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Abstract

We define a notion of barycenter for random probability measures in the Wasserstein
space. We study the population barycenter in terms of existence and uniqueness. Using a
duality argument, we give a precise characterization of the population barycenter for com-
pactly supported measures, and we make a connection between averaging in the Wasserstein
space and taking the expectation of optimal transport maps. Then, the problem of estimating
this barycenter from n independent and identically distributed random probability measures
is considered. To this end, we study the convergence of the empirical barycenter proposed
in Agueh and Carlier [2] to its population counterpart as the number of measures n tends to
infinity. To illustrate the benefits of this approach for data analysis and statistics, we show
the usefulness of averaging in the Wasserstein space for curve and image warping. In this
setting, we also study the rate of convergence of the empirical barycenter to its population
counterpart for some semi-parametric models of random densities.
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1 Introduction

In this paper, we consider the problem of defining the barycenter of random probability measures
on R

d. The set of Radon probability measures endowed with the 2-Wasserstein distance is not an
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Euclidean space. Consequently, to define a notion of barycenter for random probability measures,
it is natural to use the notion of Fréchet mean [15] that is an extension of the usual Euclidean
barycenter to non-linear spaces endowed with non-Euclidean metrics. If Y denotes a random
variable with distribution P taking its value in a metric space (M, dM), then a Fréchet mean
(not necessarily unique) of the distribution P is a point m∗ ∈ M that is a global minimum (if
any) of the functional

J(m) =
1

2

∫

M

d2M(m, y)dP(y) i.e. m∗ ∈ arg min
m∈M

J(m).

In this paper, a Fréchet mean of a random variable Y with distribution P will be also called
a barycenter. An empirical Fréchet mean of an independent and identically distributed (iid)
sample Y1, . . . ,Yn of distribution P is

Ȳn ∈ arg min
m∈M

1

n

n∑

j=1

1

2
d2M(m,Yj).

For random variables belonging to nonlinear metric spaces, a well-known example is the com-
putation of the mean of a set of planar shapes in the Kendall’s shape space [25] that leads to
the Procrustean means studied in [18]. Many properties of the Fréchet mean in finite dimen-
sional Riemannian manifolds (such as consistency and uniqueness) have been investigated in
[1, 4, 5, 6, 23]. For random variables taking their value in metric spaces of nonpositive curvature
(NPC), a detailed study of various properties of their barycenter can be found in [31]. Recently,
some properties of the Fréchet mean in bounded metric spaces have also been studied in [17].
However, there is not so much work on Fréchet means in infinite dimensional metric spaces that
do not satisfy the global NPC property as defined in [31].

In this paper, we consider the case where Y = µ is a random probability measure belonging
to the 2-Wasserstein space on R

d with distribution P. More precisely, we propose to study some
properties of the barycenter µ∗ of µ defined as the following Fréchet mean

µ∗ = arg min
ν∈M2

+(Rd)

∫

M2
+
(Rd)

1

2
d2W2

(ν, µ)dP(µ), (1.1)

where M2
+(Ω) is the set of Radon probability measures with finite second order moment, and

d2W2
denotes the squared 2-Wasserstein distance between two probability measures. Note that P

denotes a probability distribution on the space of probability measures (M2
+(R

d),B
(
M2

+(R
d)
)
,

where B
(
M2

+(R
d)
)

is the Borel σ-algebra generated by the topology induced by the distance
dW2

. If it exists and is unique, the measure µ∗ will be referred to as the population barycenter
of the random measure µ with distribution P. A similar notion (to the one in this paper)
of a population barycenter and its connection to optimal transportation with infinitely many
marginals have been recently studied in [27]. Throughout the paper, we shall thus explain the
differences and the similarities between the approach that we follow and the one in [27].

The empirical counterpart of µ∗ is the barycenter µ̄n defined as

µ̄n = arg min
ν∈M2

+
(Rd)

1

n

n∑

j=1

1

2
d2W2

(ν,µj), (1.2)
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where µ1, . . . ,µn are iid random measures sampled from the distribution P. A detailed charac-
terization of µ̄n in terms of existence, uniqueness and regularity, together with its link to the
multi-marginal problem in optimal transport has been proposed in [2].

The first contribution of this paper is to discuss some assumptions on P that warrant the
existence and uniqueness of the population barycenter. In the one-dimensional case, we obtain an
explicit characterization that can be (informally) stated as follows: in the case d = 1, if µ0 denotes
some reference measure that is absolutely continuous with respect to the Lebesgue measure on
R, then the barycenter µ∗ of a random measure µ ∈ M2

+(R) is given by the push-forward of µ0
through the mapping E(T), namely

µ∗ = E(T)#µ0, (1.3)

where T is the optimal mapping to transport µ0 onto µ (i.e. µ = T#µ0), and E denotes the
usual expectation of random variables. Moreover, µ∗ does not depend on the choice of µ0.

One of the purposes of this paper is to extend equation (1.3) to higher dimensions d ≥ 2
for some specific probability models on µ. To this end, we propose a dual formulation of the
optimisation problem (1.1) that allows a precise study of some properties of the population
barycenter. These results are based on an adaptation of the arguments developed in [2] for
the characterization of the empirical barycenter µ̄n. Therefore, our approach is very much
connected with the theory of optimal mass transport, and with the characterization of the Monge-
Kantorovich problem via arguments from convex analysis and duality, see [36] for further details
on this topic.

Another contribution of this paper is to study the convergence of µ̄n to µ∗ as the number
n of measures tends to infinity. Finally, we show that this notion of barycenter of probability
measures has interesting applications in various statistical models for data analysis for which
analogs of equation (1.3) may hold.

The paper is then organised as follows. In Section 2, we introduce the general framework
of the paper, and we describe a specific probability model of random measures. In Section 3,
we characterize the population Barycenter in the one-dimensional case, i.e. for random measures
supported on R. In Section 4, we prove the existence of the population barycenter in dimension
d ≥ 2 (within our framework). In Section 5, in the case of compactly supported measures
and for d ≥ 1, we introduce a dual formulation of the optimisation problem (1.1), and we give
a characterisation of the population barycenter. The convergence of the empirical barycenter
is discussed in Section 6. As an application of the methodology developed in this paper, we
discuss in Section 7 the usefulness of barycenters in the Wasserstein space for curve and image
warping problems. In this setting, we discuss the extension of equation (1.3) to dimension d ≥ 2
for some semi-parametric models of random densities, and we study the rate of convergence of
the empirical barycenter to its population counterpart. Finally, we give a conclusion and some
perspectives in Section 8.

Throughout the paper, we use bold symbols Y,µ,θ, . . . to denote random objects.
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2 General framework

2.1 Some definitions and notation

The notation |x| is used to denote the usual Euclidean norm of a vector x ∈ R
m, and the notation

〈x, y〉 denotes the usual inner product for x, y ∈ R
m. Let Ω be a convex subset of Rd. We denote

by M(Ω) the space of bounded Radon measures on Ω and by M2
+(Ω) the set of Radon probability

measures with finite second order moment.
We recall that the squared 2-Wassertein distance between two probability measures µ, ν ∈

M2
+(Ω) is

d2W2
(µ, ν) := inf

γ∈Π(µ,ν)

{∫

Ω×Ω
|x− y|2dγ(x, y)

}
,

where Π(µ, ν) is the set of all probability measures on Ω × Ω having µ and ν as marginals, see
e.g. [36]. We recall that γ ∈ Π(µ, ν) is called an optimal transport plan between µ and ν if

d2W2
(µ, ν) =

∫

Ω×Ω
|x− y|2dγ(x, y).

Let T : Ω → Ω be a measurable mapping, and let µ ∈ M2
+(Ω). The push-forward measure T#µ

of µ through the map T is the measure defined by duality as

∫

Ω
f(x)d(T#µ)(x) =

∫

Ω
f(T (x))dµ(x), for all continuous and bounded functions f : Ω −→ R.

We also recall the following well known result in optimal transport (see e.g. [36] or Proposition
3.3 in [2]):

Proposition 2.1. Let µ, ν ∈ M2
+(Ω). Then, γ ∈ Π(µ, ν) is an optimal transport plan between µ

and ν if and only if the support of γ is included in the set ∂φ that is the graph of the subdifferential
of a convex and lower semi-continuous function φ solution of the problem

φ = arg min
ψ ∈ C

{∫

Ω
ψ(x)dµ(x) +

∫

Ω
ψ∗(x)dν(x)

}
,

where ψ∗(x) = supy∈Ω {〈x, y〉 − ψ(y)} is the convex conjugate of ψ, and C denotes the set of
convex functions ψ : Ω → R that are lower semi-continuous

If µ admits a density with respect to the Lebesgue measure on R
d, then there exists a unique

optimal transport plan γ ∈ Π(µ, ν) that is of the form γ = (id,∇φ)#µ where ∇φ (the gradient of
φ) is called the optimal mapping between µ and ν. The uniqueness of the transport plan holds in
the sense that if ∇φ#µ = ∇ψ#µ, where ψ : Ω → R is a convex function, then φ = ψ µ-almost
everywhere. Moreover, one has that

d2W2
(µ, ν) =

∫

Ω
|∇φ(x)− x|2dµ(x).
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2.2 A parametric class of random probability measures

We will now define the model of random measures that will be studied throughout the paper.
Let Θ be a subset of Rp. Let φ : (Rp,B(Rp)) → (M2

+(Ω),B
(
M2

+(Ω)
)

be a measurable mapping,
where B(Rp) is the Borel σ-algebra of Rp and B

(
M2

+(Ω)
)

is the Borel σ-algebra generated by
the topology induced by the distance dW2

. Then, let us define

Mφ(Θ) = {µθ = φ(θ), θ ∈ Θ}

as the set of probability measures µθ ∈ M2
+(Ω) parametrized by the mapping φ and the set Θ.

Throughout the paper, we will suppose that φ satisfies the following assumption:

Assumption 1. For any θ ∈ Θ, the measure µθ = φ(θ) ∈ M2
+(Ω) admits a density with respect

to the Lebesgue measure on R
d.

Let PΘ be a probability measure on Θ with density g : Θ → R
+ with respect to the Lebesgue

measure dθ on R
p. We will assume that g satisfies the following regularity conditions:

Assumption 2. There exists Θ′ ⊂ Θ with
∫
Θ′ dθ 6= 0 such that g(θ) > 0 for all θ ∈ Θ′.

If θ ∈ R
p is a random vector with density g, then µθ = φ(θ) is a random probability measure

with distribution Pg on (M2
+(Ω),B

(
M2

+(Ω)
)

that is the push-forward measure defined by

Pg(B) = PΘ(φ
−1(B)), for any B ∈ B

(
M2

+(Ω)
)
.

A similar class of random probability measures has been considered in [27] for the purpose
of studying the existence and uniqueness of a population barycenter in the 2-Wasserstein space.
However, the setting in [27] is somewhat more restrictive than the one considered in this paper,
since it is assumed in [27] that the parameter set Θ is one-dimensional, and that the support of
the measures µθ is contained in a bounded domain of Rd.

As explained in the introduction, we want to characterize the barycenter (i.e. the Fréchet
mean) of the distribution Pg when M2

+(Ω) is endowed with the 2-Wasserstein distance dW2
. For

this purpose, let us consider the following optimization problem: find

µ∗ ∈ arg min
ν∈M2

+
(Ω)

J(ν), (2.1)

where

J(ν) =

∫

M2
+
(Ω)

1

2
d2W2

(ν, µ)dPg(µ) =

∫

Θ

1

2
d2W2

(ν, µθ)g(θ)dθ, ν ∈ M2
+(Ω). (2.2)

The main goals of this paper are to prove the existence and the uniqueness of µ∗, and also to give
an explicit characterization of µ∗ depending on the law of µθ . A key property of the functional
J defined in (2.2) is the following:

Lemma 2.1. Suppose that Assumptions 1 and 2 hold. Then, the functional J : M2
+(Ω) → R is

strictly convex in the sense that

J(λµ+(1−λ)ν) < λJ(µ)+(1−λ)J(ν), for any λ ∈]0, 1[ and µ, ν ∈ M2
+(Ω) with µ 6= ν. (2.3)
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Proof. Inequality (2.3) follows immediately from Assumptions 1 and 2 and the use of Lemma
3.2.1 in [27].

Hence, thanks to the strict convexity of J , it follows that, if a barycenter µ∗ exists, then it is
necessarily unique.

3 Barycenter for measures supported on the real line

In this section, we characterize the barycenter of random measures supported on the real line
i.e. we consider the case d = 1 where Ω is a subset of R. In this setting, it is a well known fact
that if µ and ν are measures belonging to M2

+(Ω) then

d2W2
(ν, µ) =

∫ 1

0

∣∣F−1
ν (x)− F−1

µ (x)
∣∣2 dx,

where F−1
ν (resp. F−1

µ ) is the quantile function of ν (resp. µ). This explicit expression for the
Wasserstein distance allows a simple characterization of the barycenter of random measures.

Theorem 3.1. Let Ω be a subset of R and µ0 be any fixed measure in M2
+(Ω) that is absolutely

continuous with respect to the Lebesgue measure. Suppose that Assumptions 1 and 2 hold. Let
µθ be a random measure as defined in Section 2.2. Let Tθ : Ω −→ Ω be the random mapping
defined by Tθ(x) = F−1

µθ
(Fµ0(x)), x ∈ Ω, where F−1

µθ
is the quantile function of µθ and Fµ0 is

the cumulative distribution function of µ0.
Then, Tθ is the optimal mapping between µ0 and µθ that is

µθ = Tθ#µ0.

Moreover, the barycenter of µθ exists, it is unique, and it satisfies the equation

µ⋆ = E
(
Tθ
)
#µ0. (3.1)

Finally, the quantile function of µ⋆ is F−1
µ⋆ = E

(
F−1
µθ

)
, and thus µ⋆ does not depend on the

choice of µ0.

Proof. Let ν ∈ M2
+(Ω) then

J(ν) =

∫

Θ

1

2
d2W2

(ν, µθ)g(θ)dθ =
1

2

∫

Θ

∫ 1

0

∣∣F−1
ν (y)− F−1

µθ
(y)
∣∣2 dyg(θ)dθ.

Applying Fubini’s Theorem and the fact that E |X − a|2 ≥ E |X − E(X)|2 for any squared inte-
grable real random variable X and real number a, we obtain that

∫

Θ
d2W2

(ν, µθ)g(θ)dθ =

∫ 1

0

∫

Θ

∣∣F−1
ν (y)− F−1

µθ
(y)
∣∣2 g(θ)dθdy =

∫ 1

0
E

∣∣∣F−1
ν (y)− F−1

µθ
(y)
∣∣∣
2
dy

≥
∫ 1

0
E

∣∣∣|E
(
F−1
µθ

(y)
)
− F−1

µθ
(y)
∣∣∣
2
dy

=

∫ 1

0

∫

Θ

∣∣∣E
(
F−1
µθ

(y)
)
− F−1

µθ
(y)
∣∣∣
2
g(θ)dθdy =

∫

Θ
d2W2

(µ⋆, µθ)g(θ)dθ,
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where µ⋆ is the measure in M2
+(Ω) with quantile function given by F−1

µ⋆ = E

(
F−1
µθ

)
. The above

inequality shows that J(ν) ≥ J(µ⋆) for any ν ∈ M2
+(Ω). Therefore, µ⋆ is a barycenter of the

random measure µθ, and the unicity of µ⋆ follows from the strict convexity of the functional J
as defined in Lemma (2.1). Finally, let µ0 be any fixed measure in M2

+(Ω) that is absolutely
continuous with respect to the Lebesgue measure. Hence, one has that Fµ0 ◦ F−1

µ0 (t) = t for any
t ∈ [0, 1]. Therefore, equation (3.1) follows from the equalities

F−1
µ⋆ = E

(
F−1
µθ

)
= E

(
F−1
µθ

)
◦ Fµ0 ◦ F−1

µ0 = E
(
Tθ
)
◦ F−1

µ0 ,

which completes the proof since it is clear that Tθ = F−1
µθ

◦ Fµ0 is the optimal mapping between

µ0 and µθ.

To illustrate Theorem 3.1, we consider a simple construction of random probability measures
in the case Ω = R. Let µ̄ ∈ M2

+(R) admitting the density f̄ with respect to the Lebesgue
measure on R, and cumulative distribution function (cdf) F̄ . Let θ = (a,b) ∈]0,+∞[×R be
a two dimensional random vector with density g. We denote by µθ the random probability
measure admitting the density

fθ(x) =
1

a
f̄

(
x− b

a

)
, x ∈ R.

The cdf and quantile function of µθ are thus

Fµθ
(x) = F̄

(
x− b

a

)
, x ∈ R, and F−1

µθ
(y) = aF̄−1(y) + b, y ∈ [0, 1].

By Theorem 3.1, it follows that the barycenter of µθ is the probability measure µ⋆ whose quantile
function is given by

F−1
µ⋆ (y) = E(a)F̄−1(y) + E(b), y ∈ [0, 1].

Therefore, µ⋆ admits the density

f∗(x) =
1

E(a)
f̄

(
x− E(b)

E(a)

)
, x ∈ R

with respect to the Lebesgue measure on R. Moreover, if µ0 is any fixed measure in M2
+(Ω),

that is absolutely continuous with respect to the Lebesgue measure, then

µ⋆ = T0#µ0, where T0(x) = E(a)F̄−1(Fµ0(x)) + E(b), x ∈ R.

The meaning of Theorem 3.1 is that, in dimension d = 1, the computation the barycenter
of a random probability measure µθ (as defined in Section 2.2) can be done by simply taking
the expectation (in the usual sense) of the optimal mapping Tθ = F−1

µθ
◦ Fµ0 between µ0 and

µθ, where µ0 is any fixed measure in M2
+(Ω). However, extending Theorem 3.1 in dimension

d ≥ 2 is not straightforward. Indeed, a key ingredient in the proof of Theorem 3.1 is the use of
the well-known characterization of the Wasserstein distance in dimension d = 1 via the quan-
tile functions: d2W2

(ν, µθ) =
∫ 1
0

∣∣F−1
ν (y)− F−1

µθ
(y)
∣∣2 dy. However, this property which explicitly

relates the Wasserstein distance dW2
(ν, µθ) to the marginal distributions ν and µθ is not valid

in dimension d > 1. Nevertheless, one of the purposes of this paper is to show that analogs of
Theorem 3.1 can still be obtained in dimension d ≥ 2.
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4 Existence of the population barycenter in dimension d ≥ 2

In this section, we study the existence of a minimizer for the optimization problem (2.1).

Proposition 4.1. Suppose that Assumption 1 and Assumption 2 are satisfied. Then, the opti-
mization problem (2.1) admits a minimizer.

Proof. Let νn be a minimizing sequence of the optimization problem (2.1). Let us first show
that the sequence

∫
Ω |x|2dνn(x) is uniformly bounded. Since νn is a minimizing sequence of

(2.1), there exists a constant C > 0 such that
∫
Θ

1
2d

2
W2

(µθ, νn)g(θ)dθ ≤ C, for all n ≥ 1. By

Assumption 2, there exists Θ′ ⊂ Θ with 0 <
∫
Θ′ dθ < +∞ such that

∫
Θ′

1
2d

2
W2

(µθ, νn)g(θ)dθ ≤ C.
Therefore, there exists θ∗ ∈ Θ, such that g(θ∗) 6= 0 and

1

2
d2W2

(µθ∗ , νn)g(θ
∗) ≤ C ′ (4.1)

where C ′ = C∫
Θ′ dθ

. Then, thanks to the Kantorovich duality formula (see e.g. [36], or Lemma 2.1

in [2]) , it follows that

1

2
d2W2

(µθ∗ , νn)g(θ
∗) ≥

∫

Ω
|x|2dνn(x) +

∫

Ω
Cg(θ∗)(x)dµθ∗(x),

where Cg(θ∗)(x) = infy∈Ω

{
g(θ∗)
2 |x− y|2 − |y|2

}
. Hence, combining the above inequality with

(4.1), one finally obtains that

∫

Ω
|x|2dνn(x) ≤ C ′ −

∫

Ω
Cg(θ∗)(x)dµθ∗(x), for all n ≥ 1,

which shows that
∫
Ω |x|2dνn(x) is a uniformly bounded sequence.

Hence, by Chebyshev’s inequality, the sequence νn is tight and by Prokhorov’s Theorem there
exists a (non relabeled) subsequence that weakly converges to some µ∗ ∈ M2

+(Ω). Therefore,
1
2d

2
W2

(µθ, µ
∗) ≤ lim infn→+∞

1
2d

2
W2

(µθ, ν
n), and thus, by Fatou’s Lemma

∫

Θ

1

2
d2W2

(µθ, µ
∗)g(θ)dθ ≤

∫

Θ
lim inf
n→+∞

1

2
d2W2

(µθ, ν
n)g(θ)dθ ≤ lim inf

n→+∞

∫

Θ

1

2
d2W2

(µθ, νn)g(θ)dθ.

Therefore, J(µ∗) = infν∈M2
+
(Ω)

1
2

∫
Θ d

2
W2

(ν, µθ)g(θ)dθ, which proves that the optimization prob-

lem (2.1) admits a minimizer.

By the strict convexity of the functional J (2.1), it follows that, under Assumption 1 and
Assumption 2, the barycenter of µθ is necessarily unique.
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5 Characterisation of the population barycenter for compactly

supported measures

In this section, we give a more precise characterisation of the population barycenter beyond
the proof of its existence (see Proposition 4.1). For this purpose, we shall introduce a dual
formulation of problem (2.1) that is inspired by the one proposed in [2] to study the properties
of empirical barycenters. Nevertheless, this study will be restricted to the following case:

Assumption 3. The support Ω of the measures ν ∈ M2
+(Ω) is a compact set of Rd, and Θ is a

compact subset of Rp

In the rest of this section, it is supposed that Assumption 3 is satisfied. We recall that this
assumption implies that the Wasserstein space (M2

+(Ω), dW2
) is compact. Finally, it should be

noted that this characterisation of a barycenter by a duality argument will allow us to extend
the results of Theorem 3.1 to dimensions d > 1 (see Section 7 below). We may also remark
that a dual formulation of problem (2.1) has not been considered in [27] for the characterisation
of a population barycenter. The results in [27] are rather focussed on the connection between
barycenters in the Wasserstein space and optimal transportation with infinitely many marginals.

5.1 A dual formulation of problem (P)

Let us recall the optimisation problem (2.1) as

(P) JP := inf
ν∈M2

+
(Ω)

J(ν), where J(ν) =
1

2

∫

Θ
d2W2

(ν, µθ)g(θ)dθ. (5.1)

Then, let us introduce some definitions. Let δ(Ω) = sup(x,y)∈Ω×Ω |x − y| be the diameter of Ω.
Let X = C(Ω,R) be the space of continuous functions f : Ω → R equipped with the supremum
norm

‖f‖X = sup
x∈Ω

{|f(x)|} .

We also denote by X ′ = M(Ω) the topological dual of X.
The notation fΘ = (fθ)θ∈Θ ∈ L1(Θ,X) will denote any mapping

{
fΘ : Θ → X

θ 7→ fθ

such that for any x ∈ Ω ∫

Θ
|fθ(x)|dθ < +∞.

Then, following the terminology in [2], we introduce the dual optimization problem

(P∗) JP∗ := sup

{∫

Θ

∫

Ω
Sg(θ)fθ(x)dµθ(x)dθ; f

Θ ∈ L1(Θ,X) such that

∫

Θ
fθ(x)dθ = 0, ∀x ∈ Ω

}
,

where

Sg(θ)f(x) := inf
y∈Ω

{
g(θ)

2
|x− y|2 − f(y)

}
,∀x ∈ Ω and f ∈ X.

9



Let us also define

Hg(θ)(f) := −
∫

Ω
Sg(θ)f(x)dµθ(x),

and the Legendre-Fenchel transform of Hg(θ) for ν ∈ X ′ as

H∗
g(θ)(ν) := sup

f∈X

{∫

Ω
f(x)dν(x)−Hg(θ)(f)

}
= sup

f∈X

{∫

Ω
f(x)dν(x) +

∫

Ω
Sg(θ)f(x)dµθ(x)

}
.

In what follows, we will show in Proposition 5.1 below that the problems (P) and (P∗) are dual
to eachother in the sense that the minimal value JP in problem (P) is equal to the supremum JP∗

in problem (P∗). Then, we show in Proposition 5.2 below that the dual problem (P∗) admits
an optimizer. This duality will then allow us to give a nice characterization the population
barycenter via the use of a solution of the dual problem, see Theorem 5.2.

Proposition 5.1. Suppose that Assumption 1, Assumption 2 and Assumption 3 are satisfied.
Then,

JP = JP∗ .

Proof. 1. Let us first prove that JP ≥ JP∗ .
By definition for any fΘ ∈ L1(Θ,X) such that ∀x ∈ Ω,

∫
Θ fθ(x)dθ = 0, and for all y ∈ Ω we

have

Sg(θ)fθ(x) + fθ(y) ≤
g(θ)

2
|x− y|2.

Let ν ∈ M2
+(Ω) and γθ ∈ Π(µθ, ν) be an optimal transport plan between µθ and ν. By integrating

the above inequality with respect to γθ we obtain

∫

Ω
Sg(θ)fθ(x)dµθ(x) +

∫

Ω
fθ(y)dν(y) ≤

∫

Ω×Ω

g(θ)

2
|x− y|2dγθ(x, y) =

g(θ)

2
d2W2

(µθ, ν).

Integrating now with respect to dθ and using Fubini’s Theorem we get

∫

Θ

∫

Ω
Sg(θ)fθ(x)dµθ(x)dθ ≤

∫

Θ

g(θ)

2
d2W2

(µθ, ν)dθ.

Therefore we deduce that JP ≥ JP∗ .

2. Let us now prove the converse inequalities JP ≤ JP∗ .
Thanks to the Kantorovich duality formula (see e.g. [36], or Lemma 2.1 in [2]) we have that
H∗
g(θ)(ν) =

1
2d

2
W2

(µθ, ν)g(θ) for any ν ∈ M2
+(Ω). Therefore, it follows that

JP = inf

{∫

Θ
H∗
g(θ)(ν)dθ, ν ∈ X ′

}
= −

(∫

Θ
H∗
g(θ)dθ

)∗

(0). (5.2)

Define the inf-convolution of
(
Hg(θ)

)
θ∈Θ

by

H(f) := inf

{∫

Θ
Hg(θ)(fθ)dθ; f

Θ ∈ L1(Θ,X),

∫

Θ
fθ(x)dθ = f(x),∀x ∈ Ω

}
, ∀f ∈ X.

10



We have in the other hand that
JP∗ = −H(0).

Using Theorem 1.6 in [24], one has that for any ν ∈ M2
+(Ω)

H∗(ν) =

∫

Θ
H∗
g(θ)(ν)dθ.

Then, thanks to (5.2), it follows that

JP = −H∗∗(0) ≥ −H(0) = JP∗ .

Let us now prove that H∗∗(0) = H(0). Since H is convex it is sufficient to show that H is
continuous at 0 for the supremum norm of the space X (see e.g. [14]). For this purpose, let
fΘ ∈ L1(Θ,X) and remark that it follows from the definition of Hg(θ) that

Hg(θ)(fθ) =

∫

Ω
sup
y∈Ω

{
fθ(y)−

g(θ)

2
|x− y|2

}
dµθ(x)

≥ fθ(0) −
g(θ)

2

∫

Ω
|x|2dµθ(x),

which implies that

H(f) ≥ f(0)−
∫

Θ

g(θ)

2

∫

Ω
|x|2dµθ(x)dθ > −∞, ∀f ∈ X.

Let f ∈ X such that ‖f‖X ≤ 1/4 and choose fΘ ∈ L1(Θ,X) defined by fθ(x) = f(x)g(θ) for all
θ ∈ Θ and x ∈ Ω. It follows that

H(f) ≤
∫

Θ
Hg(θ)(f(·)g(θ))dθ ≤

∫

Θ

∫

Ω
sup
y∈Ω

{
g(θ)

4
− g(θ)

2
|x− y|2

}
dµθ(x)dθ

≤
∫

Θ

∫

Ω

g(θ)

4
dµθ(x)dθ =

1

4
.

Hence, the convex function H never takes the value −∞ and is bounded from above in a neigh-
borhood of 0 in X. Therefore, by standard results in convex analysis (see e.g. [14]), H is
continuous at 0, and therefore H∗∗(0) = H(0) which completes the proof.

It should be noted that Proposition 5.1 is also valid if Ω is not a compact set of Rd, but for
simplicity we have only stated this result under Assumption 3 . Let us now prove the existence
of an optimizer for the dual problem (P∗) as formulated in the following proposition:

Proposition 5.2. Suppose that Assumption 1, Assumption 2 and Assumption 3 are satisfied.
Then, the dual problem (P∗) admits an optimizer.

11



Proof. Let fΘ ∈ L1(Θ,X) such that
∫
Θ fθdθ = 0 and define hθ(x) = Sg(θ) ◦ Sg(θ)fθ(x) for every

x ∈ Ω and θ ∈ Θ. It is easy to check that fθ(x) ≤ hθ(x) and that hθ(x) ≤ p(θ)
2 |x|2 − Sg(θ)fθ(0).

Hence, these two inequalities imply that θ 7→ hθ ∈ L1(Θ,X). Now, define f̃θ = hθ −
∫
Θ hudu

for every θ ∈ Θ. Since
∫
Θ hudu ≥

∫
Θ fudu = 0, one has that f̃θ ≤ hθ which implies that

Sg(θ)f̃θ ≥ Sg(θ)hθ since Sg(θ) is order-reversing. Since Sg(θ)hθ = S3
g(θ)fθ it follows that Sg(θ)hθ ≥

Sg(θ)fθ. Moreover, the inequality fθ ≤ hθ implies that Sg(θ)fθ ≥ Sg(θ)hθ which finally shows that
Sg(θ)fθ = Sg(θ)hθ and therefore

∫

Θ

∫

Ω
Sg(θ)f̃θ(x)dµθ(x)dθ ≥

∫

Θ

∫

Ω
Sg(θ)fθ(x)dµθ(x)dθ.

Hence, one may assume that the supremum in (P∗) can be restricted to the f̃Θ = (f̃θ)θ∈Θ ∈
L1(Θ,X) satisfying f̃θ = hθ−

∫
Θ hudu with S2

g(θ)hθ = hθ for every θ ∈ Θ. Note that one may also

assume that hθ(0) = 0 since the functional
∫
Θ

∫
Ω Sg(θ)fθ(x)dµθ(x)dθ in problem (P∗) is invariant

when one adds to the fθ’s constants cθ that integrate to zero namely
∫
Θ cθdθ = 0.

Now, let f̃Θ,n ∈ L1(Θ,X) be a maximizing sequence for problem (P∗) that can thus be
chosen such that f̃nθ = hnθ −

∫
Θ h

n
udu with hnθ = Sg(θ)h̃

n
θ , h̃

n
θ = Sg(θ)h

n
θ and hnθ (0) = 0 for every

θ ∈ Θ.
Let us denote by L1(Θ) the set of functions f : Θ → R such that

∫
Θ |f(θ)|dθ < +∞.

The space L1(Θ), endowed with the metric d1(f, f
′) =

∫
Θ |f(θ) − f ′(θ)|dθ for f, f ′ ∈ L1(Θ), is

complete. Now, let us consider the family A of functions from Ω to L1(Θ) defined by

A =
{
x 7→

(
f̃nθ (x)

)
θ∈Θ

, n ∈ N

}
. (5.3)

To prove that one may extract a converging subsequence from the elements in A, we will use the
following result (see Theorem 8.33 and Corollary 8.34 in [13]) which is an extension of the usual
Ascoli-Arzela theorem:

Theorem 5.1. Let (Z, dZ ) be a compact metric space and (Y, dY ) be a complete metric space. Let
(fn)n≥1 ⊂ C(Z, Y ) where C(Z, Y ) is the set of continuous functions from Z to Y for the topology
induced by the uniform distance dsup(f, f

′) := supz∈Z {dY (f(z), f ′(z))} for f, f ′ : Z → Y . If the
sequence (fn)n≥1 is equicontinuous and bounded, then it admits a subsequence which is convergent
for the uniform distance.

In Theorem 5.1 above, the boundedness of the sequence (fn)n≥1 means that there exists
f0 ∈ C(Z, Y ) and a constant C > 0 such that

(fn)n≥1 ⊂ {f ∈ C(Z, Y ) : dsup(f0, f) ≤ C} . (5.4)

We refer to Definition 6.4 and Theorem 8.32 in [13] for further details on this notion. In what
follows, we will apply Theorem 5.1 with Z = Ω, dZ = | · |, Y = L1(Θ) and dY = d1.

One has that for any x, z ∈ Ω, and θ ∈ Θ
∣∣∣∣
g(θ)

2
|x− y|2 − g(θ)

2
|z − y|2

∣∣∣∣ =
g(θ)

2

∣∣|x− y|2 − |z − y|2
∣∣

≤ g(θ)

2

∣∣ |x− y| − |z − y|
∣∣ (|x− y|+ |z − y|)

≤ δ(Ω)g(θ) |x− z| .
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Therefore, the function x 7→ g(θ)
2 |x − y|2 − h̃nθ (y) is K-Lipschitz on the compact set Ω with

K = δ(Ω)g(θ). Thus, the function x 7→ hnθ (x) = Sg(θ)h̃
n
θ (x) is also K-Lipschitz, since it is an

infimum of K-Lipschitz functions. Using that
∫
Θ g(θ)dθ = 1, this implies that for any x, z ∈ Ω

∫

Θ
|hnθ (x)− hnθ (z)| dθ ≤ δ(Ω) |x− z| ,

which proves that the function x 7→ (hnθ (x))θ∈Θ is δ(Ω)-Lipschitz, as a mapping from Ω to
(L1(Θ), d1). Hence, it follows that for any x, z ∈ Ω

d1

((
f̃nθ (x)

)
θ∈Θ

,
(
f̃nθ (z)

)
θ∈Θ

)
=

∫

Θ
|f̃nθ (x)− f̃nθ (z)|dθ ≤

∫

Θ
|hnθ (x)− hnθ (z)|dθ

+

(∫

Θ
dθ

)(∫

Θ
|hnu(x)− hnu(z)|du

)

≤ δ(Ω)

(
1 +

∫

Θ
dθ

)
|x− z| . (5.5)

Hence, the functions x 7→
(
f̃nθ (x)

)
θ∈Θ

are K̃-Lipschitz (with K̃ = δ(Ω)
(
1 +

∫
Θ dθ

)
) from the

compact set Ω to the complete space (L1(Θ), d1). By inequalities (5.5), the set A ⊂ C(Ω, L1(Θ))
is thus equicontinuous. Moreover, from the Lipschitz continuity of this mapping , it follows that

∫

Θ
|f̃nθ (x)− f̃nθ (0)|dθ ≤ K̃|x| ≤ K̃δ(Ω). (5.6)

Then, using the fact that hnθ (0) = 0, it follows that f̃nθ (0) = 0 and thus by inequality (5.6) we
obtain that for any x ∈ Ω

∫

Θ
|f̃nθ (x)− f̃1θ (x)|dθ ≤

∫

Θ
|f̃nθ (x)− f̃nθ (0)|dθ +

∫

Θ
|f̃1θ (x)− f̃1θ (0)|dθ (5.7)

≤ 2K̃δ(Ω),

which proves that the family A is bounded in the sense of equation (5.4).
Thus, one can use the Ascoli-Arzela’s Theorem 5.1 to obtain that there exists a subsequence of

functions x 7→
(
f̃
ϕ(n)
θ (x)

)
θ∈Θ

that converges uniformly to some x 7→ (f̃θ(x))θ∈Θ ∈ C(Ω, L1(Θ)),

where ϕ(n) is an increasing sequence of positive integers. It is clear that
∫
Θ |f̃θ(x)|dθ < +∞.

Moreover, since, for every x ∈ Ω, limn→+∞

∫
Θ |f̃θ(x) − f̃

ϕ(n)
θ (x)|dθ = 0 and

∫
Θ f̃

ϕ(n)
θ (x)dθ =

0, it follows that
∫
Θ f̃θ(x)dθ = 0. Therefore, one has that f̃Θ = (f̃θ)θ∈Θ ∈ L1(Θ,X) with∫

Θ f̃θ(x)dθ = 0 for every x ∈ Ω.
Since Sg(θ) is upper semi-continuous (u.s.c.) on X it follows that

lim sup
n

Sg(θ)f̃
ϕ(n)
θ (x) ≤ inf

y∈Rd

{
lim sup

n

(
g(θ)

2
|x− y|2 − f̃

ϕ(n)
θ (y)

)}

≤ inf
y∈Rd

{
g(θ)

2
|x− y|2 − f̃θ(y)

}
= Sg(θ)f̃θ(x).
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Using that g(θ)
2 | · |2−Sg(θ)f̃ϕ(n)θ (·) is a non-negative function and given that the function (x, θ) 7→

g(θ)
2 |x|2 is integrable on Ω × Θ with respect to the measure dµθ(x)dθ, Fatou’s Lemma implies

that

lim sup
n

∫

Θ

∫

Rd

Sg(θ)f̃
ϕ(n)
θ (x)dµθ(x)dθ ≤

∫

Θ

∫

Rd

lim sup
n

Sg(θ)f̃
ϕ(n)
θ (x)dµθ(x)dθ

≤
∫

Θ

∫

Rd

Sg(θ)f̃θ(x)dµθ(x)dθ,

which shows that

JP∗ =

∫

Θ

∫

Rd

Sg(θ)f̃θ(x)dµθ(x)dθ,

and thus that f̃Θ is a maximizer of problem (P∗) .

5.2 Characterization of the population barycenter by duality

Let us now use the duality between problems (P) and (P∗) to characterize more precisely the
population barycenter.

Theorem 5.2. Suppose that Assumption 1, Assumption 2 and Assumption 3 are satisfied. Then,
the measure µ∗ ∈ M2

+(Ω) is the unique minimizer of problem (P) if and only if

µ∗ = ∇φθ#µθ (5.8)

for every θ ∈ Θ such that g(θ) > 0, where φθ : Ω → R is the convex function defined by

φθ(x) =
1

2
|x|2 − 1

g(θ)
Sg(θ)fθ(x), for all x ∈ Ω,

and where fΘ = (fθ)θ∈Θ ∈ L1(Θ,X) is a maximizer of problem (P∗).

Proof. We proceed in a way that is similar to what has been done in [2] to characterize an
empirical barycenter. In the proof, we denote by Θg = {θ ∈ Θ : g(θ) > 0} the support of g which
is such that

∫
Θg
dθ 6= 0 by Assumption 2.

Let fΘ ∈ L1(Θ,X) be a maximizer of problem (P∗). By Proposition 4.1, Proposition 5.1
and Proposition 5.2 it follows that there exists a unique minimizer µ∗ of (P) such that

1

2

∫

Θ
d2W2

(µ∗, µθ)g(θ)dθ =

∫

Θ

∫

Ω
Sg(θ)fθ(x)dµθ(x)dθ

=

∫

Θ

∫

Ω
Sg(θ)fθ(x)dµθ(x)dθ +

∫

Θ

∫

Ω
fθ(x)dµ

∗(x)dθ, (5.9)
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using Fubini’s theorem and the fact that
∫
Θ fθ(x)dθ = 0 for all x ∈ Ω to obtain the last equality.

Thanks to the Kantorovich duality formula (see e.g. [36], or Lemma 2.1 in [2]) we have that

1

2
d2W2

(µ∗, µθ)g(θ) = H∗
g(θ)(µ

∗)

= sup
f∈X

{∫

Ω
Sg(θ)f(x)dµθ(x) +

∫

Ω
f(x)dµ∗(x)

}

≥
∫

Ω
Sg(θ)fθ(x)dµθ(x) +

∫

Ω
fθ(x)dµ

∗(x). (5.10)

Therefore by combining (5.9) and (5.10), we necessarily have that

1

2
d2W2

(µ∗, µθ)g(θ) =

∫

Ω
Sg(θ)fθ(x)dµθ(x) +

∫

Ω
fθ(x)dµ

∗(x), (5.11)

for every θ ∈ Θg.
Now, let γθ ∈ Π(µθ, µ

∗) be an optimal transport plan between µθ and µ∗. By definition of γθ
and by (5.11), one obtains that for every θ ∈ Θg.

g(θ)

2

∫

Ω×Ω
|x− y|2dγθ(x, y) =

g(θ)

2
d2W2

(µ∗, µθ)

=

∫

Ω
Sg(θ)fθ(x)dµθ(x) +

∫

Ω
fθ(y)dµ

∗(y)

=

∫

Ω×Ω

(
Sg(θ)fθ(x) + fθ(y)

)
dγθ(x, y). (5.12)

Since g(θ)
2 |x− y|2 ≥ Sg(θ)fθ(x) + fθ(y) (by definition of Sg(θ)fθ(x)), equality (5.12) implies that

g(θ)

2
|x− y|2 = Sg(θ)fθ(x) + fθ(y), γθ − a.e. , (5.13)

where the notation γθ−a.e. means that the above equality holds for all (x, y) in a set Aθ ⊂ Ω×Ω
of measure γθ (Aθ) = 1.

It is not difficult to check that Sg(θ)
(
Sg(θ)fθ

)
≥ fθ. Therefore, by equality (5.13) one obtains

that

fθ(y) =
g(θ)

2
|x− y|2 − Sg(θ)fθ(x) ≥ Sg(θ)

(
Sg(θ)fθ

)
(y), γθ − a.e.

and thus

fθ = Sg(θ)
(
Sg(θ)fθ

)
, µ∗ − a.e. , (5.14)

for every θ ∈ Θg. Thus, by the constraint that
∫
Θ fθ(x)dθ = 0 for all x ∈ Ω, one has that

∫

Θ
Sg(θ)

(
Sg(θ)fθ

)
(x)dθ = 0, µ∗ − a.e. (5.15)

For every θ ∈ Θg, introduce the convex function φθ defined by

φθ(x) =
1

2
|x|2 − 1

g(θ)
Sg(θ)fθ(x), (5.16)
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and its conjugate φ∗θ that satisfies the following equality

φ∗θ(y) =
1

2
|y|2 − 1

g(θ)
Sg(θ)

(
Sg(θ)fθ(y)

)
.

Let us denote by
∂φθ = {(x, y) ∈ Ω× Ω : φθ(x) + φ∗θ(y) = 〈x, y〉}

the graph of its subdifferential. Let (x, y) be in the support of the measure γθ. By (5.13) and
(5.14) it follows that

g(θ)〈x, y〉 = −Sg(θ)fθ(x) +
g(θ)

2
|x|2 − fθ(y) +

g(θ)

2
|y|2

= g(θ)φθ(x)− Sg(θ)
(
Sg(θ)fθ

)
(y) +

g(θ)

2
|y|2 = g(θ)φθ(x) + g(θ)φ∗θ(y). (5.17)

By equality (5.17), it follows that if θ ∈ Θg, then (x, y) ∈ ∂φθ, which shows that the support
of γθ is included in ∂φθ. Moreover, one can check that if θ ∈ Θg, then φθ is the solution of

φθ = arg min
φ ∈ C

{∫

Ω
φ(x)dµθ(x) +

∫

Ω
φ∗(x)dµ∗(x)

}
, (5.18)

where C denotes the set of convex functions φ : Ω → R that are lower semi-continuous.
Thanks to Assumption 1, the measure µθ admits a density with respect to the Lebesgue

measure for every θ ∈ Θ. Then, let us recall that we have shown previously that, if θ ∈ Θg, then
the support of the optimal transport plan γθ between µθ and µ∗ is included in ∂φθ. Hence, by
Proposition 2.1, it follows that there exists a unique convex function φθ : Ω → R, solution of the
optimisation problem (5.18), such that

µ∗ = ∇φθ#µθ (5.19)

for every θ in the support Θg of g. Since the convex function φθ is defined by the equation (5.16),
it is clear that φθ does not depend on µ∗ but only on fθ and g(θ) for θ ∈ Θg. Therefore, by
equation (5.19), the population barycenter µ∗ is necessarily unique, which completes the proof
of Theorem 5.2.

6 Convergence of the empirical barycenter

Let us now prove the convergence of the empirical barycenter for the set of measures introduced
in Section 5 under Assumption 3 (i.e. that they are compactly supported). Let θ1, . . . ,θn be iid
random variables in R

p with distribution PΘ. Then, let us define the functional

Jn(ν) =
1

n

n∑

j=1

1

2
d2W2

(ν, µθj
), ν ∈ M2

+(Ω), (6.1)
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and consider the optimization problem: find an empirical barycenter

µ̄n ∈ arg min
ν∈M2

+
(Ω)

Jn(ν), where Jn(ν) =
1

n

n∑

j=1

1

2
d2W2

(ν, µθj
), (6.2)

Thanks to the results in [2], the following lemma holds:

Lemma 6.1. Suppose that Assumption 1 holds. Then, for any n ≥ 1, there exists a unique
minimizer µ̄n of Jn(·) over M2

+(Ω).

Let us now give our main result on the convergence of the empirical barycenter µ̄n.

Theorem 6.1. Suppose that Assumption 1, Assumption 2 and Assumption 3 hold. Let µ∗ be
the population barycenter defined by (2.1), and µ̄n be the empirical barycenter defined by (6.2).
Then,

lim
n→+∞

dW2
(µ̄n, µ

∗) = 0 almost surely (a.s.)

Proof. Some part of the proof is inspired by the proof of Theorem 1 in [17]. For ν ∈ M2
+(Ω), let

us define
∆n(ν) = Jn(ν)− J(ν).

The proof is divided in two steps. First, we prove the uniform convergence to zero of ∆n over
M2

+(Ω). Then, we show that any converging subsequence of µ̄n converges a.s. to µ∗ for the
2-Wasserstein distance.

Step 1. For ν ∈ M2
+(Ω), let us denote by fν : M2

+(Ω) → R the real-valued function defined by

fν(µ) =
1

2
d2W2

(ν, µ).

Then, let us define the following class of functions

F =
{
fν , ν ∈ M2

+(Ω)
}
.

Since Ω is compact with diameter δ(Ω), F is a class of functions uniformly bounded by 1
2δ

2(Ω)
(for the supremum norm). Now, let ν, µ, µ′ ∈ M2

+(Ω). By the triangle reverse inequality

|fν(µ)− fν(µ
′)| =

1

2

∣∣d2W2
(ν, µ)− d2W2

(ν, µ′)
∣∣ ≤ δ(Ω)

∣∣dW2
(ν, µ)− dW2

(ν, µ′)
∣∣

≤ δ(Ω)dW2
(µ, µ′).

The above inequality proves that F is an equicontinuous family of functions. Now, let θ1, . . . ,θn
be iid random vectors in R

p with density g, and let us define the random empirical measure on(
M2

+(Ω),B
(
M2

+(Ω)
))

P
n
g =

1

n

n∑

i=1

δµθi

=
1

n

n∑

i=1

δφ(θi),
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where δµ denotes the Dirac measure at ν = µ. It is clear that

∆n(ν) =

∫

M2
+
(Ω)

fν(µ)dP
n
g (µ)−

∫

M2
+
(Ω)

fν(µ)dPg(µ).

Let f : M2
+(Ω) → R be a real-valued function that is continuous (for the topology induced by

dW2
) and bounded. Thanks to the mesurability of the mapping φ, one has that the real random

variable
∫
M2

+
(Ω) f(µ)dP

n
g (µ) converges a.s. to

∫
M2

+
(Ω) f(µ)dPg(µ) as n→ +∞, meaning that the

random measure P
n
g a.s. converges to Pg in the weak sense. Therefore, since F is a uniformly

bounded and equicontinuous family of functions, one can use Theorem 6.2 in [29] to obtain that

sup
ν∈M2

+
(Ω)

|∆n(ν)| = sup
f∈F

∣∣∣∣∣

∫

M2
+
(Ω)

f(µ)dPng (µ)−
∫

M2
+
(Ω)

f(µ)dPg(µ)

∣∣∣∣∣→ 0 as n→ +∞, a.s. (6.3)

which proves the uniform convergence of ∆n to zero over M2
+(Ω).

Step 2. Suppose that Assumption 1 and Assumption 2 hold. By Lemma 6.1, there exists a
unique sequence (µ̄n)n≥1 of empirical barycenters defined by (6.2). Thanks to the compactness
of the Wasserstein space (M2

+(Ω), dW2
), one can extract a converging sub-sequence of empirical

barycenters (µ̄nk
)k≥1 such that limk→+∞ dW2

(µ̄nk
, µ̄) = 0 for some measure µ̄ ∈ M2

+(Ω).
Let us now prove that µ̄ = µ∗. To this end, let us first note that by the definition of µ̄nk

and
µ∗ as the unique minimizer of Jnk

(·) and J(·) respectively, it follows that
∣∣J(µ̄nk

)− J(µ∗)
∣∣ = J(µ̄nk

)− Jnk
(µ̄nk

) + Jnk
(µ̄nk

)− Jnk
(µ∗) + Jnk

(µ∗)− J(µ∗)

≤ 2 sup
ν∈M2

+
(Ω)

|∆nk
(ν)| ,

where we have used the fact that Jnk
(µ̄nk

) − Jnk
(µ∗) ≤ 0. Therefore, thanks to the uniform

convergence (6.3) of ∆n to zero over M2
+(Ω), one obtains that

lim
k→+∞

J(µ̄nk
) = J(µ∗). (6.4)

Therefore, using that
∣∣Jnk

(µ̄nk
)− J(µ∗)

∣∣ ≤
∣∣Jnk

(µ̄nk
)− J(µ̄nk

)
∣∣+
∣∣J(µ̄nk

)− J(µ∗)
∣∣

≤ sup
ν∈M2

+
(Ω)

|∆nk
(ν)|+

∣∣J(µ̄nk
)− J(µ∗)

∣∣ ,

one finally obtains by (6.3) and (6.4) that

lim
k→+∞

Jnk
(µ̄nk

) = J(µ∗). (6.5)

Since |Jnk
(µ̄)− J(µ̄)| ≤ supν∈M2

+
(Ω) |∆nk

(ν)|, it follows by equation (6.3) that

lim
k→+∞

Jnk
(µ̄) = J(µ̄) a.s. (6.6)
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Moreover, for any ǫ > 0, there exists kǫ ∈ N such that dW2
(µ̄nk

, µ̄) ≤ ǫ for all k ≥ kǫ. Therefore,
using the triangle inequality, it follows that for all k ≥ kǫ

(Jnk
(µ̄))1/2 =


 1

nk

nk∑

j=1

1

2
d2W2

(µ̄, µθj
)




1/2

≤


 1

nk

nk∑

j=1

1

2
d2W2

(µ̄nk
, µθj

)




1/2

+


 1

nk

nk∑

j=1

1

2
d2W2

(µ̄, µ̄nk
)




1/2

≤


 1

nk

nk∑

j=1

1

2
d2W2

(µ̄nk
, µθj

)




1/2

+
ǫ√
2
,

and thus by equations (6.5) and (6.6), we obtain that

J(µ̄) ≤ lim
k→+∞

Jnk
(µ̄nk

) = J(µ∗) a.s. (6.7)

which finally proves that µ̄ = µ∗ a.s. since µ∗ is the unique minimizer of J(ν) over ν ∈ M2
+(Ω).

Hence, any converging subsequence of empirical barycenters converges a.s. to µ∗ for the
2-Wasserstein distance. Since (M2

+(Ω), dW2
) is compact, this finally shows that (µ̄n)n≥1 is

a converging sequence such that limn→+∞ dW2
(µ̄n, µ

∗) = 0 a.s. which completes the proof of
Theorem 6.1.

7 Characterization of the empirical and population barycenters

for some semi-parametric models of random densities

In this section, we propose to extend the results of Theorem 3.1 to dimension d ≥ 2. More
precisely, let µθ ∈ M2

+(Ω) denote some random measure (as defined in Section 2.2) with Ω ⊂ R
d,

and let µ0 be a fixed measure in M2
+(Ω) admitting a density with respect to the Lebesgue measure

on R
d. Then, by Proposition 2.1, there exists a unique optimal mapping ϕθ : Ω → Ω such that

µθ = ϕθ#µ0. In this section, we show that, for some specific probability models described below,
the barycenter of µθ is given by µ∗ = E

(
ϕθ
)
#µ0 (see Theorem 7.1 below), which means that

computing a barycenter in the Wasserstein space amounts to take the expectation (in the usual
sense) of the optimal mapping ϕθ to transport µ0 on µθ. As shown below, the use of the dual
problem (P∗) is the key step to prove such a result. Moreover, we also study the convergence
rate of the empirical barycenter to its population counterpart.

7.1 A connection with statistical models for curve and image warping

To define probability models where averaging in the Wasserstein space amounts to take the
expectation of an optimal transport mapping, we first introduce some statistical models for
which the notion of population and empirical barycenters in the 2-Wasserstein space is relevant.
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In many applications observations are in the form of a set of n gray-level curves or images
X1, . . . ,Xn (e.g. in geophysics, biomedical imaging or in signal processing for neurosciences),
which can be considered as iid random variables belonging to the set L2(Ω) of square-integrable
and real-valued functions on a compact domain of Ω of Rd. In many situations the observed curves
or images share the same structure. This may lead to the assumption that these observations are
random elements which vary around the same but unknown mean pattern (also called reference
template). Estimating such a mean pattern and characterizing the modes of individual variations
around this template is of fundamental interest.

Due to additive noise and geometric variability in the data, this mean pattern is typically
unknown, and it has to be estimated. In this setting, a widely used approach is Grenander’s
pattern theory [19, 20, 34, 35] that models geometric variability by the action of a Lie group on
an infinite dimensional space of curves (or images). Following the ideas of Grenander’s pattern
theory, a simple assumption is to consider that the data X1, . . . ,Xn are obtained through the
deformation of the same reference template h ∈ L2(Ω) via the so-called deformable model

Xi = h ◦ ϕ−1
i , i = 1, . . . , n, (7.1)

where ϕ1, . . . ,ϕn are iid random variables belonging to the set of smooth diffeomorphisms of
Ω. In signal and image processing, there has been recently a growing interest on the statistical
analysis of deformable models (7.1) using either rigid or non-rigid random diffeomorphisms ϕi,
see e.g. [3, 7, 9, 10, 8, 16, 37] and references therein. In a data set of curves or images, one
generally observes not only a source of variability in geometry, but also a source of phomotometric
variability (the intensity of a pixel changes from one image to another) that cannot be only
captured by a deformation of the domain Ω via a diffeomorphism as in model (7.1).

It is always possible to transform the data X1, . . . ,Xn into a set of n iid random probability
densities by computing the random variables

Yi(x) =
X̃i(x)∫
Ω X̃i(u)

du, x ∈ Ω, where X̃i(x) = Xi(x)−min
u∈Ω

{Xi(u)} , i = 1, . . . , n.

Let q0 ∈ L2(Ω) be a probability density function, and consider the deformable model of densities

Yi(x) =
∣∣det

(
Dϕ−1

i

)
(x)
∣∣ q0
(
ϕ−1
i (x)

)
x ∈ Ω, i = 1, . . . , n, (7.2)

where det
(
Dϕ−1

i

)
(x) denotes the determinant of the Jacobian matrix of the random diffeomor-

phism ϕ−1
i at point x. If we denote by µ1, . . . ,µn ∈ M2

+(Ω) the random probability measures
with densities Y1, . . . ,Yn, and by µ0 the measure with density q0, then (7.2) can also be written
as the following deformable model of measures

µi = ϕi#µ0, i = 1, . . . , n. (7.3)

In model (7.3), computing the empirical barycenter in the Wasserstein space of the random
measures µ1, . . . ,µn may lead to consistent and meaningful estimators of the reference measure
µ0 and thus of the mean pattern q0. In the rest of this section, we discuss some examples of
model (7.3). In particular, we show how the results of Section 5 can be used to characterise the
population barycenter of random measures satisfying the deformable model (7.3).
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7.2 A parametric class of diffeomorphisms

Let µ0 be a measure on R
d having a density q0 (with respect to the Lebesgue measure dx on R

d)
whose support is contained in compact set Ωq0 ⊂ R

d. We propose to characterise the population
barycenter of a random measure µ satisfying the deformable model

µ = ϕ#µ0, (7.4)

for a specific class of random diffeomorphisms ϕ : Rd → R
d. Let S+d (R) be the set of non-negative

definite d× d symmetric matrices with real entries. Let

φ : (Rp,B(Rp)) →
(
S
+
d (R)×R

d,B
(
S
+
d (R)× R

d
))

be a measurable mapping, where B(S+d (R) × R
d) is the Borel σ-algebra of S

+
d (R) × R

d. For
θ ∈ R

p, we will use the notations

φ(θ) = (Aθ, bθ) , with Aθ ∈ S
+
d (R), bθ ∈ R

d,

and
ϕθ(x) = Aθx+ bθ, x ∈ R

d.

Note that the matrix Aθ is nonsingular. For any θ ∈ R
d, one has that ϕθ : R

d → R
d is a smooth

and bijective affine mapping with

ϕ−1
θ (x) = A−1

θ (x− bθ) , x ∈ R
d.

Let Θ ⊂ R
p be a compact set. One can then define a parametric class of diffeomorphisms of Rd

as follows

Dφ(Θ) = {ϕθ, θ ∈ Θ}. (7.5)

Finally, let θ ∈ R
p be a random vector with density g (with respect to the Lebesgue measure dθ

on R
p) having a support included in the compact set Θ. We propose to study the population

barycenter in the 2-Wasserstein space of the random measure µθ satisfying the deformable model

µθ = ϕθ#µ0. (7.6)

The above equation may also be interpreted as a semi-parametric model of random densities.
For any θ ∈ Θ (not necessarily a random vector), we define µθ = ϕθ#µ0. Since ϕθ is a smooth
diffeomorphism and µ0 is a measure with density q whose support is included in the compact set
Ωq0 , it follows that µθ admits a density qθ on R

d given by

qθ(x) =

{
det
(
A−1
θ

)
q0
(
A−1
θ (x− bθ)

)
if x ∈ R(ϕθ),

0 if x /∈ R(ϕθ).
(7.7)

where R(ϕθ) = {ϕθ(y), y ∈ Ωq0} = {Aθy + bθ, y ∈ Ωq0}. Before stating our main result on the
population barycenter of the random measure µθ (7.6), let us make the following regularity
assumption on the mapping φ.

Assumption 4. The mapping φ : Θ → S
+
d (R)× R

d is continuous.

Under Assumption 4, it follows that there exists a compact set Ω ⊂ R
d such that R(ϕθ) ⊂ Ω

for all θ ∈ Θ. Thus, under this assumption, the random measure µθ takes its values in M2
+(Ω).
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7.3 Characterization of the population barycenter for parametric diffeomor-

phisms

Let us now give a characterization of the population barycenter of a random measure following
the deformable model (7.6) with random diffeomorphism ϕθ taking their value in the parametric
class Dφ defined by (7.5). Before stating the main result of this section, we define, for any θ ∈ Θ,
the following quantities

Āθ = AθĀ
−1 and b̄θ = bθ −AθĀ

−1b̄, (7.8)

where Ā = E
(
Aθ
)

and b̄ = E
(
bθ
)
.

Theorem 7.1. Let θ ∈ R
p be a random vector with a density g : Θ → R that is continuously

differentiable and such that g(θ) > 0 for all θ ∈ Θ. Let µθ be the random measure defined by the
deformable model (7.6). Suppose that Assumption 4 holds.

Then, the population barycenter µ∗ defined by (2.1) exists and is unique. Moreover, let us
define the density

q∗(x) = det(Ā−1)q0(Ā
−1(x− b̄)), x ∈ Ω, (7.9)

where Ā = E
(
Aθ
)
, b̄ = E

(
bθ
)
, and Āθ, b̄θ are the random variables defined by (7.8). Then,

the following statements hold:

1. The primal problem (P) satistifies

JP = inf
ν∈M2

+
(Ω)

J(ν) =
1

2

∫

Θ
d2W2

(µ∗, µθ)g(θ)dθ =
1

2

∫

Ω
E
(
|Āθu+ b̄θ − u|2

)
q∗(u)du, (7.10)

and the dual problem (P∗) admits a maximizer at fΘ = (fθ)θ∈Θ ∈ L1(Θ,X) where, for θ ∈ Θ,

fθ(x) = −g(θ)
2

〈
(
Āθ − I

)
x, x〉 − g(θ)〈b̄θ, x〉, x ∈ Ω, (7.11)

where I is the d× d identity matrix.

2. The population barycenter is the measure µ∗ ∈ M2
+(Ω) with density q∗ (with respect to the

Lebesgue measure on R
d) given by equation (7.9), that is

µ∗ = ϕ#µ0 where ϕ(x) = E
(
ϕθ(x)

)
= E

(
Aθ
)
x+ E

(
bθ
)
, x ∈ R

d.

Theorem 7.1 shows that computing the population barycenter in the Wasserstein space of a
measure from the deformable model (7.6) amounts to transport the reference measure µ0 by the
averaged amount of deformation measured by ϕ. In the case where ϕ = I is the d × d identity
matrix (which correspond to the assumption that E

(
Aθ
)
= I and E

(
bθ
)
= 0), the population

barycenter µ∗ is equal to the template measure µ0. Hence, this result represents an extension to
the dimension d ≥ 2 of equation (3.1) in Theorem 3.1
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Proof. Under the assumptions of Theorem 7.1, it is clear that Assumption 1 and Assumption 2
are satisfied. Therefore, by Theorem (5.2), there exists a unique population barycenter µ∗ of the
random measure µθ defined by (7.6). To prove the results stated in Theorem 7.1, we will use
the characterization (5.8) of the barycenter µ∗. For this purpose, we need to find a maximizer
fΘ = (fθ)θ∈Θ ∈ L1(Θ,X) of the dual problem (P∗).

Let Ā = E
(
Aθ
)

and b̄ = E
(
bθ
)
. By defining the density

q̄(x) = det(Ā−1)q0(Ā
−1(x− b̄)), x ∈ R

d,

one can re-parametrize the density qθ, given by (7.7) for any θ ∈ Θ, as follows

qθ(x) = det
(
Ā−1
θ

)
q̄
(
Ā−1
θ

(
x− b̄θ

))
, x ∈ R

d, (7.12)

where
Āθ = AθĀ

−1 and b̄θ = bθ −AθĀ
−1b̄.

In the proof, we will denote by Ωq̄ the support of the density q̄. Note that the random variables
Āθ and b̄θ are such that

E
(
Āθ
)
=

∫

Θ
Āθg(θ)dθ = I and E

(
b̄θ
)
=

∫

Θ
b̄θg(θ)dθ = 0,

where I denotes the d× d identity matrix.

Proof of statement 1. of Theorem 7.1.

a) Let us first compute an upper bound of JP∗ . Let fΘ ∈ L1(Θ,X) be such that
∫
Θ fθ(x)dθ = 0

for all x ∈ Ω. By definition of Sg(θ)fθ(x) one has that

Sg(θ)fθ(x) ≤
g(θ)

2
|x− y|2 − fθ(y) (7.13)

for any y ∈ Ω. By using equation (7.12) and inequality (7.13) with y = Ā−1
θ

(
x− b̄θ

)
one obtains

that∫

Θ

∫

Ω
Sg(θ)fθ(x)qθ(x)dxdθ ≤

∫

Θ

∫

Ω

(
g(θ)

2
|x− Ā−1

θ

(
x− b̄θ

)
|2 − fθ

(
Ā−1
θ

(
x− b̄θ

)))
qθ(x)dxdθ

≤
∫

Θ

∫

Ωq̄

(
g(θ)

2
|Āθu+ b̄θ − u|2 − fθ (u)

)
q̄(u)dudθ

≤
∫

Θ

∫

Ωq̄

(
g(θ)

2
|Āθu+ b̄θ − u|2

)
q̄(u)dudθ

Note that to obtain the second inequality above, we have used the change of variable u =
Ā−1
θ

(
x− b̄θ

)
, while the third inequality has been obtained using with the fact that

∫
Θ fθ (u) dθ =
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0 for any u ∈ Ωq̄ combined with Fubini’s theorem. Thanks to the compactness of Θ and Ωq̄, and
using Assumption 4, it follows that

∫

Ωq̄

E
(
|Āθu+ b̄θ − u|2

)
q̄(u)du < +∞.

Therefore, we have shown that

JP∗ ≤ 1

2

∫

Ωq̄

E
(
|Āθu+ b̄θ − u|2

)
q̄(u)du. (7.14)

b) Let us recall that we have assumed that g(θ) > 0 for any θ ∈ Θ. Now, for θ ∈ Θ we define
the function

fθ(x) = −g(θ)
2

〈
(
Āθ − I

)
x, x〉 − g(θ)〈b̄θ, x〉.

First, one can note that fΘ = (fθ)θ∈Θ belongs to L1(Θ,X). Since
∫
Θ Āθg(θ)dθ = I and∫

Θ b̄θg(θ)dθ = 0, one has also that
∫
Θ fθ(x)dθ = 0. Let us now consider the function F = R

d → R

defined as

F (y) =
g(θ)

2
|x− y|2 + g(θ)

2
〈
(
Āθ − I

)
y, y〉+ g(θ)〈b̄θ, y〉, y ∈ R

d.

Searching for some y ∈ R
d, where the gradient of F vanishes, leads to the equation

0 = −g(θ)(x− y) + g(θ)
((
Āθ − I

)
y + b̄θ

)
= −g(θ)x+ g(θ)

(
Āθy + b̄θ

)
.

Hence, the convex function y 7→ F (y) has a minimum at y = Ā−1
θ

(
x− b̄θ

)
. Therefore,

Sg(θ)fθ(x) =
g(θ)

2
|x− Ā−1

θ

(
x− b̄θ

)
|2 + g(θ)

2
〈
(
Āθ − I

)
(Ā−1

θ

(
x− b̄θ

)
), Ā−1

θ

(
x− b̄θ

)
〉

+g(θ)〈b̄θ, Ā−1
θ

(
x− b̄θ

)
〉

=
g(θ)

2
|x|2 − g(θ)〈x, Ā−1

θ

(
x− b̄θ

)
〉+ g(θ)

2
|Ā−1

θ

(
x− b̄θ

)
|2

+
g(θ)

2
〈
(
x− b̄θ

)
, Ā−1

θ

(
x− b̄θ

)
〉 − g(θ)

2
|Ā−1

θ

(
x− b̄θ

)
|2

+g(θ)〈b̄θ, Ā−1
θ

(
x− b̄θ

)
〉

=
g(θ)

2
|x|2 − g(θ)

2
〈x, Ā−1

θ

(
x− b̄θ

)
〉+ g(θ)

2
〈b̄θ, Ā−1

θ

(
x− b̄θ

)
〉 (7.15)

=
g(θ)

2

∣∣x− Ā−1
θ

(
x− b̄θ

)∣∣2 + g(θ)

2
〈x+ b̄θ, Ā

−1
θ

(
x− b̄θ

)
〉

−g(θ)
2

|Ā−1
θ

(
x− b̄θ

)
|2 (7.16)

Let us introduce the notation J∗
(
fΘ
)
=
∫
Θ

∫
Ω Sg(θ)fθ(x)dµθ(x)dθ. By equation (7.16) and using

the re-parametrization (7.12) of qθ combined with the change of variable u = Ā−1
θ

(
x− b̄θ

)
, it
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follows that

J∗
(
fΘ
)

=

∫

Θ

∫

Ω

g(θ)

2

∣∣x− Ā−1
θ

(
x− b̄θ

)∣∣2 qθ(x)dxdθ +
∫

Θ

∫

Ω

g(θ)

2
〈x+ b̄θ, Ā

−1
θ

(
x− b̄θ

)
〉qθ(x)dxdθ

−
∫

Θ

∫

Ω

g(θ)

2
|Ā−1

θ

(
x− b̄θ

)
|2qθ(x)dxdθ

=

∫

Θ

∫

Ωq̄

g(θ)

2

∣∣Āθu+ b̄θ − u
∣∣2 q̄(u)dudθ +

∫

Θ

∫

Ωq̄

g(θ)

2
〈Āθu+ 2b̄θ, u〉q̄(u)dudθ

−
∫

Θ

∫

Ωq̄

g(θ)

2
|u|2q̄(u)dudθ

=
1

2

∫

Ωq̄

E
(
|Āθu+ b̄θ − u|2

)
q̄(u)du,

where we have used Fubini’s theorem combined with the fact that
∫
Θ Āθg(θ)dθ = I and

∫
Θ b̄θg(θ)dθ =

0 to obtain the last equality.
Hence, thanks to the upper bound (7.14), we finally have that

J∗
(
fΘ
)
= JP∗ =

1

2

∫

Ωq̄

E
(
|Āθu+ b̄θ − u|2

)
q̄(u)du,

which proves that fΘ is a maximizer of the dual problem (P∗), and this completes the proof of
statement 1. of Theorem 7.1.

Proof of statement 2. of Theorem 7.1.

Since we have found a solution fΘ = (fθ)θ∈Θ of the dual problem (P∗), it follows from
Theorem 5.2 that the population barycenter is given by µ∗ = ∇φθ#µθ where

φθ(x) =
1

2
|x|2 − 1

g(θ)
Sg(θ)fθ(x), for all x ∈ Ω,

for every θ ∈ Θ. By equation (7.15), one has that

φθ(x) =
1

2
〈x, Ā−1

θ

(
x− b̄θ

)
〉 − 1

2
〈b̄θ, Ā−1

θ

(
x− b̄θ

)
〉 = 1

2
〈x− b̄θ, Ā

−1
θ

(
x− b̄θ

)
〉,

which implies that
∇φθ = Ā−1

θ

(
x− b̄θ

)
.

Since µθ is the measure with density qθ(x) = det
(
Ā−1
θ

)
q̄
(
Ā−1
θ

(
x− b̄θ

))
, one finally has that

that µ∗ is a measure having a density q∗ given by

q∗(x) = det(Āθ)qθ
(
Āθx+ b̄θ

)
= q̄(x),

which completes the proof of statement 2. of Theorem 7.1.
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7.4 The case of randomly shifted densities

To illustrate Theorem 7.1, let us consider the simplest deformable model of randomly shifted
curves or images with

ϕ−1
i (x) = x− θi, x ∈ R

d,

in equation (7.1) for some random shift θi ∈ R
d. This model has recently received a lot of

attention in the literature, see e.g. [7, 10, 8, 16, 37], since it represents a benchmark for the
statistical analysis of deformable models. In the one-dimensional case (d = 1), the model of
shifted curves has applications in various fields such as as neurosciences [32] or biology [30].

Let q0 : R
d → R

+ be a probability density function with compact support included in
[−A,A]d for some constant A > 0. For θ a random vector in R

d, we define the random density

qθ(x) = q0(x− θ), x ∈ R
d, (7.17)

and the associated random measure dµθ(x) = qθ(x)dx. Note that equation (7.17) corresponds
to the deformable model (7.6) with ϕθ(x) = x+ θ, x ∈ R

d.
Now let us suppose that θ has a continuously differentiable density g with compact support

Θ = [−ǫ, ǫ]d for some ǫ > 0. If θ1, . . . ,θn is an iid sample of random shifts with density g,
then the empirical Euclidean barycenter (standard notion of averaging) of the random densities
qθ1

, . . . , qθn
is the probability density given by

q̄n(x) =
1

n

n∑

j=1

qθj
(x). (7.18)

By the law of large number, one has that

lim
n→+∞

q̄n(x) =

∫

Rd

q0(x− θ)g(θ)dθ a.s. for any x ∈ R
d.

Therefore, the Euclidean barycenter q̄n converges to the convolution of the reference template q0
by the density g of the random shift θ. Hence, under mild assumptions, q̄n is not a consistent
estimator of the mean pattern q0.

Let us now see the benefits of using the notion of empirical barycenter in the 2-Wasserstein
space to consistently estimate q0. It is clear that the set of shifted measures (µθ)θ∈Θ with densities
qθ(x) = q0(x− θ) is included in M2

+(Ω) with Ω = [−(A+ ǫ), (A+ ǫ)]d. Hence, Assumption 1 and
Assumption 2 are satisfied. It is also clear that that the mapping φ : Θ → S

+
d (R) × R

d defined
by

φ(θ) = (I, θ), θ ∈ Θ, where I is the d× d identity matrix,

is continuous, and thus Assumption 4 holds. Therefore, by Theorem 7.1, one immediately has
the following result:

Corollary 7.1. Suppose that θ is random vector in R
d having a continuously differentiable

density g (with respect to the Lebesgue measure dθ on R
d). Assume that g has a compact support

Θ = [−ǫ, ǫ]d for some ǫ > 0. Let µθ be the random measure with density qθ(x) = q0(x−θ) (with
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respect to the Lebesgue measure dx) where q0 : Rd → R
+ is a probability density function with

compact support included in [−A,A]d.
Then, the population barycenter µ∗ in the 2-Wasserstein space exists and is unique. It is the

measure with density q0(x− E(θ)), namely

dµ∗(x) = q0(x− E(θ))dx.

The primal problem (P) satisfies

JP = inf
ν∈M2

+
(Ω)

J(ν) =
1

2

∫

Θ
d2W2

(µ∗, µθ)g(θ)dθ =
1

2
E
(
|θ − E (θ) |2

)
. (7.19)

Moreover, the family fΘ = (fθ)θ∈Θ ∈ L1(Θ,X), defined by

fθ(x) = −g(θ)(θ − E(θ))x, (7.20)

is a maximizer of the dual problem (P∗).

Hence, if it is assumed that the random shifts have zero expectation i.e. E(θ) = 0, then the
density of the population barycenter µ∗ is the reference template q0. In this setting, thanks to
Theorem 6.1, the empirical barycenter µ̄n in the 2-Wasserstein space of the randomly shifted
densities qθ1

, . . . , qθn
is a consistent estimator of q0. Through this example, we can see the

advantages of using the notion of barycenter in the Wasserstein space rather than the Euclidean
barycenter q̄n, defined in (7.18). Indeed, replacing usual averaging by the notion of barycenter
in the Wasserstein space yields to consistent estimators of a mean pattern.

7.5 Convergence rate of the empirical barycenter

In this sub-section, we show that it is possible to derive the rate of convergence of the empirical
barycenter in some semi-parametric models of random measures. To this end, let us consider a
sequence of iid random measures µθi

= ϕθi
#µ0, i = 1, . . . , n, from the deformable model (7.6),

and suppose that Assumption 4 holds. Arguing as in the proof of Theorem 7.1, it is clear that
the empirical barycenter µ̄n of µθ1

, . . . , µθn
exists and is unique. Moreover, it is given by

µ̄n = ϕn#µ0 with ϕn(x) =
1

n

n∑

i=1

ϕθi
(x) =

(
1

n

n∑

i=1

Aθi

)
x+

1

n

n∑

i=1

bθi
, x ∈ R

d. (7.21)

The mapping ϕ, defined above, is the expectation of the random diffeomorphism ϕθ(x) = Aθx+
bθ, x ∈ R

d. Now, let us define the transport plan γn = (ϕ,ϕn)#µ0 where ϕ(x) = Āx+b̄, x ∈ R
d.

Since µ∗ = ϕ#µ0 and µ̄n = ϕn#µ0, the transport plan γn is thus a probability measure on Ω×Ω
having µ∗ and µ̄n as marginals. Hence, by definition of the squared 2-Wasserstein distance

d2W2
(µ̄n, µ

∗) ≤
∫

Ω
|ϕn(x)− ϕ(x)|2dµ0(x),
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which implies that

d2W2
(µ̄n, µ

∗) ≤
∫

Ω

∣∣∣∣∣

(
1

n

n∑

i=1

Aθi
− Ā

)
x+

(
1

n

n∑

i=1

bθi
− b̄

)∣∣∣∣∣

2

dµ0(x),

≤
(
2

∫

Ω
|x|2dµ0(x)

)∥∥∥∥∥
1

n

n∑

i=1

Aθi
− Ā

∥∥∥∥∥

2

+ 2

∣∣∣∣∣
1

n

n∑

i=1

bθi
− b̄

∣∣∣∣∣

2

, (7.22)

where ‖A‖ denotes the standard operator norm of a matrix A ∈ S
+
d (R). Hence, to derive a rate

of convergence of µ̄n to µ∗, one can use the concentration rate of 1
n

∑n
i=1Aθi

and 1
n

∑n
i=1 bθi

around their expectation Ā and b̄. To this end, we use the following concentration inequalities:

Theorem 7.2 (Matrix Bernstein inequality). Let X1, . . . ,Xn be a sequence of independent ran-
dom matrices in S

+
d (R). Suppose that EXi = 0 for all i = 1, . . . , n, and that there exit two

positive constants B1 and σ21 such that

‖Xi‖ ≤ B1, a.s. i = 1, . . . , n and

∥∥∥∥∥

n∑

i=1

EX
2
i

∥∥∥∥∥ ≤ σ21 .

Then, for all t ≥ 0,

P

(∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥ ≥ t

)
≤ 2d exp

(
− t2/2

σ21 +B1t/3

)
.

Proof. We refer to [33].

Theorem 7.3 (Vector Bernstein inequality). Let Y1, . . . ,Yn be a sequence of independent ran-
dom vectors in R

d. Suppose that EYi = 0 for all i = 1, . . . , n, and that there exit two positive
constants B2 and σ22 such that

|Yi| ≤ B2, a.s. i = 1, . . . , n and

n∑

i=1

E |Yi|2 ≤ σ22.

Then, for all t ≥ 0,

P

(∣∣∣∣∣

n∑

i=1

Yi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2/2

σ22 +B2t/3

)
.

Proof. We refer to Chapter 6 in [26].

By Assumption 4, the mapping φ : Θ → S
+
d (R) × R

d is continuous. Since Θ is compact,
this implies that there exist two positive constants B1 and B2 such that for φ(θ) = (Aθ, bθ), one
has ‖Aθ‖ ≤ B1 and |bθ| ≤ B2 for any θ ∈ Θ. Then, let us define σ21 = nE‖A2

θ
‖, σ22 = nE|bθ|2

and ǫ20 =
∫
Ω |x|2dµ0(x). By combining inequality (7.22) with Theorem 7.3 and Theorem 7.2, one

finally obtains that

P
(
d2W2

(µ̄n, µ
∗) ≥ t

)
≤ 2d exp

(
− nt

8ǫ20E‖Aθ‖2 + 4
3B1ǫ0

√
t

)
+ 2exp

(
− nt

8E
∣∣bθ
∣∣2 + 4

3B2

√
t

)
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(7.23)

for any t ≥ 0. Hence, the rate of concentration of µ̄n to µ∗ depends on the amount of variance
of the reference measure µ0, and the amount of variability of the random mapping ϕθ . Finally,
the concentration inequality (7.23) for d2W2

(µ̄n, µ
∗) can be used to prove that µ̄n converges in

probability to µ∗ at the rate n−1 for the squared 2-Wasserstein distance.

7.6 Related results in the literature on signal and image processing

In the literature, there exists various applications of the notion of an empirical barycenter in
the Wasserstein space for signal and image processing. For example, it has been successfully
used for texture analysis in image processing [12, 28]. The theory of optimal transport for
image warping has also been shown to be usefull in various applications, see e.g. [21, 22] and
references therein. Some properties of the empirical barycenter in the 2-Wassertein space of
random measures satisfying a deformable model similar to (7.3) have also been studied in [11].

Nevertheless, the results in this paper are novel in various aspects. First, we have also shown
the benefits of considering the dual formulation (P∗) of the (primal) problem (2.1) to characterize
the population barycenter in the 2-Wasserstein space for a large class of deformable models of
measures. To the best of our knowledge, the characterization of a population barycenter in
deformable models throughout such duality arguments is novel. Moreover, we have studied on
the consistency of the empirical barycenter for compactly supported measures, and we have
derived its rate of converge in some deformable models.

8 Beyond the compactly supported case

To conclude the paper, we briefly discuss the case of a random measure µ ∈ M2
+(R

d) with
distribution P whose support is not included in a compact set Ω of Rd. In the one-dimensional case
i.e. d = 1, let us denote by Fµ its cumulative distribution function, and by F−1

µ its generalized

inverse (quantile function). Then, one can define the measure µ∗ ∈ M2
+(R) such that its quantile

function is F−1
µ∗ (y) = E

(
F−1
µ (y)

)
for all y ∈ [0, 1]. By applying arguments similar to those used

in the proof of Theorem 3.1, one can easily show that µ∗ is the unique population barycenter of
the random measure µ with distribution P.

The multi-dimensional case (i.e. d ≥ 2) is more involved. Indeed, the arguments that we used
to prove the existence of an optimizer of the dual problem (P∗) as well as those used to show the
convergence of the empirical barycenter to its population counterpart strongly depend on the
compactness assumption for the support of the random measure µ. Adapting these arguments to
non-compactly supported measures to study the dual problem (P∗) and to show the consistency
of the empirical barycenter is an interesting topic for future investigations.
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