé. Towards a coherent statistical framework for
dense deformable template estimation. J. R. Stat. Soc. Ser. B Stat. Methodol., 69(1):3–29,
2007.

[5] S. Allassonnière, J. Bigot, J. Glaunès, F. Maire, and F. Richard. Statistical models for
deformable templates in image and shape analysis. Annales Mathématiques Blaise Pascal,,
20(1):1–35, 2013.

[6] P. C. Álvarez-Esteban, E. del Barrio, J. A. Cuesta-Albertos, and C. Matrán. Uniqueness
and approximate computation of optimal incomplete transportation plans. Ann. Inst. Henri
Poincaré Probab. Stat., 47(2):358–375, 2011.

[7] M. Arnaudon, C. Dombry, A. Phan, and L. Yang. Stochastic algorithms for computing
means of probability measures. Stochastic Process. Appl., 122(4):1437–1455, 2012.

[8] J.-D. Benamou, G. Carlier, Cuturi M., Nenna L., and G. Peyré. Iterative bregman projec-
tions for regularized transportation problems. Technical report, Preprint Arxiv:1412.5154,
2014.

[9] R. Bhattacharya and V. Patrangenaru. Large sample theory of intrinsic and extrinsic sample
means on manifolds (i). Annals of statistics, 31(1):1–29, 2003.

[10] R. Bhattacharya and V. Patrangenaru. Large sample theory of intrinsic and extrinsic sample
means on manifolds (ii). Annals of statistics, 33:1225–1259, 2005.

[11] J. Bigot and B. Charlier. On the consistency of Fréchet means in deformable models for
curve and image analysis. Electronic Journal of Statistics, 5:1054–1089, 2011.

[12] J. Bigot and S. Gadat. A deconvolution approach to estimation of a common shape in a
shifted curves model. Ann. Statist., 38(4):2422–2464, 2010.

[13] J. Bigot, S. Gadat, and J.M. Loubes. Statistical M-estimation and consistency in large de-
formable models for image warping. Journal of Mathematical Imaging and Vision, 34(3):270–
290, 2009.

[14] J. Bigot, J.M. Loubes, and M. Vimond. Semiparametric estimation of shifts on compact Lie
groups for image registration. Probability Theory and Related Fields, 152:425–473, 2010.

[15] E. Boissard, T. Le Gouic, and J.-M. Loubes. Distribution’s template estimate with Wasser-
stein metrics. Bernoulli, 21(2):740–759, 2015.

[16] N. Bonneel, J. Rabin, G. Peyré, and H. Pfister. Sliced and radon wasserstein barycenters of
measures. Technical report, Preprint Hal-00881872, 2013.

25



[17] Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions.
Comm. Pure Appl. Math., 44(4):375–417, 1991.

[18] M. Cuturi and A. Doucet. Fast computation of wasserstein barycenters. In In Tony Jebara
and Eric P. Xing, editors, Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 685–693. JMLR Workshop and Conference Proceedings, 2014.

[19] G. De Philippis and A. Figalli. The Monge-Ampère equation and its link to optimal trans-
portation. Bull. Amer. Math. Soc., 51:527–580, 2014.

[20] I. Ekeland and R. Témam. Convex analysis and variational problems, volume 28 of Classics
in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, english edition, 1999. Translated from the French.

[21] P. Embrechts and M. Hofert. A note on generalized inverses. Mathematical Methods of
Operations Research, 77:423–432, 2013.

[22] J. Fontbona, H. Guérin, and S. Méléard. Measurability of optimal transportation and strong
coupling of martingale measures. Electron. Commun. Probab., 15:124–133, 2010.

[23] M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié. Ann.
Inst. H.Poincaré, Sect. B, Prob. et Stat., 10:235–310, 1948.

[24] F. Gamboa, J.-M. Loubes, and E. Maza. Semi-parametric estimation of shifts. Electron. J.
Stat., 1:616–640, 2007.

[25] C. Goodall. Procrustes methods in the statistical analysis of shape. J. Roy. Statist. Soc.
Ser. B, 53(2):285–339, 1991.

[26] U. Grenander. General pattern theory - A mathematical study of regular structures. Claren-
don Press, Oxford, 1993.

[27] U. Grenander and M. Miller. Pattern Theory: From Representation to Inference. Oxford
Univ. Press, Oxford, 2007.

[28] S. Haker and A. Tannenbaum. On the Monge-Kantorovich problem and image warping.
In Mathematical methods in computer vision, volume 133 of IMA Vol. Math. Appl., pages
65–85. Springer, New York, 2003.

[29] S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent. Optimal mass transport for registration
and warping. International Journal on Computer Vision, 60:225–240, 2004.

[30] S. F. Huckemann. Intrinsic inference on the mean geodesic of planar shapes and tree dis-
crimination by leaf growth. Ann. Statist., 39(2):1098–1124, 2011.

[31] D.G. Kendall. Shape manifolds, procrustean metrics, and complex projective spaces. Bull.
London Math Soc., 16:81–121, 1984.

[32] Y. H. Kim and B. Pass. Wasserstein barycenters over Riemannian manifolds. Preprint,
arXiv:1412.7726, 2014.

26



[33] T. Le Gouic and J.-M. Loubes. Existence and consistency of Wasserstein barycenters.
Preprint, hal-01163262, 2015.

[34] A. D. Loffe and V. M. Tihomirov. Duality of convex functions and extremum problems.
Uspehi Mat. Nauk, 23(6 (144)):51–116, 1968.

[35] A.R. Meenakshi and C. Rajian. On a product of positive semidefinite matrices. Linear
Algebra and its Applications, 295(1-3):3 – 6, 1999.

[36] B. Pass. Optimal transportation with infinitely many marginals. J. Funct. Anal., 264(4):947–
963, 2013.

[37] J. Rabin, G. Peyré, J. Delon, and M. Bernot. Wassertein barycenter and its applications to
texture mixing. In LNCS, Proc. SSVM’11, volume 6667, pages 435–446. Springer, 2011.

[38] R. Ranga Rao. Relations between weak and uniform convergence of measures with applica-
tions. Ann. Math. Statist., 33:659–680, 1962.

[39] K.-T. Sturm. Probability measures on metric spaces of nonpositive curvature. In Heat
kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), volume 338 of
Contemp. Math., pages 357–390. Amer. Math. Soc., Providence, RI, 2003.

[40] H. Sverdrup-Thygeson. Strong law of large numbers for measures of central tendency and
dispersion of random variables in compact metric spaces. Ann. Statist., 9(1):141–145, 1981.

[41] A. Trouvé and L. Younes. Local geometry of deformable templates. SIAM J. Math. Anal.,
37(1):17–59 (electronic), 2005.

[42] A. Trouvé and L. Younes. Shape spaces. In Handbook of Mathematical Methods in Imaging.
Springer, 2011.

[43] C. Villani. Topics in Optimal Transportation. American Mathematical Society, 2003.

[44] M. Vimond. Efficient estimation for a subclass of shape invariant models. Ann. Statist.,
38(3):1885–1912, 2010.

27


	Introduction
	A parametric class of random probability measures
	Main results of the paper
	Related results in the literature
	Organisation of the paper

	Existence and uniqueness of the population barycenter
	Some definitions and notation
	About the measurability of T
	Existence and uniqueness of  

	Barycenter for measures supported on the real line
	Dual formulation
	An explicit characterization of the population barycenter
	An application to deformable models in statistics
	General framework
	A parametric class of diffeomorphisms

	Convergence of the empirical barycenter
	Beyond the compactly supported case

