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Abstract

This paper presents an original approach for dynamic organization in multi-agent systems to deal with the problem of 
integrating several heterogeneous reasoning methods (RMs) in a single system. Our approach is based on two observations: 
(1) several RMs may be usable for solving the same problem, and (2) there is no deterministic way to find the most 
adequate (RM) no a way allowing to combine the RMs. Some heuristics can guide the problem-solving process in 
combining the RMs and if necessary, switching from one RM to another. These heuristics depend on: the context and the 
description of the problem itself, and on the constraints of the desired solution. The real problem is that the context depends 
on dynamic and unpredictable knowledge. An adaptive approach is implemented in a multi-agent system (MAS) to build 
cooperative scenarios in a dynamic way. In such a system, each agent reifies a particular RM. The ways to combine the 
RMs are decided in a decentralized way according to cooperative knowledge embedded in the agents. The organization of 
the agents around a pivotal agent role helps the scenarios to finish and to propose one solution to the user. 

Categories and Subject Descriptors

I.2.11 [Computing Methodologies]: Distributed Artificial Intelligence, Multiagent systems, Coherence 
and coordination.

General Terms

Algorithms.

Keywords

Distributed problem solving, Agent Reasoning, Collective decision making, Agent Cooperation.

1. INTRODUCTION

The integration of reasoning models (RMs) which is addressed in this work, is in the scope of 
cooperative problem-solving ([5]) because it required integration various ways of solving and various 
kinds of knowledge to solve a whole problem. Many integrating approaches exist. But the means they 
use are ad-hoc. This make them difficult to use for solve new problems. Thus, they are difficult to extend 
with new RMs ([2], [3], [6], [10]). However, these woeks offer a whole expertise on the contexts which 
require of such integration. The advantages of such approaches are as well at the methodological level as 
at the computational level because of the difficulty of finding an algorithm effective able to choose an 
adequate RM according to specific situation.
In this paper, an original approach is proposed to deal with the integrating reasoning models problem. 
For this purpose, multi-agent systems paradigms are used as a mean to design a distributed approach in 
an adaptive way.
The next section gives an overview of the problem of the reasoning models integration. The followed 
methodology is explained and illustrated with a diagnosis example. The multi-agent approach will be 
detailed in the third section. Two versions of the system for dynamic organization are presentedand 
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compared. First evaluations show that negociation mechanisms improve the cooperative scenario. 
Before the conclusion, some related works are mentioned.

2. PROBLEM DESCRIPTION

The reasoning models integration problem is complex. It must be addressed by mean of a methodology 
then it will be illustrated on a case-study.

2.1 Reasoning models integration

A reasoning model (RM) includes a way of reasoning such as Modus Ponens, analogy or qualitative 
reasoning which can be used to make some deductions from any corpus knowledge representation in a 
particular application domain. This concept is similar to the reasoning mode described in [12] where 
knowledge representation is clearly distinguished from the way we intend to use the same knowledge. 
Each RM can be described by a set of characteristics which makes it strongly relevant in certain 
contexts, simply useful in the others, or sometimes unusable. For example, a qualitative reasoning is a 
RM for which it is enough to know the membership of system parameters in an interval to be able to 
predict the behavior of the (modeled) system ([4]). The drawback of this way of reasoning is that it is 
necessary to have information about all the system parameters to obtain an explanation of its behavior. 
Another example concerns the use of the induction process to infer a new solution from past 
encountered and solved problems. This implies having a way to measure the similarity between stored 
cases and the current problem description, which the system has to solve.
The integration of RMs consists in implementing several RMs in the same system so that there is a 
synergy between them for the resolution of a problem that the RMs are not capable to solve individually, 
at least, with acceptable performances. For example, a range for a missing parameter can be induced 
from past situations so that a qualitative reasoning becomes usable. 
The integration of RMs is based on the fact that to make reasoning with the aim of the resolution of a 
complex problem, it is often necessary to call upon more than one type of reasoning. The problem-
solving process of such a problem is then seen as an interlacing of several known types of reasoning. For 
example, during a deductive reasoning to do a mathematical   theorem proving, we often have to use 
examples or counter-examples to make certain steps of the demonstration. So, a “reductio ad absurdum” 
will be used to demonstrate a part of the theorem.
In intelligent systems, the use of several kinds of knowledge (heuristics, qualitative, behavioral, etc.) and 
of various modes of exploitation of these knowledge in the same system is more and more spread ([1], 
[5], [9]). Such systems propose algorithms or means to combine several methods of resolution of 
problems.
On the other side, it’s well admitted, in Artificial Intelligence, that the diversity of the problem solving 
methods are due to the limitation of each of them. In fact, the same process can be solved using different 
RMs and there is no best RM, but just (perhaps) a preferred one to exhibit a particular aspect (or a part) 
of a problem to solve.
Some experiences in cognitive science have showed that human reasoning process is neither done in a 
monolithic way nor uses a single way of reasoning for solving problems [7].
In the he next section, we will describes the originality of our approach and we will explain the applied 
methodology to achieve our goal. Some arguments for a new integrating approach will be also 
presented.

2.2 Methodology

To deal with the problem of RMs integration, one 
argue for a distributed and a dynamic approach. 
Indeed, existing approaches are either based on an 
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ad-hoc algorithm or on an exhaustive exploration of the different integration possibilities. In the first 
case, we have systems in which adding a new RM is too difficult (requires to modify the design of the 
system itself). In the second case, there is often a risk of a combinatorial explosion of computation due 
to the algorithmic complexity. These weaknesses come mostly from:
(1) the tendency which consists in palliating disadvantages of the RMs by abolishing them and by 

replacing them with ad-hoc means and,
(2) the difficulty in determining, in priori, the way to adapt the integration mechanism to every new 

situation to solve.
That being said, existing approaches are a precious inspiration source, since they allow us to work out 
corpus of knowledge constituting whole expertise on the integration problem itself and to design generic 
integrating heuristics. The weaknesses of the different RMs are expressly represented, within the RMs, 
as being part of knowledge the RMs have on themselves. These knowledge are exploited by the RMs in 
order to:
(1) Initiate collaboration with other RMs.
(2) Distinguish the situations where it is necessary to improve their own processing of the situations 

where they can go without this improvement.
(3) Spontaneously offer help to other RMs.
Thereby, the RMs collaborate intentionally by choosing the moment and the strategy, not only according 
to their own capabilities and the evolution of the problem-solving process, but also according to other 
RMs capabilities so that they can interact with them.
RMs need to have a representation of skills of other RMs and to know their availability for taking into 
account requests. The solution of the problem is constructed thanks to the interactions between the 
different RMs.
2.3 A case-study

To illustrate the integration of several RM and the followed methodology, a simple application in a 
troubleshooting domain is considered: an example based on a diagnosis of faults in an electrical car 
circuit; so, the problem to solve is: finding an explanation for a malfunction of the considered  electrical 

circuit.
Let's consider three RMs that are representative of those used in the application domain. A case-based 
reasoning (CBR), a model-based reasoning (MBR) and a failure mode and effects analysis (FMEA).
A CBR is a RM  which solves new problems by using or adapting solutions that were used to solve past 
problems. It manipulates a base of cases which is accessed with indexes and similarity methods. The 
cases representing descriptions of old solved problems witch can of various kinds. Such a RM can give 
rapid results if relevant indexes are available. But, because it's based on experience, it lacks of reliability.
A MBR refers to a RM which is based on a model of the physical world. With this approach, the main 
focus of the application to develop is designing a correct model. Then at run time, an "engine" combines 
this model knowledge with observed data to derive conclusions such as a diagnosis or a prediction by 
looking at the symptoms to then determine the possible (hypothesis) causes. Such RM reflect physical 
laws rather than observed coincidences, that might only be true under certain conditions. So, they are 
supposed to have a high level of reliability but the processing can be very expensive in time. 
A FMEA is a procedure for analysis of potential failure modes within a system for the classification by 
severity or determination of the failure's effect upon the system.
Several heuristics can illustrate the synergy between the three mentioned RMs (CBR, MBR and FMEA). 
For example, a FMEA can be used to reduce the combinatory explosion of hypothesis generated by a 
MBR, by considering the most critical ones. A CBR can be used to infer a solution for a part of the 
problem which has not been modeled in the MBR. This is because the cases represented in a CBR are 
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various. Because of its high level of reliability, a MBR can be used to confirm (or infirm) a particular 
result for a CBR and so on.
From these examples, one can understand the interest of combining several RMs in a single system. It’s 
easy to argue for a distributed methodology so that adding a new RM could be possible without 
modifying the system design. This is why we the following questions are asked:
1. Is it possible to provide each RM by means to determine its own relevance dynamically depending 

on context, which itself is changing dynamically?
2. Why not make explicit the characteristics of the RMs locally?
3. At a given moment, what would do RM when its methods are not relevant?
4. Is it possible to provide RM by means, allowing them to overcome these shortcomings?
5. At what level of abstraction is it necessary to represent knowledge mentioned above?
The next section describes a system based on a multi-agent approach where each RM is represented by 
an agent. Cooperation strategies allow the agents to reason about the RMs' capabilities. By this way, 
cooperation reasoning allows finding a compromise between strength and weaknesses of the different 
RMs.

3. MULTI-AGENT APPROACH

The designed approach consists in using an adaptive multi-agent system (MAS) to build in a dynamic 
and a distributed way, the manner of combining several RMs for solving a particular problem ([8], [13]).
More precisely, it is to design a MAS. in which RMs cooperate and interact to exchange tasks and 
results. In this approach, RMs intertwine according to their relevance. The result is a scenario (cf. 3.2.) 
consisting of the interactions that lead to the solution. These interactions are due to an individual 
reasoning process about the way to cooperate. The principal question the agents ask is: do they use their 

own methods to solve their own tasks or do they ask other agents to do it, or do they use their methods 

to handle the requests of other agents?

The MAS will thus be able to solve a problem which, a priori, is outside the capabilities of each 
individual agent.
3.1 System description

Each agent representing a RM has a generic architecture to manipulate the domain knowledge 
(diagnosis) and cooperation knowledge which are used for choosing the most adequate cooperative 
attitude at each execution cycle.
Domain and cooperation knowledge are decomposed according to three axis (see FIG.1): tasks (the 
goals to achieve), methods (the different ways to achieve the goals) and domain model (needed 
knowledge to execute the methods). Criteria and characteristics are assigned to the methods in order to 
reflect their performances (reliability, complexity, efficiency, completeness, timeliness, etc.).

FIG.1: Task, methods and domain-model
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The methods can generate sub-tasks if they are not terminal. The above figure (FIG. 2) shows some 
examples.

Diagnosis Cooperation

Tasks generate-Hypothesis, 
discriminate-
Hypothesis

allocate-Task,
delagate-Task,
solve-Conflict

Methods perform-index, 
Depth-first

negociate,
constraint-Ralex

Domain 
model

symptoms, base of 
cases

competencies,
evolulving-Resolution

FIG. 2: Examples of tasks decomposition
Agent architecture summarizes the components of each agent (see FIG.3).

FIG.3: Internal agent architecture

The supervisor observes, evaluates and guides the local activity of the agent. Its main objective is to 
manage the tasks candidates of the diary, either by insertions, or by suppressions, and to fix criteria on 
these tasks so that the engine can choose a method to carry them out. It also establishes a cooperation 
attitude that the agent adopt with respect to the other agents, concerning the execution of the tasks. This 
can guide the agent in answering to the asked question in the previous section. The engine is in charge of 
performing the planned tasks by choosing an adequate domain or cooperation method.
3.2 Cooperative scenarios

The cooperative reasoning for the integration of three particular RM is illustrated by the figure (FIG.4). 
In this example, three agents: a case-based model, a model-based diagnosis and a model based on 
FMEA cooperate in interaction with the user, try to find the cause of misbehavior of a wind-screen 
washer. They build a cooperative scenario witch will be assumed to be a way of combining the three 
mentioned RMs. In this figure, the focus is on the content of agents diary and the interactions between 
the agents. The internal individual reasoning agents will be more addressed in next sections.
The arrows represent the exchanges of messages between agents. The agents’ internal decisions are due 
to the execution of the engine algorithm. These decisions are indicated in the squares whose corners are 
rounded. The mailboxes are represented by squares at the top of the agents.
The interactions between agents embody some points of synergy between the RMs.
In the beginning of the showed scenario, each agent tries to solve the problem (the task diagnosticTask 
in agents diary. The CBR agent has not enough information to browse its stored cases. So it broadcasts 
an Ask-info message. At time T2, FMEA agent and MBR agent are processing the generation of 
hypothesis (generateHypoth in their diary). At T3, FMEA agent has distinguished the two most probable 
hypothesis (water-tank empty and pomp out-of-order). It decides to share these results with other agents 
(Information in the mailboxes of CBR and MBR agents). At T5, MBR agent has discriminated all of its 
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generated hypothesis and then, it infers that the problem isn't an electrical one (because it deals only 
with electrical problems). MBR agent sends this information to CBR agent. The CBR agent, indexing its 
cases by type of problems can initiate its geheratHyp task and then, propose a solution.

FIG.4 Cooperative scenario example

In this scenario, one can see how the speed of CBR agent, the reliability of MBR agent and the 
exhaustivity of a FMEA agent have been combined dynamically for a diagnosis of fault. The most 
important and original aspect of this scenario is that  there is no central algorithm to guide the 
cooperation decisions. According to MAS paradigm, each agent has its own local control mechanism 
(supervisor level in FIG.3).
Over a dozen experimented scenarios, seven have particularly caught our attention. An agent seems to 
differ from others in a pivotal role. Such an agent seems to drive the resolution, without being able to 
carry alone the resolution to end. This is illustrated, for example, in the scenario of the figure FIG.4 by 
the CBR agent.
Based on this observation, a fundamental hypothesis has been formulated. It has been proceeded by 
induction to verify it.
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Working hypothesis

There exists, in general, privileged reasoning model, not easily predictable automatically, for the 

resolution of each type of problem. However, this reasoning model requires some interventions without 

which under no circumstances would it give fully satisfaction.

To translate such a hypothesis in MAS. concepts, this can be represented in a particular agent role. But 
this is not so simple, because a preferred RM in the beginning of the problem-solving process doesn't 
necessary remain in this role in the rest of the scenario (ex. CBR agent in the cooperative scenario 
example of the figure FIG.4). It’s why this mechanism has been implemented in an adaptive way.
The next paragraph explains how a way to dynamically determine the pivotal role of the resolution, has 
been implemented. 
3.3 Pivotal agent for dynamic organizations

The process of determining the pivot agent role is implemented as a part of cooperation activity of the 
agents. By mean of a dynamic organization, it's possible to build adaptive MAS ([8]). A first simple 
implementation has given promising results. So, the system has been improved it by a second version 
which is based on a negotiating method. The two versions are described bellow.
A-Simple pivot agent role determination

The determination of the pivotal agent role is done according to two axis. The first axis is called 
communicational axis because it concerns the exchanged messages between agents. The second one is 
called computational axis because it's related to agent contribution to resolution evolving. An agent 
recognizes itself as a pivot according to the two dimensions. That means that it is required for 
communication, and it’s the one that drives the resolution.
The agents calculate their communicational weight Cwc and their computational weight Cwp. The 
communicational weight is measured by the disparity of received messages. This disparity consists in 
dividing the number of different senders on the number of acquaintances. The higher this ratio is close to 
one, more the diversity of messages is high, and this means that the communication is organized around 
the agent.
The computational weight is calculated by using a local domain dependent evaluation function. For the 
considered diagnosis application, the used function consists in dividing the number of assumptions 
processed Hp on the number of assumptions discriminated Hd  (Hp /Hd). A potential (Cwc+Cwp)/2 is 
calculated. Once an agent has a ratio greater than a given threshold (0.5 for our tests), it becomes a 
candidate for a pivotal role.
The pivot agent role determination steps are summarized in FIG.5:

Pivot agent determination steps

1. Eligibility for the pivot role

2. Broadcast a proposal

3. Accept or refuse the proposal

4. Conclude the assignment of the pivot role

FIG.5: Pivot agent determination steps
As soon as an agent has identified itself as a candidate to the role of pivot, it broadcasts an information 
message to the other agents. If the reception of this message does not generate any conflict, the agent 
fulfills its role. It informs the other agents which will adapt their resolution or more exactly, their 
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cooperation attitude according to this new organization. A conflict occurs when the receiving agent is 
itself a candidate to the pivotal role. It accepts the proposal if its potential is less than the received one. 
Otherwise, it refuses the proposal. The initiator agent will simply cancel its proposal. In case of equality,  
one of the two agents is chosen randomly by the initiator agent.
This organization has improved the generation of cooperative scenarios because this allows an automatic 
detection of the end of the problem-solving process which become in charge of the pivotal agent. But, 
we were not completely satisfied because when several agents have equal scores, the selection is done 
randomly. Another problem is due to the oscillations of the system because the pivotal role is too 
dynamic and disturbs the stability of the system. This is due to the fact that several pivotal agents 
succeed in the same scenario. In several scenarios, the system never terminates.
B-Negotiated pivot agent role determination

The computation of the communicational weight Cwc and the computational weight Cwp are influenced 
by the knowledge that are manipulated by the agents. These knowledge can be related to the application 
domain (diagnosis in our case), to the cooperation process (requesting, negotiating,…) or to the control 
of the execution cycle of the agents.
To refine the mechanism of determining the pivot agent role and to minimize the problems mentioned in 
section A, a more sophisticated way for choosing the most adequate agent to this role has been 
implemented. For this purpose, the three dimensions of the domain, cooperation and control knowledge 
for each axis (communicational and computational) of the pivotal role determination have been 
considered.
More precisely, the third step of the pivot agent role determination process (see figure FIG.5) has been 
modified to deal with cooperation expertise and to negotiate before accepting or rejecting a proposal.
When it receives a proposal, an agent initiates a negotiation process instead of sending an acceptance or 
a reject based solely on the value of the potentials. In the case of equality, the initiator agent begins by 
sending a message of request for the management of a conflicting-pivot. The two concerned agents 
consider the negotiating process according to the knowledge synthesized in figure FIG.6. Beginning 
from the most prior to the low prior knowledge, the negotiating agents exchange the value of their 
respective attributes.

Domain dimension (diagnosis)
(1) (1)Availability of methods associated 

with specific domain tasks
(2)Rate of discriminated assumptions

Cooperation dimension: measure rate of
(3)Persistence of internal conflicts
(4)Useful communications (answers and 
spontaneous received informations)
(5) Successful negotiations

Control dimension: measure the rate of 
failures

(6) Engine execution
(7) Task criteria assignements

FIG. 6: Negotiation knowledge dimensions
The figure above summarizes the most important  facts identified to be relevant in determining the pivot 
agent role. For the domain dimension, the  availability of the domain methods means that the agent is 
able to deal with the domain tasks. This information can be confirmed (or not) by the rate of 
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discriminated assumptions (cf. 3.3). The cooperation dimension measures the rate of solved conflicts 
and evaluates the quality of the communication by calculating the rate of useful exchanged information. 
It can also store success and failures of past negotiations. Control dimension considers engine failures, 
while trying to find a method for a task or assigning criteria to the tasks.
A value is calculated for each dimension (domain, cooperation and control) and then, it’s considered 
during the negotiation process. The negotiation is simply a comparison between the respective values. 
The winner is the agent with the highest value. Such a value is an average of the components of the 
dimension. For example, the value of a cooperation dimension, is the average of the sum of the number 
of: persistent internal conflicts, useful communications, and successful negotiations. The Table 1 shows 
some examples of calculated values for two agents (A and B), where agent A is always the winner.

Table 1. calculated knowledge dimensions examples

Example 1 Agent 

A

Agent 

B

Domain 
knowledge 

value

0.5 0.2

Cooperation 
knowledge 

value

0.7 0.3

Control 
knowledge 

value

0.8 0.5

Example 2
Agent 

A

Agent 

B

Domain 
knowledge 

value
1 1

Cooperation 
knowledge 

value
3 1

Control 
knowledge 

value
2 5

Example 3
Agent 

A

Agent 

B

Domain 
knowledge 

value
3 3

Cooperation 
knowledge 

value
3 3

Control 3 2
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knowledge 
value

The advantage of the implemented negotiation mechanism is its simplicity. The problem is that the 
priority is fixed a priori. As part of the future work, a more flexible negotiation model shall be 
implemented. This will allow exploring the situations where it’s relevant to determine pivot agent role.
3.4 Results and evaluation

To evaluate the presented approach, three different cooperative scenarios have been implemented in the 
MAS, and then compared. In the first scenario (Scenario–1), cooperation is implemented without any 
explicit pivot determination mechanism. The execution of the MAS ends when a pre-defined time-out is 
reached for the complete scenario execution. In the second (Scenario–2) and the third (Scenario–3) 
scenarios, pivot agent role mechanism is implemented inside the agents, allowing them to organize the 
problem-solving process around such a particular agent named pivot agent. The two latest scenarios 
differ in the mechanism by which an agent is assigned by such a role. In Scenario–2, a simple method is 
implemented, while a negotiation method is implemented in Scenario–3.
Pivot agent determination steps are implemented as cooperation tasks (see FIG.1). Assigned methods 
represent the different ways to perform each task (step). The domain model (see FIG.1) of each task is 
concerned by knowledge that make the task activated and/or the methods usable. For instance, the main 
task of pivot determination process is activated when a given ratio is achieved for the problem-solving 
process evolving.
Let's resume to the diagnostic scenario described in Figure 4. In the beginning, CBR agent is the pivot 
because it “drives” the discrimination between a set of generated hypothesis. Between time t3 and time 
t5, the pivot is the Comport agent because the communication is organized around it.
To compare the three scenarios, the oscillations of the system, the number of execution cycles of the 
agents and the proportion of cooperative tasks in relation to the number of domain tasks1 are considered. 
For each scenario and each comparison criteria, the number of correct diagnosis is considered with the 
same datas (manually generated).
The ratio between cooperation and domain activity is variable for Scenrio-1, it’s around 1/3 for 
Scenario-2 and around 2/3 for Scenrio-3. This means that the agents spent more “time” for cooperating 
in Scenrio-3. However, The numbers of execution cycles are nearly equal, for the two scenarios. 
Scenario-3 gives a little more satisfying solutions2 than Scenario-2.
Even several pivot agents can succeed the same scenario and some scenarios can take place without any 
pivot agent has emerged, the number of execution cycles of the agents is reduced and the behavior of the 
system is globally improved in the second version.
Although, the MAS oscillates when no agent stands clearly for a pivotal role, it often terminates in 
Scenario-2 and always terminate in Scenario-3. The oscillations for Scenario-1 are avoided due the time-
out method termination.
4. RELAED WORS

To our knowledge, there is no existing similar  approach which can be compared to ours. However,  
several authors address the problem of integrating heterogeneous models. We have selected two of the 
most famous and recent systems implementing a integration of heterogeneous models, VLE and 
BIOCHAM. They illustrate respectively interoperable approaches and centralized ones.
VLE is a Virtual Laboratory Environment proposed by Duboz and his colleagues [11]). The 
implementation of VLE is based on the DEVS simulator ([14], [15]). This tool is dedicated to the 

1  It’s a way to estimate the “time” spent in cooperating instead of solving the domain problem for which the system is mainly designed.
2  The satisfiability is considered from the user point of view.
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definition of the experimental frames and the analysis of simulation results. Since the integration is 
achieved at the operational level, the designers have to specify their models in the unified terms that are 
proposed by the tool. It's not the case for our system, the RMs decide in a distributed manner, when and 
what to communicate with other RMs. The interactions between the RMs are due to cooperation 
decisions. Of course, all the interactions are not optimal, in the sense that they don't always correspond 
to relevant coupling of the RMs. It's why the agents (implementing the RMs) in our system need to 
negotiate in order to manage the occurring conflicts.
BIOCHAM is a software environment for modeling biochemical systems ([3]). It combines a rule-based 
system for modeling biochemical systems, a numerical simulator, and query language based on temporal 
logic. The user writes a model by defining a set of rules with kinetic expression, a list of parameters 
values and initial conditions and biological properties as a list of temporal logic formulae. According to 
the type of study chosen by the user, the system receive different interpretations (kinetics ignored, 
interaction probability, etc.). The user has to deal with multi-modeling process, so he is supposed to 
know about all of them.
First results show that using MAS for integrating heterogeneous models raises many challenges. At 
methodological level, it keeps people using their preferred reasoning models. At computational level, the 
challenge is to design and implement cooperative reasoning as independent as possible from the 
application domain. The emergence of cooperative scenarios is the challenge which is related to the 
cooperative reasoning.
5. CONCLUSION AND PERSPECTIVES

This paper has proposed an original distributed approach for heterogeneous reasoning models 
integration. An adaptive multi-agent approach to generate, in a dynamic way, cooperative scenarios has 
been implemented. Each reasoning model is encapsulated in an agent. Constructing the cooperative 
scenario, reveals a way of combining the RMs so that the whole system can solve a problem which is 
beyond individual agents' capabilities. The dynamic observed in the system and the emergence of the 
pivot agent role, has been explored. So, an explicit pivot agent role determination process has been 
implemented in the system with two different strategies (a simple and a negotiated one). 
The first obtained results are conclusive. Due to the investment necessary for conceptual modeling 
domain knowledge to experiment with great number of RMs, more work is necessary before providing  
quantitative results. Current work consist in looking for statisctical laws to generate randomly large 
amount of data. Another way to get such data is to find a simpler application domain which would allow 
obtaining numerical results more easily.
Theoretical study already shows the superiority of a distributed and adaptive approach to centralized 
one. Indeed, centralized approaches can be used as source onf inspiration to implement specific 
cooperative scenario.
Another current work concerns the study of the impact of the considered knowledge for the dynamic 
organization, on the MAS adaptivity. This aims to improve the negotiation step for the determination of 
the pivot agent role. Indeed, several argumentation models, based on logic formalisms, are used in MAS 
negotiation. Some of them use defeasible rules ([16], [17]) allowing complex argumentation and 
counterargument representation. Whilst others [1] argue for using classical logics. One can think that, 
this will supply some features to answer to questions such as: “does it interest always to have a pivotal 
agent role? And is it possible to differentiate the situations where such role is useful from the ones where 
it’s not? For example, detecting that a pivot agent role will minimize the oscillations of the MAS seems 
to be a good prediction.
Even if the presented results are preliminary, they are very promising. Before to continue investigating, a 
confrontation to the multi-agent system community is essential.
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A long terms work aims to validate our working assumption regarding the existence of this notion of 
“preferred” reasoning model for each kind of problem.
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