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[1] This paper investigates the actual extrapolation capacity of three hydrological models in
differing climate conditions. We propose a general testing framework, in which we perform
series of split-sample tests, testing all possible combinations of calibration-validation periods
using a 10 year sliding window. This methodology, which we have called the generalized
split-sample test (GSST), provides insights into the model’s transposability over time under
various climatic conditions. The three conceptual rainfall-runoff models yielded similar
results over a set of 216 catchments in southeast Australia. First, we assessed the model’s
efficiency in validation using a criterion combining the root-mean-square error and bias. A
relation was found between this efficiency and the changes in mean rainfall (P) but not with
changes in mean potential evapotranspiration (PE) or air temperature (T). Second, we
focused on average runoff volumes and found that simulation biases are greatly affected by
changes in P. Calibration over a wetter (drier) climate than the validation climate leads to an
overestimation (underestimation) of the mean simulated runoff. We observed different
magnitudes of these models deficiencies depending on the catchment considered. Results
indicate that the transfer of model parameters in time may introduce a significant level of
errors in simulations, meaning increased uncertainty in the various practical applications of
these models (flow simulation, forecasting, design, reservoir management, climate change
impact assessments, etc.). Testing model robustness with respect to this issue should help
better quantify these uncertainties.

Citation: Coron, L., V. Andréassian, C. Perrin, J. Lerat, J. Vaze, M. Bourqui, and F. Hendrickx (2012), Crash testing hydrological

models in contrasted climate conditions: An experiment on 216 Australian catchments, Water Resour. Res., 48, W05552, doi:10.1029/
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1. Introduction
1.1. Challenges in Predicting Hydrological Response
Under Variable Climatic Conditions

[2] Quantifying the impacts of climate change on stream-
flow has been an increasing concern in the past few years and
has been the focus of many studies throughout the world
[Caballero et al., 2007; Vicuna and Dracup, 2007; Steele-
Dunne et al., 2008; Chiew et al., 2009; Görgen et al., 2010].
The modeling steps associated with this task include (1)
selecting emission scenarios, (2) running global circulation
models (GCMs), (3) downscaling the GCM’s output to a
scale that can be used for hydrology, and (4) running hydro-
logical models that simulate the rainfall-runoff (RR) transfor-
mation at the catchment scale. Step 4 is often considered to
contribute less than the other steps to the overall uncertainty
[Wilby and Harris, 2006; Prudhomme and Davies, 2009;

Kay et al., 2009; Arnell, 2011; Teng et al., 2011]. However,
the uncertainty associated with the estimation of parameters
of hydrological models cannot be neglected [Wilby, 2005;
Vaze et al., 2010b; Merz et al., 2011]. This is even truer
when RR models are run under climatic conditions signifi-
cantly different from calibration conditions (e.g., projections
of future conditions versus current conditions). Indeed, many
unknowns remain concerning the actual transposability over
time of model parameters under contrasted conditions.
Although this transposability is a critical issue in the context
of climate change impact studies where nonstationary condi-
tions are explicitly considered, it also has implications in
other more operational model applications (like forecasting,
design, etc.), in which model robustness is essential to pro-
vide reliable results. Besides, fluctuations in climate also
exist in historical time series (such as Hurst-Kolmogorov
behaviors [see Koutsoyiannis, 2011]), which may question
parameters transferability whenever a model is used to simu-
late flows on a period whose climatic conditions are different
from those in model calibration.

1.2. Parameter Dependency on Calibration Period
Climate

[3] Because of the lack of knowledge and data on the
true functioning of the hydrological system, all hydrologi-
cal models remain to some extent conceptual and empirical
[Murphy et al., 2006]. As a result, deriving physically
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meaningful values for the model’s parameters via calibra-
tion remains a challenging task. In their discussion on
model ‘‘pathologies,’’ Coron et al. [2011] reviewed various
situations where parameter estimation can be hampered
and induce values that transfer poorly to other periods.
Common examples are cases where input quality and/or
availability evolve as well as issues related to low levels of
parameter identifiability. Problematic situations may also
emerge from the climatic dependency of model parameters.

[4] Existing hydrological models have been developed
using either top-down (conceptual models) or bottom-up
(physically based) approaches. However, both types of
models suffer from the same problems when it comes to
the calibration of their parameters. At calibration stage, the
optimal set can vary over time in accordance with seasonal
and/or long-term climatic variations. Wagener et al. [2003]
applied a five-parameter lumped model to an English catch-
ment and showed that summer and rain storm periods
require different optima for the parameters controlling
rapid water transfer. Choi and Beven [2007] sampled the
times series of a South Korean catchment according to a
hydrological similarity measure. Calibrating TOPMODEL
parameters on each cluster, they found that optimal sets on
some clusters were not convenient for use on others.
Rosero et al. [2010] found that parameters from the Noah
land surface model, which should in principle be controlled
only by physical site characteristics (e.g., soil and vegeta-
tion type), were also strongly influenced by climatic condi-
tions. These findings are not restricted to a limited number
of particular catchments. Although the work from Rosero
et al. [2010] was based on only nine catchments, Vaze
et al. [2010b] and Merz et al. [2011] conducted studies
over 61 Australian and 273 Austrian catchments, respec-
tively, and observed similar dependencies. Merz et al.
[2011] established a link between the HBV parameters rep-
resenting snow and soil moisture processes with climatic
characteristics such as air temperature and PE. Cases of
apparent independence may also be observed (see the work
by Niel et al. [2003] on 17 African catchments). Most of
these past results indicate that the assumption of parameter
stability over time is strong. Parameter values can vary sea-
sonally because of differences in dominant hydrological
processes controlling runoff generation in different seasons
but may also change on longer time scales in relation to cli-
mate variability (e.g., modifications of annual groundwater
balance, vegetation change, etc.). Recently, de Vos et al.
[2010] made an interesting proposition to further investigate
the reasons for this disturbing dependency: they suggested
clustering time series according to climatic similarities and
allowing parameters to vary over these clusters during cali-
bration. Rather than an alternative optimization method, they
presented it as a tool for investigating model functioning and
thus identifying the possible needs for improvements.

[5] A parallel can be made between transferring parame-
ters over time and space. For example, Merz et al. [2011]
observed temporal trends on parameter values (due to cli-
mate evolution) that were comparable to variations over
space when moving between regions with different cli-
mates. A similar trade of space for time was made by Singh
et al. [2011], who used a regional approach to evaluate
extrapolation skills of parameter sets by transferring them
to other catchments in warmer climatic zones.

[6] Note that, to ease reading, the term climate is abu-
sively used hereafter to designate the main characteristic of
precipitation, temperature, etc., over a time-limited period
(often 10 years long here), whereas climate usually refers
to characteristics over an extended period of time (typically
several decades).

[7] A typical testing procedure to investigate parameter
dependency on climate and related consequences on model
efficiency is the differential split-sample test (DSST) pro-
posed by Kleme�s [1986]. This is a specific case of the split-
sample test (SST), where calibration and validation periods
are chosen according to their climatic differences. The pa-
rameter dependency on the calibration periods is analyzed
through the evolution of the model’s performance on this
test. Examples of applications of DSST include the studies
by Refsgaard and Knudsen [1996], Donnelly-Makowecki
and Moore [1999], Xu [1999], Seibert [2003], Wilby [2005],
Chiew et al. [2009], Vaze et al. [2010b], and Bastola et al.
[2011]. Most of these authors observed decreases in model
performance (i.e., larger model errors) after transferring pa-
rameter sets between climatically contrasted periods. They
concluded that a model’s suitability for climate change
impact studies depends on the judicious choice of the cali-
bration period. In that context, some recommend the use of
extended periods to ensure sufficiently diverse climatic and
flow conditions during calibration to give a representative
picture of their natural variability. Others suggest the use of
calibration periods whose climatic conditions are closer to
future ones, often corresponding to the recent records. How-
ever, this second option prevents from benefiting from the
full information available to quantify modeling uncertainty.

1.3. A Need for Further Investigation

[8] Increasingly, hydrologists use RR models over wide
ranges of climatic conditions not necessarily encountered
during the calibration stage, and need to have an estimate
of the uncertainties associated with their simulations. Sev-
eral studies have emphasized the limitations in the transfer
of parameters between climatically contrasted periods,
some of which were mentioned above. However, very few
investigations have been conducted using a methodology
that would provide general conclusions on this issue, i.e.,
on the basis of a large number of catchments and using dif-
ferent models. The two main studies by Vaze et al. [2010b]
and Merz et al. [2011] showed that differences in climate
between calibration and validation could significantly
affect model performances. For instance, Vaze et al.
[2010b] found that transferring parameters to a drier cli-
mate was particularly problematic and concluded that such
transfer should not be made for changes in mean rainfall
greater than 15%.

[9] The above mentioned studies require complementary
work (1) to develop more general testing procedures able to
provide comparable results under various conditions and
over a wide range of parameter transfer conditions, thus
resulting in more robust conclusions on parameter transfer-
ability, (2) to apply such procedures on a variety of cases for
a better quantification of model robustness under a changing
climate, and (3) to identify the situations where parameters
are not transferable and, if possible, explain why.

[10] This study extends the work of Vaze et al. [2010b]
by enlarging the catchment set and proposing a new
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generalized methodology to evaluate the validity of RR
models for use under nonstationary climatic conditions.
Some of the conclusions of these authors are confirmed,
but new insights are also provided (e.g., on catchment-
specific behaviors).

[11] This paper is organized as follows. The catchment
set and hydrological models used are presented in section 2.
The methods used to evaluate the parameter transferability
are described in section 3. The results are presented in
section 4, starting from the analysis of the entire data set
and then distinguishing different behaviors. A discussion
around the methodology and the results is provided in
section 5. Conclusions are summarized in section 6.

2. Catchment Set and Models
2.1. Study Area

[12] The choice of the study area was greatly influenced
by the scope of this work. We needed sufficiently variable
climatic conditions to make it possible to select contrasted
periods for model testing in the most extreme conditions.
In this perspective, we used a set of 216 catchments in
southeast Australia, where climate variability is notoriously
greater than in many other places in the world. The initial
set was composed of 228 catchments, but 12 catchments
were not used in our testing procedure because of insuffi-
cient data availability (see section 3.4). This catchment set
has been described in detail by Vaze et al. [2010a]. The

catchments are located on a large zone from south Queens-
land to west Victoria along the Great Dividing Range
[Figure 1]. The range of climate and physical characteris-
tics of the data set is summarized in Table 1. Rainfall is the
most important driver of runoff in Australia and is much
more variable both temporally and spatially than the other
climate variables [Vaze et al., 2010a]. Only 15% of the
rainfall becomes runoff on average for the catchment set.
Significant variations in rainfall and considerable variations
in streamflow can occur between years, as shown by the
interannual variability coefficients (see Table 1). Variabili-
ty also exists between longer periods, as shown in Figure 2,
which plots the series of relative mean PE, rainfall and
streamflow values over a 10 year sliding window. The three
graphs illustrate how the mean climate over a decade can
differ from the climate over the entire record (32 years in
most cases). While ranges of 610% in mean rainfall and
63% in mean PE between 10 year subperiods can be
observed for most catchments, this results in relative varia-
tions on streamflow that can be much larger (up to 50% in
absolute value). Note that on most catchments, the 1980s
were wetter than average, while the end of the period was
much drier. This is a quite interesting contrast for the objec-
tives of our study. Across the data set, there is also a spatial
variation of average conditions in terms of rainfall, PE and
runoff. Catchments located east and south of the Great
Dividing Range are wetter than the catchments located
inland. Moreover, catchments are summer dominated in the

Figure 1. Locations of the 216 catchments.
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north (i.e., most rainfall and runoff occur in summer) and
winter dominated in the south, while interannual variability
is greater in the north than in the south.

[13] Daily data of rainfall and PE were derived from the
SILO Data Drill, which provides daily data for 0.05� sur-
face grids (�5 � 5 km) across Australia (http://www.long-
paddock.qld.gov.au/silo/). These estimates are interpolated
from point measurements made by the Australian Bureau
of Meteorology. Daily PE is computed using Morton’s wet
environment algorithms [Morton, 1983]. Daily streamflow

data for the 216 catchments were obtained from relevant
state government agencies and were checked for errors. For
a majority of catchments, continuous records of rainfall, PE
and runoff were available for the 1974–2006 period. Most
of the catchments range in size between 100 and 1000 km2,
with a median value around 330 km2. They are mostly
unregulated with no major storage or irrigation schemes.
These data were partly used in recent Australian projects
such as the Murray-Darling Sustainable Yields project
[Chiew et al., 2008], the South-Eastern Australian Climate

Table 1. Percentiles of the Distributions of a Few Catchment Characteristics on the Entire Set of 216 Catchmentsa

Statistics Over the Entire Catchment Set

5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Catchment surface (km2) 70 160 330 630 1240
Mean annual potential evaporation PEma (mm) 1070 1120 1200 1290 1410
Mean annual rainfall Pma (mm) 570 720 860 1100 1400
Mean annual runoff Qma (mm) 30 60 120 250 500
Aridity index Pma/PEma (%) 45 59 73 92 121
Rainfall-runoff yield Qma/Pma (%) 4 9 15 23 36
Interannual variability of PE (%) 2.2 2.5 2.7 2.8 3.1
Interannual variability of P (%) 13 17 20 23 29
Interannual variability of Q (%) 29 46 70 91 114

aValues of interannual variability correspond to coefficients of variation calculated on 10 year periods.

Figure 2. Relative long-term climate variability of potential evapotranspiration (PE), rainfall (P), and
streamflow (Q) over the catchment set. For each catchment, a line corresponds to the series of mean val-
ues over a 10 year sliding window. Values are expressed relative to the average value on the total record
(usually 1974–2006). Each value is plotted at the central year of the 10 year window.
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Initiative (http://www.seaci.org/) and the study for the
New South Wales Office of Water on climate impact on
runoff [Vaze and Teng, 2011].

2.2. Hydrological Models

[14] Three daily lumped continuous reservoir-type RR
models were used in this study: GR4J, MORDOR6 and
SIMHYD. These models had already been applied to large
data sets in previous studies [Chahinian et al., 2006; Oudin
et al., 2008; Perrin et al., 2008; Chiew et al., 2009]. Table 2
gives an overview of the characteristics of these models as
well as the references where detailed descriptions are pro-
vided. In spite of their parsimony (only a few free parame-
ters), they showed a good level of efficiency in past
applications and correspond to different representations of
the RR transformation. GR4J is based on two stores and four
parameters to calibrate, while MORDOR6 and SIMHYD
both have four stores and six and seven free parameters,
respectively.

3. Crash Test Methodology and Analysis Method
[15] Our general objective was to study the transfer of

parameter sets between climatically contrasted periods. In
the vein of the discussion of Andréassian et al. [2009] on
model evaluation, we implemented a ‘‘crash test’’ method-
ology for models to be used in changing climatic conditions
(typically such as climate change impact studies), i.e., a
testing methodology putting models in extremely demand-
ing application conditions, in order to explore their applica-
tion limits. Loss of robustness caused by inappropriate
parameter transfers are analyzed through the variations in
model performance.

3.1. Generalized Split-Sample Test

[16] The differential split-sample test (DSST) discussed
in section 1.2 allows us to evaluate models in contrasted
climatic conditions. The method usually follows three
steps: (1) A small number of subperiods are selected
according to one climatic characteristic (e.g., mean rainfall
or temperature for the catchment). (2) The calibration-vali-
dation test is applied on these periods. (3) The validation
performances are compared to evaluate whether they vary
significantly when climatic characteristics differ between
calibration and validation periods.

[17] This procedure has two limitations for obtaining ro-
bust and generalizable conclusions. First, it requires know-
ing in advance which climatic characteristics most likely
play a key role in limiting the parameter set transfer. If the

influence of different characteristics is tested, it is often dif-
ficult to compare the results because the subperiods used
are different. Indeed they are selected according to the cli-
matic property studied: for example, the driest period may
differ from the warmest one. Second, the number of trans-
fer tests is usually small, as often only two or three con-
trasted periods can be identified. This limits the possibility
of drawing general conclusions and discovering the main
drivers of parameter transferability from the results them-
selves. Indeed, it might be hard to distinguish the effect of
the climate difference from other aspects potentially influ-
encing parameter transfer.

[18] To overcome these limitations, we propose a gener-
alization of the standard SST and DSST schemes. The
objective is to test the model in as many and as varied cli-
matic configurations as possible, including similar and con-
trasted conditions between calibration and validation. The
problem was approached the other way round compared to
what is usually done: numerous tests of parameter transfer
were carried out and the results were analyzed to determine
afterward whether the variations in the transfer quality
were related to climatic aspects. This approach will be
called the generalized split-sample test (GSST) hereafter.

[19] The GSST procedure simply consists of a series of
calibration-validation tests on subperiods of equal length,
considering all possible configurations. This procedure is
based on the following steps (see Figure 3).

[20] 1. A sliding window of the chosen length (5 years
on the graph) is used to define subperiods. Between two
periods, the window is moved by 1 year (i.e., one hydrolog-
ical cycle), thus allowing the subperiods to overlap. In Fig-
ure 3, these subperiods are the dark gray bars, while light
gray represents the remaining part of the time series.

[21] 2. The hydrological model(s) are calibrated on each
subperiod using a previously selected function. This pro-
vides one parameter set � per period. At this step, any
objective function or calibration algorithm can be used.

[22] 3. For each calibration subperiod, the optimized pa-
rameter set is used to perform all the possible validation
tests on independent subperiods. Validation subperiods
overlapping with the calibration one are not considered to
ensure strict independence of calibration and validation
conditions (see Figure 3). Moreover, a reference flow series
is simulated for the calibration period using the parameter
set obtained after calibrating the model on that period. Note
that the number of validation tests will not be the same for
all calibration periods. But this is not a problem as all
results will be analyzed together.

Table 2. Overview of the Characteristics for the Three Models Testeda

GR4J MORDOR6 SIMHYD Plus Routing

Number of free parameters 4 6 7
Structure overview: production A rainfall interception by PE, a non-

linear SMA store, an intercatchment
GW exchange function

A rainfall correction factor, a nonlin-
ear SMA store, a lower evaporative

store

An interception store, a SMA nonlin-
ear store

Structure overview: transfer Two unit hydrographs, a nonlinear
routing store

A direct flow component, an infiltra-
tion store, a linear routing store, a

unit hydrograph

A groundwater store, a nonlinear
routing store, a convolution delay

Sources and first publications Perrin et al. [2003] Mathevet [2005] (original MORDOR
version from Garc�on [1996])

Chiew et al. [2002] (with simplifica-
tions from Tan et al. [2005])

aPE, potential evapotranspiration; SMA, soil and moisture capacity; GW, groundwater.
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[23] To our knowledge, the SST, in which periods are
not a priori selected but all combinations are tested, had not
been used in this way before. The GSST procedure is meant
to overcome the limitations previously mentioned: (1) It
leads to a large number of test cases for the analysis, pro-
viding a continuum of the possible range of climatic differ-
ences existing in the observed series; for instance, with an
18 year long time series, sampling into 5 year periods and
3 year periods generates 90 and 182 SSTs, respectively. (2)
It is less subjective because no choice is made before the
tests. (3) The influence of changes in any climate character-
istics on model robustness can be studied (ranging from
mean interannual variables to indices characterizing the
mean seasonal contrasts within the year). Indeed, all possi-
ble configurations are tested and lead to a unique list of
validation performances. Switching between rainfall and
temperature in the analysis simply means expressing these
performances relative to one or the other climatic charac-
teristic (the common practice where periods are selected
with respect to one characteristic or the other leads to
results which are not directly comparable).

[24] It could be argued that if the number of tests is
increased there will be considerable redundancy in the tests
carried out since the subperiods are not independent.
Actually, our intention was to multiply the number of SSTs
to study the entire range of climatic differences available
between periods, even if each of them does not radically
differ from all the others. The important point is that the
calibration and validation periods are actually independent,
which is in agreement with the original SST scheme.

3.2. Which Criteria Can Quantify the Extrapolation
Capacity of a Given Parameter Set?

[25] When a model is used to simulate discharges, errors
will arise: (1) for reasons which were already noticeable
during calibration (data and model structure errors, identifi-
ability issues, etc.) and (2) by the move from the calibration
period to another period leading to the use of less than

optimal parameters for this application period [Merz et al.,
2011]. In this study, we investigate this second aspect
under a wide range of conditions. Separating these two
sources of error is essential to achieving an informative
evaluation of the extrapolation capacity of hydrological
models: a model may work well in calibration but show
poor transposability over time.

[26] Let us consider a split sample test where a parame-
ter set � is transferred from a period D (‘‘donor’’, i.e., cali-
bration) to a period R (‘‘receiver’’, i.e., validation). With
these notations, the root-mean-square error (RMSE) the
Nash-Sutcliffe efficiency (NSE) [Nash and Sutcliffe, 1970]
and the bias on total volumes can be written as

RMSED!R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1

ðQ̂R;k ½�D� � QR;kÞ2
s

(1)

NSED!R ¼ 1�

Xn

k¼1

ðQ̂R;k ½�D� � QR;kÞ2

Xn

k¼1

ðQR � QR;kÞ2
(2)

BIASD!R ¼

Xn

k¼1

Q̂R;k ½�D� �
Xn

k¼1

QR;k

Xn

k¼1

QR;k

(3)

in which QR;k is the observed discharge at time step k on
period R, Q̂R;k ½�D� the simulated discharge at time step k on
period R using the parameter set � optimized on D, and n is
the total number of time steps in period R.

[27] The advantage of the relative formulation of bias is
to provide values that are comparable between periods and
catchments. In their study on the time stability of parame-
ters, Merz et al. [2011] plotted model bias in validation and

Figure 3. Illustration of the proposed generalized split-sample test (GSST) procedure (example with
18 years available and 5 year subperiods).
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in calibration on the same figure to show that their trend on
model error was indeed caused by the parameter transfer.

[28] Another way to emphasize the performance losses
caused by the parameter transfer is to study the evolving
performance from calibration to validation. RMSED!R or
NSED!R values for different D periods but a single R pe-
riod can be directly compared since all errors are calculated
on the same time steps. Differences or ratios can be com-
puted to highlight the quality of a given parameter set com-
pared to another. However, the RMSE is dependent on the
mean volume and will tend to be greater for periods (or
catchments) showing larger discharges. NSE is built around
a ratio between the squared model error and the variance of
observed flows. Under certain conditions, one can assume
that changes in variance or volumes between periods have
a limited impact on the comparison results. Limitations
appear when the periods compared show contrasted cli-
matic properties and hence contrasted flow levels. It
becomes even more complicated when results from differ-
ent catchments are analyzed together. Contrary to what is
often done in the literature, we decided not to use differen-
ces in NSE to conclude on the influence of changes in cli-
mate on parameter transferability. Instead, we defined the
following model robustness criteria (MRC):

MRCD!R ¼
"D!R

"R!R
� 1 (4)

where " is the objective function to be minimized during
calibration. The main idea is that the quality of a given pa-
rameter set is assessed relative to a reference set, obtained
through calibration. "D!R is one estimate of the model error
on period R using the parameters calibrated on period D
(e.g., "D!R ¼ RMSED!R). It varies depending on the abil-
ity of the parameter set optimized on period D to simulate
discharges on period R. "R!R should be the smallest value
of " achievable on period R with the model. "D!R and
"R!R are comparable since they are computed on the same
‘‘receiver’’ period. MRC should theoretically be positive.
Its interpretation is straightforward. It takes a value of 0 if
the parameter set optimized on D gives the same fit it
would have if it was calibrated on R. The higher the value,
the less suitable the parameter set for the receiving period
R. For example, a MRC value of 0.2 means that there has
been a 20% error increase due to the use of a transferred
parameter instead of the optimal one. Note that a negative
value would mean that the parameter set optimized on pe-
riod D performs better on period R than the reference set
optimized over period R. This would be the indication of a
problem in parameter optimization on period R, where the
global optimum had not been identified properly. Here this
happens in a very limited number of calibration runs (less
than 1%), indicating that this has only a marginal influence
on our results.

[29] The formulation of MRC overcomes most of the dif-
ficulties mentioned previously in comparing performances.
The only requirement to allow comparing MRC values
obtained under various conditions is that the ratio "D!R=
"R!R must be independent from the period or catchment
characteristics (in terms of volumes or dynamic). For
example, " ¼ RMSE can be used, whereas " ¼ �NSE can-
not since a variance term would remain in MRC and results

from various catchments could therefore not be mixed.
When " is the mean square error, MRC is a modified ver-
sion of –NSE in which the benchmark model at the denom-
inator has been changed [see Lerat et al., 2012]. In the
NSE formulation, this benchmark is the mean observed
flow value over the R period while in MRC, it is the flow
simulated by the tested model (e.g., GR4J) using the pa-
rameter set optimized on R. Provided " shows the expected
properties mentioned above, MRC is fully comparable over
various conditions in terms of climate, catchment scale or
dynamic. MRC values should not be significantly affected
by the imperfect fit of the model to a specific period
(caused by data and model structure errors). Conversely,
the influence of using transferred rather than optimized pa-
rameters is highlighted. Therefore the climatic extrapola-
tion capacity of a parameter set can be quantified and the
results analyzed together on a large number of case studies.

3.3. Methodology for Analyzing the Results

[30] Variations in MRC values were analyzed relative to
the differences in climate between the calibration and vali-
dation periods, aiming to investigate the potential link
between the quality of parameter transfers and the variation
in climate from calibration to validation. Changes in cli-
mate were expressed as ratios (e.g., 10% less rainfall) or
differences (e.g., þ1�C). We built graphs where each MRC
value was plotted against the corresponding change of the
selected climate variable. An example is shown in Figure 4
for the MORDOR6 model and rainfall variations. Figure 4a
shows several parameter transfer tests carried out on a sin-
gle receiving period. Because all values on the x and y axes
are relative, the results for all the other receiving periods
can be plotted on the same graph. The plotting procedure
was then repeated for all the catchments: this provides a
large cloud of points, as shown in Figure 4b. To extract the
information contained in the graph, the cloud was divided
into vertical slices with the same number of points (instead
of slices of equal width, which would be less robust). In
each slice, the distribution of MRC values is summarized
by a box plot (showing the 0.05, 0.25, 0.5, 0.75, and 0.95
percentiles) (see Figure 4c). Because of the lesser density
on the left and right sides of the graph, the slices have dif-
ferent widths and the box plots are therefore not evenly
spaced. Nevertheless, every point has a corresponding box
plot and the voids appearing on the graph are always cov-
ered by the neighboring box plot. The vertical spread for
each box plot indicates the range of performance loss
obtained for the corresponding test conditions. Comparing
the relative position of the box plots indicates whether a
change in climate from calibration to validation causes loss
of robustness due to inappropriate parameter transfers.

[31] To better understand the interpretation of this graph,
let us take the example of the box plots shown in Figure 4c.
The climate variable used here is mean rainfall. The box
plot obtained for about þ30% in rainfall (right-hand side of
the graph) represents the cases of donor periods that are
wetter than the receiver period (i.e., parameter transfer
from wet to dry). This box plot is compared to the box plot
for 0% change in rainfall. The latter indicates the ‘‘usual’’
performance loss when parameters are transferred under
similar climate conditions (median of about 20%). The
higher values shown by the box plot on the right indicate
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that using a parameter set calibrated on a period 30% wet-
ter than the validation climate is likely to reduce the quality
of the model’s simulations (here the box plot median
increases from 20% to 50%). In a way, this representation
puts into perspective the loss of efficiency due to a common
transfer and the loss stemming from the climatic extrapola-
tion conditions.

3.4. Crash Test Conditions

[32] The models’ parameters were calibrated to mini-
mize the following objective function:

" ¼ RMSE½
ffiffiffiffi
Q

p
�ð1þ jBiasjÞ (5)

[33] The combination of RMSE½
ffiffiffiffi
Q
p
� and bias gives

weight to dynamic representation as well as water balance.
The models’ ability to simulate mean runoff is of particular
importance in the context of climate change impact studies.
Using square-root-transformed flows to compute the RMSE
reduces the influence of high flows during calibration and
was found to give a good compromise between alternative
criteria [Oudin et al., 2006a]. Given the small number of
free parameters in the tested models, we used a prior sys-
tematic inspection of the parameter space followed by a
simple steepest descent local search procedure to determine
the most likely zone of convergence. This approach proved
efficient for such parsimonious models compared to more
complex search algorithms [see Edijatno et al., 1999;
Mathevet, 2005].

[34] Choosing the subperiod length used in the sampling
methodology (see section 3.1) is a difficult task (see, e.g.,
the discussions by Yapo et al. [1996] and Anctil et al.
[2004]). The calibration period should be long enough to
allow for correct parameter determination. At the same
time, using overly long periods may play against the
study’s objectives, as it would reduce the contrast between
periods. Also, the number of independent test periods per
catchment decreases when the subperiod length increases.
We repeated the work with 10 year long and 5 year long
periods and will present here the results obtained with the
10 year long calibration periods. Because of the length of
available records (more than 30 years) and the high

variability of the Australian climate (compared to other
parts of the world), using 10 year periods still provides sig-
nificant differences in mean climate (see section 2.1 and
Figure 2) and therefore does not change the conclusions.

[35] The number of tests that could be made on the
catchments following the GSST procedure depended on
data availability. Subperiods with more than 10% missing
values were excluded from the tests. As a result, 12 catch-
ments were not considered from the initial set because of
insufficient record length or excessive gaps in data. There-
fore, a total of 216 catchments were used in the tests. Fifty
tests or more were made for 183 catchments (85% of the
set). A maximum of 156 split-sample tests was reached for
134 catchments (62% of the set), corresponding to permu-
tations of 10 year periods over the 1974–2006 period.

3.5. Climate Variables Investigated

[36] Various climate variables can be used in the analy-
sis. Examples include mean annual or seasonal rainfall, PE
or temperature, the number of extreme rain or drought
events, aridity index, etc. Here we based the analysis on the
common variables P, PE, and T with averages computed
over the test period. For each split sample test, we deter-
mined the changes in mean P, PE and T between calibra-
tion and validation periods and plotted these �P, �PE, and
�T against each other. Scatter plots were summarized in
box plots using the representation introduced in section 4.3.
Figure 5 shows the existence of correlations between varia-
bles: the link between �T and �PE is not surprising; their
anticorrelation with �P indicates that an increase in tem-
perature (or PE) on these catchments generally coincides
with a decrease in precipitation.

4. Results
4.1. Calibration Results

[37] We first provide an overview of calibration perform-
ance to evaluate the quality of the reference parameter sets.
The box plots in Figure 6 show the distribution of calibra-
tion performance in terms of NSE calculated on root-square
discharges (Figure 6, left) and bias on total volume (Figure
6, right). The calibration results for our tests are shown in
black, corresponding to the objective function " defined in

Figure 4. Procedure followed to illustrate the results. The relative loss of performance is plotted
against the relative evolution of climate conditions. (a) Dotty plot for a single period, (b) dotty plot for
all periods of all catchments, and (c) summary of dotty plots as box plots.

W05552 CORON ET AL.: TESTING HYDROLOGICAL MODELS IN CONTRASTED CLIMATE W05552

8 of 17



equation (5). As a source of comparison, we plotted the
results obtained for " ¼ RMSE½

ffiffiffiffi
Q
p
� in gray. We discussed

above how the comparison of NSE values between periods
or catchments relies on strong assumptions, not always valid
in our context. These results only aim at checking that the
models perform reasonably well in calibration. We note the
benefit from adding the bias constraint in the objective func-
tion and the limited consequences on NSE½

ffiffiffiffi
Q
p
� values,

which is in agreement with the results found by Viney et al.
[2009] and the theoretical comments made by Gupta and
Kling [2011].

4.2. Which Climate Property Causes Problems for
Parameter Transfer?

[38] We applied the GSST procedure over 10 year peri-
ods for 216 catchments. As in Figure 4, the variations in
model robustness criteria (MRC defined in equation (4))
are plotted against the differences in climate between cali-
bration and validation for all catchments. These graphs are
provided in Figure 7. To facilitate the analysis of Figure 7,
the individual points are not shown. The nine graphs corre-
spond to the three models and three climate variables con-
sidered (mean P, PE, and T). The shape of each scatterplot
is then analyzed to determine which climatic characteristics
influence parameter transferability and to what extent this
affects model performance.

[39] First, we note the relatively wide vertical range of
the box plots. This indicates that performance losses can be
low or high depending on the period or catchment, inde-
pendently from the mean climate evolution. The center part
of each graph gives an overview of the level of error
obtained when parameters are transferred under similar cli-
mate conditions. We observe a median (thick black line
within the box plot) at about 18–20% for GR4J, MOR-
DOR6 and SIMHYD. These values mean that transferring
parameters to another period with a similar mean climate
leads to an 18%–20% increase in model error (" ¼
RMSE½

ffiffiffiffi
Q
p
�(1 þ jBiasj)) on average compared to calibra-

tion. This performance loss is a combination of two
aspects. First, there is an incompressible loss of perform-
ance when going from calibration to validation due to the
model’s approximations (inputs, parameters and structure).
Second, average conditions such as the total rainfall can
remain stable between the two periods, whereas meaningful
differences exist (e.g., daily variability in rainfall and
runoff).

[40] We can now evaluate whether an additional loss
occurs when the climate conditions between the ‘‘donor’’
and ‘‘receiver’’ periods differ significantly. In spite of the
vertical spread, trends are visible on the three left graphs in
Figure 7 (case of mean rainfall). Considering the large
number of points in the scatterplot, these trends on the box

Figure 5. Correlation between variations in P, PE, and T for all the split-sample tests over the entire
catchment set.

Figure 6. Calibration performance on the entire catchment set with two objective functions: " ¼
RMSE½

ffiffiffiffi
Q
p
� (in gray) and " ¼ RMSE½

ffiffiffiffi
Q
p
�(1 þ jBiasj) (in black).
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plot medians, but also on the 25th and 75th percentiles, are
definitely not the result of isolated cases and should be con-
sidered significant, although they are small. This indicates
that a link can be established between model performance
(estimated through the objective function) and the differ-
ence in mean rainfall between calibration and simulation
periods. The performance loss is not symmetric for positive
and negative changes in mean rainfall. We can observe a
greater loss when donor periods are wetter than receiver
periods. In addition, the trend seems to be the strongest for
MORDOR6 and the weakest for SIMHYD. For example, a
þ15% difference in mean rainfall leads to an average
increase in MRC from about 18 to 30% for GR4J, 18 to
40% for MORDOR6 and 20 to 30% for SIMHYD. Interest-
ingly, similar trends are not visible for PE and T, in spite of
the correlation observed between �P, �PE and �T
(although we notice slightly larger performance losses
when �PE < 0). These differences likely result from the
fact that the environment in southeast Australia is water

limiting (as opposed to energy limiting), which may cause
a higher sensitivity of flows to rainfall compared to PE and
temperature (sensitivity measured through the objective
function).

[41] The results obtained here are in general agreement
with the findings reported by Vaze et al. [2010b], although
the methodology has been modified to provide better
robustness on conclusions (more tests and a different analy-
sis procedure). Amplitudes cannot be compared directly
but the general shapes are similar : a change in mean rain-
fall reduces parameter transferability and this transferabil-
ity seems better from dry to wet than vice versa.

4.3. Consequences of These Deficiencies on Volume
Predictions

[42] In this section, we attempt to specifically quantify
the ability of models to correctly predict mean runoff over
a period in the context of varying climatic conditions.
Mean runoff is a basic but nonetheless crucial indicator for

Figure 7. Study of models deficiencies : Performance loss due to the parameter transfer plotted against
changes in mean P, PE, and T for the 216 catchments, with " ¼ RMSE½

ffiffiffiffi
Q
p
�(1 þ jBiasj).
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water resources management under current conditions as
well as potential future ones.

[43] Bias values have the advantage of being directly
comparable. Therefore, we plotted the bias in validation
against the climate differences between calibration and val-
idation (results not presented here). We found trends for all
three climatic characteristics (P, PE, and T), although they
were stronger for changes in rainfall. All models showed a
tendency to overestimate flows in the validation period
when the calibration period was wetter and cooler and to
underestimate flows when the calibration period was dryer
and warmer. Nevertheless, no clear conclusion could be
drawn on the individual role played by each climate vari-
able because of the dependency observed between �P,

�PE, and �T (see Figure 5). In spite of its many advan-
tages, the representation method used to build Figure 7 has
one drawback: only one climate characteristic can be ana-
lyzed at a time.

[44] To overcome this limitation and to make sure that
the results can be compared with studies carried out in al-
pine regions (i.e., energy-limited conditions), we used a
representation where two climate variables could be dis-
played at a time. We could then determine if only one or
both variables influence the validation bias when they vary.
Figure 8 shows the median bias on simulated flows plotted
for all possible combinations of two climate variables
between �P, �PE, and �T. Note that this representation
illustrates the models deficiencies in relation with calibration

Figure 8. Study of models deficiencies : bias on simulated discharges as a function of changes in P,
PE, and T during parameter transfer (median bias from an aggregation of results on 216 catchments; the
changes in climate are computed with the climate of the receiver period as reference).
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conditions. It should not be interpreted as a plot of the actual
flow sensitivity to variations in climate. Compared to the
graphs previously presented, this representation also has lim-
itations: (1) only one percentile of the box plots can be
shown at a time; (2) the cloud gridding does not ensure an
equal number of points in each cell but equal distribution
along the x and y axes. To limit the impact on interpretations
of this second limitation, the cell sizes are modified to reflect
the number of points available. The size is proportional to
the number of points under 50 values and is fixed above 50
values (e.g., few points are available for �T > 0 and �PE
< 0 or for �T > 0 and �P > 0).

[45] The median bias values obtained for all three mod-
els over the 216 catchments show the following variations.
If we consider absolute values of bias, we note a symmetri-
cal pattern along the y axis for Figures 8a, 8d, and 8g.
Indeed, for constant T, the absolute bias increases with
changes in P, while the contrary is not true (i.e., no symme-
try along the x axis). As a result, we can conclude that on
average for the data set, changes in P influence the bias
more than changes in T. This is to be expected as all the
216 catchments used in this study are in a water-limited
area where relative changes in P have larger impacts on
runoff than changes in T or PE. The situation is not as clear
on Figures 8b, 8e, and 8h (�PE and �P). Changes in P and
PE have a combined effect on the validation bias, although
the greatest changes in P (615%) seem to have more
impact than the greatest changes in PE (62%). Finally,
�PE and �T also have some effect on the validation bias.
None of them seems to be more influential than the others
(with respect to the points available). A parallel can be
made with the results from Oudin et al. [2006b], who
showed that biased rainfall inputs have a larger impact on
models efficiency than biased PE inputs.

[46] The comparison of results between GR4J, MOR-
DOR6 and SIMHYD indicates that even though the inten-
sity varies depending on the model’s structure, the general
behaviors are similar. This constitutes a difference with the
findings of Vaze et al. [2010b], who obtained contrary
results depending on the model used. Here we observed the
smallest and strongest absolute bias for the SIMHYD and
MORDOR6 models, respectively, when P changes between
calibration and validation. This relation between the change
in climate from calibration to validation and the simulation
bias was also observed by Merz et al. [2011], although the
study area was completely different (Australia versus Aus-
tria). Further investigations are needed to determine
whether these results are related to the model and objective
function used in model calibration. On average, we
observed that a 20% absolute bias was introduced when
mean rainfall differed by 10%–20% and PE differed by
1%–2% between calibration and validation.

4.4. Are Models Deficiencies Similar on All
Catchments?

[47] A significant link between climate difference during
parameters transfer and bias on simulated discharges was
found when the results from the entire data set were ana-
lyzed together. However, we do not have information on
the homogeneity of this link between different catchments.
Interpretations made on a single catchment are always diffi-
cult to generalize. However, the use of GSST provides an

average of 125 SSTs per catchment and calibrations were
made on 10 year periods. Therefore, conditions can be con-
sidered sufficient to make a rough analysis at the catchment
scale of the consequences that parameter time transfer may
have on model efficiency.

[48] For each catchment, a library of validation tests is
available and can be classified according to differences in
climate between calibration and validation. We can esti-
mate a median value of simulation bias for a specific
change in climate (e.g., þ10% in rainfall, �0.5�C, etc.). A
series of maps can then be built for a quick overview of the
spatial variability of parameter transferability issues (one
map per climate difference). Here we present the results for
changes in mean rainfall as they have the greatest impact
on bias for our catchment set. Because the results are quite
similar for the three models tested, only the results for
GR4J are shown here. The maps in Figure 9 are for �P ¼
�10%, 0%, þ10%, where each catchment is represented
by one symbol. The triangle direction (upward/downward)
shows the sign, while the color indicates the intensity of the
bias obtained during simulations. Black crosses correspond
to cases where this level of rainfall difference was not
available for the catchment during the GSST procedure.

[49] In accordance with the previous findings, for a great
majority of catchments, we found that simulation bias was
close to zero when the mean rainfall was similar between
calibration and validation. Mean flows were overestimated
when rainfall was greater during calibration than validation
and vice versa. Some catchments were exceptions to these
generic results with two possible situations: (1) both �P
and �PE affect the simulation bias (see in Figure 8). For
example, the combination of �P ¼ 0 and �PE < 0 can lead
to a positive bias or the combination of �P < 0 and �PE > 0
to a negative bias; (2) other climatic characteristics may differ
and affect the results, although these changes are not detected
when using mean P, T, and PE; (3) other issues which are
catchment specific and unrelated to climate variations may
induce robustness loss due to parameter transfer. Despite data
verification, cases of changes in input quality and availability
or changes in rating curves between periods are never com-
pletely avoidable.

[50] Generally, we found that the magnitude of models
deficiencies differs between catchments. For some catch-
ments, transferred parameters were suitable for other peri-
ods, even with contrasted climate. For other catchments, a
clear relation was established between simulation quality
(particularly bias on total volume) and the differences in
climate between calibration and validation. In spite of vari-
ous attempts, we could not relate the intensity of these
changes with catchment or climate characteristics. How-
ever, we noted that the largest models deficiencies occurred
on catchments with relatively low annual runoff yield.
Besides, as mentioned in section 1.2, temporal changes of
nonclimatic characteristics (e.g., land use, quality of input
data, etc.) may lead to performance losses, with impacts
possibly increasing with the time elapsed between calibra-
tion and validation periods. This may contribute to explain
the cases of strongest models deficiency, potentially caused
by the combined negative impact of differences in climate
conditions and in other aspects between periods.

[51] Two examples of the possible situations are pre-
sented in Figure 10. These catchments should not be
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considered as representing average conditions obtained
over two subgroups. Indeed, we obtained a large variety of
results depending on the catchment analyzed. In some
cases, the simulation quality varied independently from any
climatic characteristic, while distinct correlations were
found on others. The results for the Rose River at Matong
North (179 km2) and the Pranjip Creek River at Moorilim
(818 km2) catchments are used as an illustration. The loca-
tion of these two catchments is shown by black circles on
the first map in Figure 9. They were chosen because they
illustrate some of the contrasted situations we encountered,
with similar climate variations. Figure 10 (left) shows the
variations of MRC with respect to changes in rainfall
between calibration and validation. The results for all the
calibration-validation combinations are plotted on the
graph. The performance losses are clearly stable for the first
catchment, while they are greatly influenced by changes in
rainfall for the second one. For both catchments, the solid
black dots are the results of parameter transfers to the re-
ceiver period 1978–1987. The corresponding simulations
are illustrated in Figure 10 (right) as mean monthly flows
over this 10 year period. The solid and dashed lines corre-
spond to the observation and the reference simulation
obtained from calibration, respectively. The envelope with
horizontal shading (vertical shading) shows the range of
simulated values when the calibration period was drier
(wetter) than the validation period. All simulations are rela-
tively similar in the case of the Rose River (the two enve-
lopes even overlap sometimes). Contrary to this, the range
of simulated values is very large for the Pranjip River and

the curves of the different simulations are positioned in ac-
cordance with the climate difference. When classified from
most overestimating to most underestimating, the curve
order is indeed almost identical to the classification of cli-
mate differences between calibration and validation.

5. Discussion
5.1. Methodological Choices

[52] The objective function " used for these results was
RMSE½

ffiffiffiffi
Q
p
�(1 þ jBiasj). Other criteria such as RMSE[Q]

(1 þ jBiasj) or directly RMSE½
ffiffiffiffi
Q
p
� and RMSE[Q] were

tested. The results are not presented here but the overall
shapes obtained in Figures 7 and 8 were similar. While
here we focus more on the diagnostic part, studies investi-
gating the reduction of robustness loss during parameter
transfer may be the topic of future investigations. Among
possible sources are the use of more complex objective
functions considering, for example, error heteroscedasticity
as suggested by Thyer et al. [2009] or Schoups and Vrugt
[2010].

[53] In addition to keeping the approach simple, we
aimed at obtaining an overall and robust view of the topic.
As a result, we compared three conceptual models with dif-
ferent structures (although all were lumped) and used a rel-
atively large catchment set. Considering the potential
implications of these results, it is indeed important to deter-
mine whether the findings for one model over one catch-
ment are isolated or similar in a number of other cases.
With the same idea of maximizing the number of points for

Figure 9. Study of models deficiencies : maps of median bias on discharges simulated by GR4J for �P
¼ �10%, 0%, þ10%
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analysis, we authorized periods to overlap in our sampling
methodology. As a result, each point will not be entirely in-
dependent of the others with which it shares one calibration
year or more. Because are more interested in the general
picture than computing statistical relation, this does not
affect the interpretation of results. Besides, forbidding over-
lap would require selecting a period, which would reduce
the range of climatic contrasts tested for each catchment.

5.2. Results

[54] Using a parameter set under climatic conditions dif-
fering from the calibration period can lead to decreased
simulation qualities. For instance, we observed perform-
ance losses when rainfall changed during parameter trans-
fer and these losses were greater for wet to dry transfers
than the other way round. These results corroborate the
findings of Vaze et al. [2010b] and have direct implications
on the use of hydrological models under contrasted climatic
conditions (among which, climate change impact studies).
Moreover, we observed models deficiencies in the form of
an average tendency to overestimate (underestimate) dis-
charges when parameters are optimized in a wetter (drier)
climate. This is consistent with the results from Merz et al.
[2011], although the characteristics of the two catchment
sets used differ significantly. High biases were obtained for

ranges of climate differences between optimization and
application stages similar to possible future climate evolu-
tions in the next decades (as projected by climate models).
Since mean flow estimates are crucial indicators in water
management plans for current and future conditions, these
results should therefore be a particular source of concern.
At the same time, we found that the magnitudes of these
models deficiencies were not homogeneous but somewhat
catchment dependent. This might explain why there is cur-
rently no consensus in the literature on this question, but it
surely makes the situation more complex for hydrologists.

[55] Further work is needed to understand the hydrological
mechanisms behind the robustness issues observed in south-
east Australia because of inappropriate parameter transfer.
The analysis of the link between parameter values and cali-
bration conditions should contribute to that (this is out of the
scope of this paper but will be reported in due course). The
possible causes for inappropriate parameter transfer are vari-
ous (see section 2). Among these, we believe that incorrect
simulation of the water budget might be a major one. When
transferring parameters, we indeed assume that (1) the adjust-
ments made during parameter calibration provide a satisfac-
tory representation of the water budget and (2) they remain
valid over time (i.e., the adjustments made on one period are
suitable for another). However, this might not always be true

Figure 10. Examples of test results for two catchments: Rose River at Matong North (up) and Pranjip
Creek River at Moorilim (bottom). (left) Performance losses during parameter transfer expressed relative
to changes in mean rainfall. (right) Range of monthly flows simulated over the 1978–1987 period for var-
ious parameter transfers (horizontal and vertical shading indicates the simulation envelope for calibration
on wetter or drier climate than validation).
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and could cause increased bias when parameters are trans-
ferred. For instance, intercatchment groundwater flows (IGF)
can play an important role in the catchment water budget.
Even when they are explicitly represented in the models, the
IGF formulations are extremely simplified and the associated
parameter value remains difficult to identify [Le Moine et al.,
2007]. Similarly, the water balance can be strongly affected
by errors in inputs that models tend to compensate during cal-
ibration to close the water budget. However, these errors
might change over time, as the volumes in action vary, which
will impact the parameters’ transferability if this is not taken
into account [McMillan et al., 2011]. Last, the sensitivity of
runoff to climate is not straightforward in southeast Australia
[Potter and Chiew, 2011]. It seems that the RR relationship
can sometimes show a form of elasticity, i.e., the prevailing
hydrological processes may change between periods of dif-
ferent regimes [Harman et al., 2011]. If this is the case, pa-
rameters calibrated under a specific climate would not be
representative of the processes that are active under other
conditions.

[56] Numerous unknowns remain around the cases of
robustness loss sometimes observed when a model is used
in a changing climate. The study of other climatic character-
istics than mean conditions and the comparison between
problematic cases with nonproblematic cases may provide
new leads for a better understanding of the phenomena
involved. Further research is obviously needed to build mod-
els actually able to cope with nonstationary conditions in all
catchments. Before this can be achieved, preliminary testing
seems preferable to obtain a rough estimation of the parame-
ters’ transferability on a given catchment. The procedures
proposed in this paper are one way to achieve such testing.

6. Conclusions
[57] Rainfall-runoff models are essential tools for the

prediction of river flows. Once calibrated under historical
climatic conditions, they are sometimes fed with forcings
with different climatic characteristics. This raises questions
on the validity of such parameter transfer or what could be
called the climatic extrapolation capacity of hydrological
models. Following the path opened by Kleme�s [1986],
recent research illustrates how significant it can be, with
direct implications on the prediction quality. However,
there is no consensus in the literature, as most research was
carried out on isolated cases and the results are not always
comparable. With this in mind, we proposed a generalized
testing procedure (GSST) and the associated analysis meth-
ods, with the objective of obtaining robust interpretations
on this topic.

[58] When applied to 216 catchments in southeast Aus-
tralia using three conceptual RR models, this methodology
led to the following results. Wide ranges of performance
losses were observed between calibration and validation
periods. Using the same error criteria as for parameter cali-
bration, we found a tendency toward increased simulation
error, with a greater difference in mean rainfall during the
parameter transfer, but nothing of similar magnitude for
changes in mean PE or temperature. Bias in total volumes
was affected by changes in both mean rainfall and PE. We
also observed a tendency to overestimate mean runoff when
the calibration period was wetter (wet to dry parameter

transfer) and to underestimate mean runoff when the calibra-
tion period was drier (dry to wet parameter transfer). Even
though the tendencies were observed for a majority of the
catchments in the data set, we found that their intensity
could greatly vary between catchments.

[59] The results obtained here corroborate previous find-
ings obtained by others on large catchment sets to highlight
the possible lack of robustness when models are used under
a changing climate. They have important implications when
using hydrological models as decision-making tools in a
wide range of applications (flood risk management, water
availability, hydropower, climate change impact studies,
etc.). Therefore, we believe that research should be pursued
on the improvement of methods to diagnose parameter trans-
ferability under a changing climate. Further research is
needed to apply similar testing procedures with other models
and on different catchment sets (e.g., catchments which are
energy limited instead of water limited like those studied
herein) with the same objective: determining how relevant
the errors in parameter transfers due to climate differences
are compared to usual transfer errors in similar conditions.
The differences may provide new insights into the behavior
of models and hydrological systems in changing conditions.
Further research is also needed to analyze what is happening
in problematic cases, i.e., what makes the parameters unsuit-
able on a different period and look for solutions to reduce
these robustness losses by means of model structure adjust-
ment, the choice of objective function and/or constraints dur-
ing parameter optimization. All these constitute exciting
challenges for the coming decade on prediction under
change that will be launched by the International Association
of Hydrological Sciences.
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Coron, L., V. Andréassian, M. Bourqui, C. Perrin, and F. Hendrickx (2011),
Pathologies of hydrological models used in changing climatic condi-
tions: A review, in IUGG 2011—Hydro-climatology: Variability and
Change, IAHS Publ., 344, 39–44.

de Vos, N. J., T. H. M. Rientjes, and H. V. Gupta (2010), Diagnostic evalua-
tion of conceptual rainfall-runoff models using temporal clustering,
Hydrol. Processes, 24, 2840–2850, doi:10.1002/hyp.7698.

Donnelly-Makowecki, L., and R. Moore (1999), Hierarchical testing of
three rainfall-runoff models in small forested catchments, J. Hydrol.,
219(3–4), 136–152, doi:10.1016/S0022-1694(99)00056-6.

Edijatno, N. D. O. Nascimento, X. Yang, Z. Makhlouf, and C. Michel
(1999), GR3J: A daily watershed model with three free parameters,
Hydrol. Sci. J., 44, 263–277, doi:10.1080/02626669909492221.
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Perrin, C., V. Andréassian, C. Rojas-Serna, T. Mathevet, and N. Le Moine
(2008), Discrete parameterization of hydrological models: Evaluating
the use of parameter sets libraries over 900 catchments, Water Resour.
Res., 44, W08447, doi:10.1029/2007WR006579.

Potter, N. J., and F. H. S. Chiew (2011), An investigation into changes in
climate characteristics causing the recent very low runoff in the southern
Murray-Darling Basin using rainfall-runoff models, Water Resour. Res.,
47, W00G10, doi:10.1029/2010WR010333.

Prudhomme, C., and H. Davies (2009), Assessing uncertainties in climate
change impact analyses on the river flow regimes in the UK. Part 1:
Baseline climate, Clim. Change, 93(1), 177–195, doi:10.1007/s10584-
008-9464-3.

Refsgaard, J. C., and J. Knudsen (1996), Operational validation and inter-
comparison of different types of hydrological models, Water Resour.
Res., 32(7), 2189–2202.

Rosero, E., Z.-L. Yang, T. Wagener, L. E. Gulden, S. Yatheendradas, and
G.-Y. Niu (2010), Quantifying parameter sensitivity, interaction, and
transferability in hydrologically enhanced versions of the Noah land sur-
face model over transition zones during the warm season, J. Geophys.
Res., 115, D03106, doi:10.1029/2009JD012035.

Schoups, G., and J. A. Vrugt (2010), A formal likelihood function for pa-
rameter and predictive inference of hydrologic models with correlated,
heteroscedastic, and non-Gaussian errors, Water Resour. Res., 46,
W10531, doi:10.1029/2009WR008933.

Seibert, J. (2003), Reliability of model predictions outside calibration con-
ditions, Nord. Hydrol., 34(5), 477–492.

Singh, R., T. Wagener, K. van Werkhoven, M. E. Mann, and R. Crane
(2011), A trading-space-for-time approach to probabilistic continuous
streamflow predictions in a changing climate—Accounting for changing
watershed behavior, Hydrol. Earth Syst. Sci., 15(11), 3591–3603,
doi:10.5194/hess-15-3591-2011.

Steele-Dunne, S., P. Lynch, R. McGrath, T. Semmler, S. Wang, J. Hanafin,
and P. Nolan (2008), The impacts of climate change on hydrology in Ire-
land, J. Hydrol., 356(1–2), 28–45, doi:10.1016/j.jhydrol.2008.03.025.

Tan, K. S., F. H. S. Chiew, R. B. Grayson, P. J. Scanlon, and L. Siriwardena
(2005), Calibration of a daily rainfall-runoff model to estimate high daily
flows, in MODSIM 2005 Int. Congr. on Modelling and Simulation, edited
by A. Zerger and R. M. Argent, pp. 2960–2966, Modell. Simul. Soc. of
Australia and New Zealand, Melbourne, Australia.

Teng, J., J. Vaze, F. H. S. Chiew, B. Wang, and J.-M. Perraud (2011), Esti-
mating the relative uncertainties sourced from GCMs and hydrological
models in modelling climate change impact on runoff, J. Hydrome-
teorol., 13, 122–139, doi:10.1175/JHM-D-11-058.1.

Thyer, M., B. Renard, D. Kavetski, G. Kuczera, S. W. Franks, and S. Sri-
kanthan (2009), Critical evaluation of parameter consistency and predic-
tive uncertainty in hydrological modeling: A case study using Bayesian
total error analysis, Water Resour. Res., 45, W00B14, doi:10.1029/
2008WR006825.

Vaze, J., and J. Teng (2011), Future climate and runoff projections across
New South Wales, Australia: Results and practical applications, Hydrol.
Processes, 25(1), 18–35, doi:10.1002/hyp.7812.

W05552 CORON ET AL.: TESTING HYDROLOGICAL MODELS IN CONTRASTED CLIMATE W05552

16 of 17



Vaze, J., F. H. S. Chiew, J.-M. Perraud, N. R. Viney, D. A. Post, J. Teng,
B. Wang, J. Lerat, and M. Goswami (2010a), Rainfall-runoff modelling
across southeast Australia: Datasets, models and results, Aust. J. Water
Resour., 14(2), 101–116.

Vaze, J., D. A. Post, F. H. S. Chiew, J. M. Perraud, N. R. Viney, and J. Teng
(2010b), Climate nonstationarity—Validity of calibrated rainfall-runoff
models for use in climatic changes studies, J. Hydrol., 394(3–4), 447–
457, doi:10.1016/j.jhydrol.2010.09.018.

Vicuna, S., and J. A. Dracup (2007), The evolution of climate change
impact studies on hydrology and water resources in California, Clim.
Change, 82, 327–350, doi:10.1007/s10584-006-9207-2.

Viney, N. R., J.-M. Perraud, J. Vaze, F. H. S. Chiew, D. A. Post, and A.
Yang (2009), The usefulness of bias constraints in model calibration for
regionalisation to ungauged catchments, paper presented at 18th World
IMACS/MODSIM Congr., Modell. Simul. Soc. of Australia and New
Zealand, Cairns, Australia.

Wagener, T., N. McIntyre, M. J. Lees, H. S. Wheater, and H. V. Gupta
(2003), Towards reduced uncertainty in conceptual rainfall-runoff
modelling: Dynamic identifiability analysis, Hydrol. Processes, 17(2),
455–476, doi:10.1002/hyp.1135.

Wilby, R. L. (2005), Uncertainty in water resource model parameters used
for climate change impact assessment, Hydrol. Processes, 19(16), 3201–
3219, doi:10.1002/hyp.5819.

Wilby, R. L., and I. Harris (2006), A framework for assessing uncertainties
in climate change impacts: Low-flow scenarios for the River Thames,
UK, Water Resour. Res., 42, W02419, doi:10.1029/2005WR004065.

Xu, C. (1999), Operational testing of a water balance model for predicting
climate change impacts, Agric. For. Meteorol., 98-99, 295–304,
doi:10.1016/S0168-1923(99)00106-9.

Yapo, P. O., H. V. Gupta, and S. Sorooshian (1996), Automatic calibration
of conceptual rainfall-runoff models: Sensitivity to calibration data, J.
Hydrol., 181(1–4), 23–48, doi:10.1016/0022-1694(95)02918-4.

W05552 CORON ET AL.: TESTING HYDROLOGICAL MODELS IN CONTRASTED CLIMATE W05552

17 of 17


